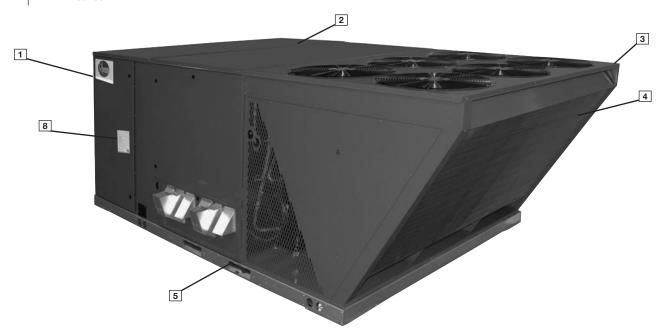


Rheem Commercial *Classic*® Series Packaged Gas Electric Unit

RKNL-H Series

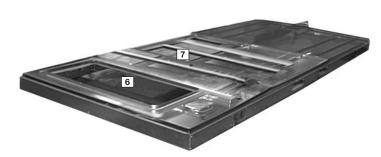
With ClearControl™ and VFD Technology Nominal Sizes 15-25 Tons [52.8-87.9 kW] ASHRAE 90.1-2019 Compliant

TABLE OF CONTENTS


Unit Features & Benefits	3-8
Model Number Identification	9
Options	10
Selection Procedure	11
General Data	
RKNL-H Series	12-21
General Data Notes	22
Gross Systems Performance Data	
RKNL-H Series	23-25
Indoor Airflow Performance	
RKNL-H Series	26-33
Electrical Data	
RKNL-H Series	
Dimensional Data	38-41
Accessories	42-56
Mechanical Specifications	
Limited Warranty	64

RKNL-H STANDARD FEATURES INCLUDE:

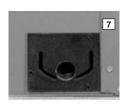
- R-410A HFC refrigerant.
- · Complete factory charged, wired and run tested.
- Scroll compressors with internal line break overload and high-pressure protection.
- · Dual stage compressors.
- Convertible airflow vertical downflow or horizontal sideflow.
- TXV refrigerant metering system on each circuit.
- High Pressure and Low Pressure/Loss of charge protection standard on all models.
- · Solid Core liquid line filter drier on each circuit.
- Single slab, single pass designed evaporator and condenser coils facilitate easy cleaning for maintaining high efficiencies.
- · Cooling operation up to 125 degree F ambient.
- Foil faced insulation encapsulated throughout entire unit minimizes airborne fibers from the air stream.
- Hinged major access door with heavy-duty gasketing, 1/4 turn latches and door retainers.
- Slide Out Indoor fan assembly for added service convenience.
- Powder Paint Finish meets ASTMB117 steel coated on each side for maximum protection. G90 galvanized.
- Base pan with drawn supply and return opening for superior water management.
- · Forkable base rails for easy handling and lifting.
- · Single point electrical connections.


- Internally sloped slide out condensate pan conforms to ASHRAE 62 standards.
- High performance belt drive motor with variable pitch pulleys and quick adjust belt system.
- Permanently lubricated evaporator, condenser and gas heat inducer motors.
- Condenser motors are internally protected, totally enclosed with shaft down design.
- 2 inch filter standard with slide out design.
- Two stage gas valve and direct spark ignition.
- Tubular heat exchange for long life and induced draft for efficiency and reliability.
- Solid state furnace control with on board diagnostics.
- 24 volt control system with resettable circuit breakers.
- · Colored and labeled wiring.
- Copper tube/Aluminum Fin coils. (Exception: C241 has microchannel condenser coils.)
- Factory Installed Direct Digital Control (DDC) and sensors which can connect to LonWorks™ or BACnet® BAS systems for remote monitoring and control.
- (-H) Models with Variable Frequency Drive (VFD) meet ASHRAE 90.1-2010 and California Title 24.
- MERV 8 & MERV 13 filters are available as an accessory.
- · Standard Modbus interface.

Rheem Packaged equipment is designed from the ground up with the latest features and benefits required to compete in today's market. The clean design stands alone in the industry and is a testament to the quality, reliability, ease of installation and serviceability that goes into each unit. Outwardly, the large Rheem Commercial Series™ label (1) identifies the brand to the customer.

The sheet-metal cabinet (2) uses nothing less than 20-gauge material for structural components with an underlying coat of G90. To ensure the leak-proof integrity of these units, the design utilizes a top with a 1/8" drip lip (3), gasket-protected panels and screws. The slanted outdoor coil protects the coil from hail damage (4). Every Rheem package unit uses the toughest finish in the industry, using electro deposition baked-on enamel tested to withstand a rigorous 1000-hour salt spray test, per ASTM B117.

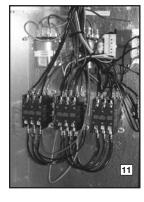
Anything built to last must start with the right foundation. In this case, the foundation is 14-gauge, commercial-grade, full-perimeter base rails (5), which integrate fork slots and rigging holes to save set-up time on the job site. The base pan is stamped, which forms a 1-1/8" flange around the supply and return opening and has eliminated the worry of water entering the conditioned space (6). The drainpan (7) is made of plastic that resists the growth of harmful bacteria and is sloped for the latest IAQ benefits. Furthermore, the drainpan slides out for easy cleaning. The insulation has been placed on the underside of the basepan, removing areas that would allow for potential moisture accumulation, which can facilitate growth of harmful bacteria. All insulation is secured with both adhesive and mechanical fasteners, and all edges are hidden.


During development, each unit was tested to U.L. 1995, ANSI 21.47, AHRI 340-360 and other Rheem-required reliability tests. Rheem adheres to stringent ISO 9001:2015 quality procedures, and each unit bears the U.L. and AHRI certification labels located on the unit nameplate (3). Contractors can rest assured that when a Rheem package unit arrives at the job, it is ready to go with a factory charge and quality checks.

Access to all major compartments is from the front of the unit, including the filter and electrical compartment, blower compartment, furnace section, and outdoor section. Each panel is permanently embossed with the compartment name (control/filter access, blower access and furnace access).


Electrical and filter compartment access is through a large, toolless, hinged-access panel with 1/4 turn latches. On the outside of the panel is the unit nameplate, which contains the model and serial number, electrical data and other important unit information.

The unit charging chart is located on the inside of the electrical and filter compartment door. Electrical wiring diagrams are found on the control box cover, which allows contractors to move them to more readable locations. To the right of the con-


trol box the model and serial number can be found. Having this information on the inside will assure model identification for the life of the product. The production line quality test assurance label is also placed in this location (9). The two-inch throwaway filters (10) are easily removed on a tracked system for easy replacement.

Inside the control box (11), each electrical component is clearly identified with a label that matches the component to the wire diagram for ease of trouble shooting. All wiring is numbered on each end of the termination and color-coded to match the wiring diagram. The integrated furnace control, used to control furnace operation, incorporates a flashing LED troubleshooting device. Flash codes are clearly outlined on the unit wiring diagram. The control transformer has a low voltage circuit breaker that trips if a low voltage electrical short occurs.

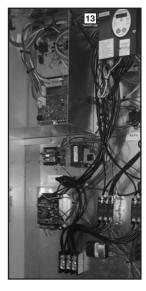
There is a blower contactor and compressor contactor for each compressor.

As part of the ClearControl™ system which allows real time monitoring and communication between rooftop units, the RKNL-H Packaged Gas Electric Unit has a Rooftop Unit

Controller (RTU-C) factory mounted and wired in the control panel. The RTU-C is a solid-state microprocessor-based control board that provides flexible control and extensive diagnostics for all unit functions. The RTU-C through proportional/integral control algorithms perform specific unit functions that

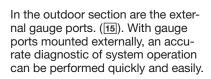
govern unit operation in response to: zone conditions, system temperatures, system pressures, ambient conditions and electrical inputs. The RTU-C features a 16 x 2 character LCD display and a five-button keypad for local configuration and direct diagnosis of the system. New features include a clogged filter switch (CFS), fan proving switch (FPS), return air temperature sensor (RAT), discharge air temperature sensor (DAT) and outdoor air temperature sensor (OAT). Freeze sensors (FS) are used in place of freezestats to allow measurement of refrigerant suction line temperatures. The RKNL-H Package Gas/Electric with ClearControl™ is specifically designed to be applied in four distinct applications:

The RKNL-H is compatible with a third party building management system that supports the BACnet Application Specific Controller device profile, with the use of a field installed BACnet Communication Module. The BACnet Communication Module plugs into the unit RTU-C controller and allows communication between ClearControl™ and the BACnet MSTP or IP network. A zone sensor, a BACnet network zone sensor, a BACnet thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The BACnet Communication Module is compatible with MSTP EIA-485 daisy chain networks communicating at 38.4 bps. It is compatible with twisted pair, shielded cables.


The RKNL-H is compatible with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. This is accomplished with a field installed LonMark communication module. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between ClearControl™ and a LonWorks Network. A zone sensor, a LonTalk network zone sensor, or a LonTalk thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The LonMark Communication Module utilizes an FTT-10A free topology transceiver communicating at 78.8 kbps. It is compatible with Echelon qualified twisted pair cable, Belden 8471 or NEMA Level 4 cables. The Module can communicate up to 1640 ft. with no repeater. The LonWorks limit of 64 nodes per segment applies to this device.

The RKNL-H is compatible with a programmable 24 volt thermostat. Connections are made via conventional thermostat screw terminals. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

The RKNL-H is compatible with a zone sensor and mechanical or solid state time clock connected to the RTU-C. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.


A factory or field installed Comfort Alert® module is available for power phase-monitoring protection and additional compressor diagnostics. The alarms can be displayed on the RTU-C display, through the (BAS) network, or connected to the "L-Terminal" of a thermostat for notification.

-H models with factory installed VFD (13) (variable frequency drive) optimize energy usage year round by providing a lower speed for first stage cooling operation improving IEER's over the conventional constant fan system. Furthermore, operating in the constant fan mode at the reduced speed can use as little as 1/5th of the energy of a conventional constant fan system. Also, by operating at a lower speed on first stage cooling up to 51% more moisture is removed improving comfort during low load operation. The VFD equipped units meet California Title 24 and ASHRAE 90.1-2010 requirements for multi blower speed control. VFD also ramps up to the desire speed reducing stress on the supply fan components and reducing the noise from sudden inrush of air. Because the

airflow is cut in half during first stage cooling and constant fan operation, noise is much less during these modes of operation.

For added convenience in the field, a factory-installed convenience outlet and disconnect (14) are available. Low and High voltage can enter either from the side or through the base. Low-voltage connections are made through the low-voltage terminal strip. For ease of access, the U.L.-required low voltage barrier can be temporarily removed for lowvoltage termination and then reinstalled. The high-voltage connection is terminated at the high-voltage terminal block. The suggested mounting for the field-installed disconnect is on the exterior side of the electrical control box.

The blower compartment is to the right of the control box and can be accessed by 1/4 turn latches. To allow easy maintenance of the blower assembly, the entire assembly

easily slides out by removing four #10 screws from the blower assembly. The adjustable motor pulley ([16]) can easily be adjusted by loosening the bolts on either side of the motor mount. Removing the bolts allows for easy removal of the blower pulley by pushing the blower assembly up to loosen the belt. Once the belt is removed, the motor sheave can be adjusted to the desired number of turns, ranging from 1 to 6 turns open. Where the demands for the job require high static, Rheem has high-static drives available that deliver nominal airflow up to 2" of static. By referring to the airflow performance tables listed in the installation instructions, proper static pressure and CFM requirements can be dialed in. The scroll housing (17) and blower scroll provide quiet and efficient airflow. The blower sheave is secured by an "H" bushing which firmly secures the pulley to the blower shaft for years of trouble-free operation. The "H" bushing allows for easy removal of the blower pulley from the shaft, as opposed to the use of a set screw, which can score the shaft, creating burrs that make blower-pulley removal difficult.

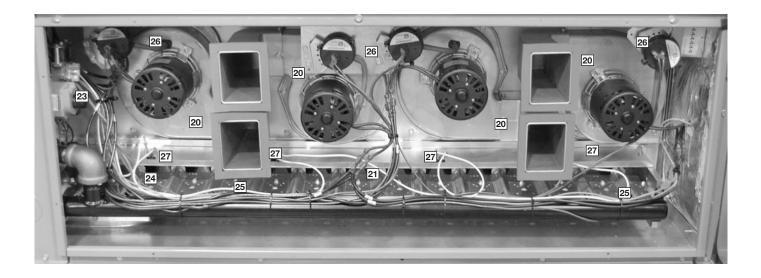
Also inside the blower compartment are the optional low-ambient controls (18). The low-ambient controls allow for operation of the compressor down to 0 degrees ambient temperature by cycling the outdoor fans on high pressure. Use of polarized plugs and schrader fittings allow for easy field or factory installation. The freeze sensor clips on the suction line near the evaporator outlet. The freeze sensor protects the compressor if the evaporator coil gets too cold (below freezing) due to low airflow and allows monitoring of the suction line temperature on the controller display.

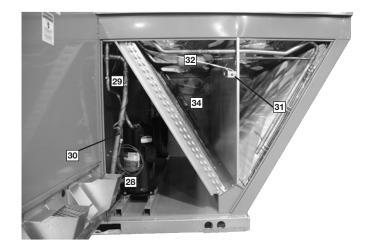
Inside the blower compartment the interlaced evaporator can also be viewed. The evaporator uses enhanced fin technology for maximum heat transfer.

The TXV metering device assures even distribution of refrigerant throughout

the evaporator.

Wiring throughout the unit is neatly bundled and routed. Where wire harnesses go through the condenser bulkhead or blower deck, a molded wire harness assembly (19) provides an air-tight and water-tight seal, and provides strain relief. Care is also taken to tuck raw edges of insulation behind sheet metal to improve indoor air quality.

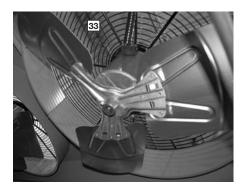

The furnace compartment contains the latest furnace technology on the market. The draft inducers (20) draw the flame from the Rheem exclusive in-shot burners (21) into the aluminized tubular heat exchanger (22) for clean, efficient gas heat. Stainless steel heat exchangers can be factory installed for those applications that have high fresh-air requirements, or applications in corrosive environments. Each furnace is equipped with a two-stage gas valve (23), which provides two stages of gas heat input. The first stage operates at 50% of the second stage (full fire). 81% steady state efficiency is maintained on both first and second stage by staging the multiple inducers to optimize the combustion airflow and maintain a near stoichiometric burn at each stage.



The direct spark igniter (24) assures reliable ignition in the most adverse conditions. This is coupled with remote flame sense (25) to assure that the flame has carried across the entire length of the burner assembly. Gas supply can be routed from the side or up through the base.

Each furnace has the following safety devices to assure consistent and reliable operation after ignition:

- Pressures switches (26) to assure adequate combustion airflow before ignition.
- Rollout switches (27) to assure no obstruction or cracks in the heat exchanger.
- A limit device that protects the furnace from over-temperature problems.



The compressor compartment houses the heartbeat of the unit. The scroll compressor (28) is known for its long life, and for reliable, quiet, and efficient operation. The suction and discharge lines are designed with shock loops (29) to absorb the strain and stress that the starting torque, steady state operation, and shut down cycle impose on the refrigerant tubing. Each compressor and circuit is independent for built-in redundancy, and each circuit is clearly marked throughout the system. Each unit has two stages of efficient cooling operation, first stage is approximately 50% of second stage.

The low-pressure switches (30) and high-pressure switches (31) are mounted on the appropriate refrigerant lines in the condenser section. The high-pressure switch will shut off the compressors if pressures exceeding 610 PSIG are detected as may occur if the outdoor fan motor fails. The low-pressure switches shut off the compressors if low pressure is detected due to loss of refrigerant charge. Each factory-installed option is brazed into the appropriate high or low side and wired appropriately. Use of polarized plugs allow for easy field inspection and repair.

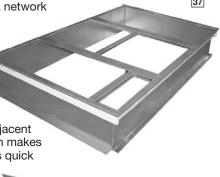
Each unit comes standard with filter dryer (32). The condenser fan motor (33) can easily be accessed and maintained by removing the protective fan grille. The polarized plug connection allows the motor to be changed quickly and eliminates the need to snake wires through the unit. The outdoor coil uses the latest enhanced fin design (34) for the most effective method of heat transfer. The outdoor coil is slanted to protect it from Mother Nature.

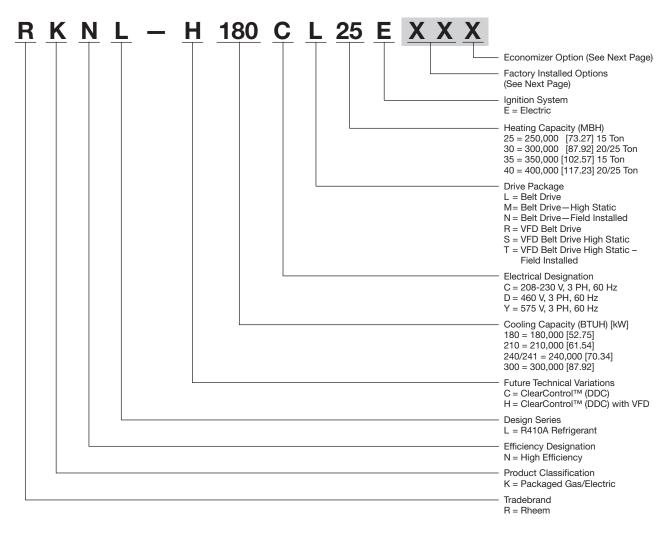
Each unit is designed for both downflow or horizontal applications (35) for job configuration flexibility. The return air

Three models exists; two for down-

flow applications (a downflow economizer with factory installed smoke detector in the return section is available), and one for horizontal applications. Each unit is pre-wired for the economizer to allow quick plug-in installation. The downflow economizer is also available as a factoryinstalled option. Power Exhaust is easily field-installed. The economizer, which provides free cooling when outdoor conditions are suitable and also provides fresh air to meet local requirements, comes standard with single enthalpy controls. The controls can be upgraded to dual enthalpy easily in the field. The direct drive actuator combined with gear drive dampers has eliminated the need for linkage

adjustment in the field. The economizer control has a minimum position setpoint, an outdoor-air setpoint, a mix-air setpoint, and a CO₂ setpoint. Barometric relief is standard on all economizers. The power exhaust is housed in the barometric relief opening and is easily


slipped in with a plug-in assembly. The wire harness to the economizer also has accommodations for a smoke detector.


The damper minimum position, actual damper position, power exhaust on/off setpoint, mixed air temperature limit setpoint and Demand Controlled Ventilation (DCV) setpoint can be read and adjusted at the unit controller display or remotely through a network connection.

The Space CO₂ level, mixed air temperature, and Economizer Status (Free Cooling Available, Single or Dual Enthalpy) can be read at the unit controller display or remotely through a network connection. Economizer Faults will trigger a network Alarm and can be read at the unit controller display

or remotely through a network connection.

The Rheem roofcurb (37) is made for toolless assembly at the jobsite by inserting a pin into a hinge in each corner of the adjacent curb sides (38), which makes the assembly process quick and easy.

FACTORY INSTALLED OPTION CODES FOR RKNL-H (15-25 TON) [52.8-87.9 kW]

Option Code	Hail Guard	Stainless Steel Heat Exchanger	Non-Powered Convenience Outlet/Unfused Service Disconnect	Low Ambient/ Comfort Alert
AA			NO OPTIONS	
AD	Х			
AJ		Х		
AH			x	
AR				Х
BF	Х		x	
BG	Х	Х		
CY		Х	х	Х
JD	Х			Х
JB		X	х	
KA	Х	Х		Х
DP	X	X	х	X

[&]quot;x" indicates factory installed option.

ECONOMIZER SELECTION FOR RKNL-H (15-25 TON) [52.8-87.9 kW]

Option Code	No Economizer	DDC Single Enthalpy Economizer* With Barometric Relief	DDC Single Enthalpy Economizer* With Barometric Relief and Smoke Detector
А	X		
Н		X	
J			X

[&]quot;x" indicates factory installed option.

Instructions for Factory Installed Option(s) Selection

Note: Three characters following the model number will be utilized to designate a factory-installed option or combination of options. If no factory option(s) is required, nothing follows the model number.

Step 1. After a basic rooftop model is selected, choose a *two-character* option code from the FACTORY INSTALLED OPTION SELECTION TABLE.

Proceed to Step 2.

Step 2. The last option code character is utilized for factory-installed economizers. Choose a character from the FACTORY INSTALLED ECONOMIZER SELECTION TABLE.

Example: RKNL-H240CL40E $\underline{\textbf{XX}}$ X (where $\underline{\textbf{XX}}$ is factory installed option)

Example: No Options

RKNL-H240CL40E

Example: No option with factory installed economizer

RKNL-H240CL40EAAH

Example: Options with low ambient and comfort alert, unwired convenience outlet, unfused service disconnect, and stainless steel heat exchanger with no factory installed economizer

RKNL-H240CL40ECYA

Example: Options same as above with factory installed economizer

RKNL-H240CL40ECYJ

^{*}Downflow economizer only.

To select an RKNL-H Cooling and Heating unit to meet a job requirement, follow this procedure, with example, using data supplied in this specification sheet.

DETERMINE COOLING AND HEATING REQUIREMENTS AND SPECIFIC OPERATING CONDITIONS FROM PLANS AND SPECS.

Example: Voltage-208/240V - 3 Phase - 60 Hz Total Cooling Capacity -205,000 BTUH [60.0 kW] Sensible Cooling Capacity-155,000 BTUH [45.4 kW] 235,000 BTUH [68.8 kW] Heating Capacity-*Condenser Entering Air-95°F [35.0°C] DB *Evaporator Mixed Air Entering-65°F [18.3°C] WB 78°F [25.6°C] DB *Indoor Air Flow (vertical) --7200 CFM [3398 L/s] *External Static Pressure --0.70 in. WG [.17 kPa]

2. SELECT UNIT TO MEET COOLING REQUIREMENTS.

Since total cooling is within the range of a nominal 20 ton [70.3 kW] unit, enter cooling performance table at 95°F [35.0°C] DB condenser inlet air. Interpolate between 63°F [17.2°C] WB and 67°F [19.4°C] to determine total and sensible capacity and power input for 65°F [18.3°C] WB evaporator inlet air at 7725 CFM [3645 L/s] indoor air flow (table basis):

Total Cooling Capacity = 238,250 BTUH [69.76 kW] Sensible Cooling Capacity = 192,550 BTUH [56.38 kW] Power Input (Compressor and Cond. Fans) = 18,200 watts

Use formula in note ① to determine sensible capacity at 78°F [25.6°C] DB evaporator entering air:

 $192,550 + (1.10 \times 7,200 \times (1 - 0.11) \times (78 - 80))$ Sensible Cooling Capacity = 178,452 BTUH [52.25 kW]

3. CORRECT CAPACITIES OF STEP 2 FOR ACTUAL AIR FLOW.

Select factors from airflow correction table at 7200 CFM [3398 L/s] and apply to data obtained in step 2 to obtain gross capacity:

Total Capacity = $238,250 \times 0.99 = 235,868$ BTUH [69.06 kW] Sensible Capacity = $178,452 \times 0.96 = 171,314$ BTUH [50.16 kW] Power Input = $18,200 \times 0.99 = 18,018$ Watts

These are Gross Capacities, not corrected for blower motor heat or power.

DETERMINE BLOWER SPEED AND WATTS TO MEET SYSTEM DESIGN.

Enter Indoor Blower performance table at 7200 CFM [3398 L/s]. Total ESP (external static pressure) per the spec of 0.70 in. WG [.17 kPa] includes the system duct and grilles. Add from the table "Component Air Resistance," 0.01 in. WG [.00 kPa] for wet coil, 0.08 in. WG [.02 kPa] for downflow air flow, for a total selection static pressure of 0.79 (0.8) in. WG [.20 kPa], and determine:

RPM = 739 WATTS = 2,862 DRIVE = L (standard 5 H.P. motor)

5. CALCULATE INDOOR BLOWER BTUH HEAT EFFECT FROM MOTOR WATTS, STEP 4.

2,862 x 3.412 = 9,765 BTUH [2.86 kW]

6. CALCULATE NET COOLING CAPACITIES, EQUAL TO GROSS CAPACITY, STEP 3, MINUS INDOOR BLOWER MOTOR HEAT.

Net Total Capacity = 235,868 - 9,765 = 226,103 BTUH [66.21 kW] Net Sensible Capacity = 171,314 - 9,765 = 161,549 BTUH [47.30 kW]

7. CALCULATE UNIT INPUT AND JOB EER.

Total Power Input = 18,018 (step 3) + 2,862 (step 4) = 20,880 Watts

 $EER = \frac{\text{Net Total BTUH [kW] (step 6)}}{\text{Power Input, Watts (above)}} = \frac{226,103}{20,880} = 10.83$

8. SELECT UNIT HEATING CAPACITY.

From Physical Data Table read that gas heating output (input rating x efficiency) is:

Heating Capacity = 243,000 BTUH [71.2 kW]

9. CHOOSE MODEL RKNL-H240CL30E.

*NOTE: These operating conditions are typical of a commercial application in a 95°F/79°F [35°C/26°C] design area with indoor design of 76°F [24°C] DB and 50% RH and 10% ventilation air, with the unit roof mounted and centered on the zone it conditions by ducts.

Model RKNL- Series (with VFD)	H180CR25E	H180CR35E	H180CS25E	H180CS35E
Cooling Performance ^A				CONTINUED
Gross Cooling Capacity Btu [kW]	188,000 [53.47]	188,000 [53.47]	188,000 [53.47]	188,000 [53.47]
EER/SEER ^B	10.8	10.8	10.8	10.8
Nominal CFM/AHRI Rated CFM [L/s]	14	14	14	14
AHRI Net Cooling Capacity Btu [kW]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]
Net Sensible Capacity Btu [kW]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]
Net Latent Capacity Btu [kW]	125,700 [35.75]	125,700 [35.75]	125,700 [35.75]	125,700 [35.75]
IEER¢	46,300 [13.17]	46,300 [13.17]	46,300 [13.17]	46,300 [13.17]
Net System Power kW	15.93	15.93	15.93	15.93
Heating Performance (Gas) ^D				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	125,000/250,000 [36.62/73.25]	175,000/350,000 [51.27/102.55]	125,000/250,000 [36.62/73.25]	175,000/350,000 [51.27/102.5
Heating Output Btu [kW] (1st Stage / 2nd Stage)	101,250/202,500 [29.67/59.33]	141,750/283,500 [41.53/83.06]	101,250/202,500 [29.67/59.33]	141,750/283,500 [41.53/83.06
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	15-45 [8.3-25] / 30-60 [16.7-33.3] /	15-45 [8.3-25] / 30-60 [16.7-33.3] /	15-45 [8.3-25] 30-60 [16.7-33.3]	15-45 [8.3-25] 30-60 [16.7-33.3]
Steady State Efficiency (%)	81	81	81	81
No. Burners	10	14	10	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor	<u> </u>			
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	16000 [7550]	16000 [7550]	16000 [7550]	16000 [7550]
No. Motors/HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	3	3	5	5
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	184	184
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	205/211 [5812/5982]	205/211 [5812/5982]	205/211 [5812/5982]	205/211 [5812/5982]
Weights				
Net Weight Ibs. [kg]	1958 [888]	1971 [894]	1987 [901]	2000 [907]
Ship Weight lbs. [kg]	2084 [945]	2097 [951]	2113 [958]	2126 [964]

Model RKNL- Series (with VFD)	H180DR25E	H180DR35E	H180DS25E	H180DS35E
Cooling Performance ^A				CONTINUED ──➤
Gross Cooling Capacity Btu [kW]	188,000 [53.47]	188,000 [53.47]	188,000 [53.47]	188,000 [53.47]
EER	10.8	10.8	10.8	10.8
IEER ^B	14	14	14	14
Nominal CFM/AHRI Rated CFM [L/s]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]
AHRI Net Cooling Capacity Btu [kW]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]
Net Sensible Capacity Btu [kW]	125,700 [35.75]	125,700 [35.75]	125,700 [35.75]	125,700 [35.75]
Net Latent Capacity Btu [kW]	46,300 [13.17]	46,300 [13.17]	46,300 [13.17]	46,300 [13.17]
Net System Power kW	15.93	15.93	15.93	15.93
Heating Performance (Gas) ^C				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	125,000/250,000 [36.62/73.25]	175,000/350,000 [51.27/102.55]	125,000/250,000 [36.62/73.25]	175,000/350,000 [51.27/102.55
Heating Output Btu [kW] (1st Stage / 2nd Stage) 101,250/202,500 [29.67/59.33]	141,750/283,500 [41.53/83.06]	101,500/203,000 [29.74/59.48]	143,250/286,500 [41.97/83.94
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	15-45 [8.3-25] / 15-45 [8.3-25]	30-60 [16.7-33.3] / 30-60 [16.7-33.3]	15-45 [8.3-25] / 15-45 [8.3-25]	30-60 [16.7-33.3] / 30-60 [16.7-33.3]
Steady State Efficiency (%)	81	81	81	81
No. Burners	10	14	10	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ^D	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	16000 [7550]	16000 [7550]	16000 [7550]	16000 [7550]
No. Motors/HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	3	3	5	5
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	184	184
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	205/211 [5812/5982]	205/211 [5812/5982]	205/211 [5812/5982]	205/211 [5812/5982]
Weights	<u> </u>		<u> </u>	<u> </u>
Net Weight lbs. [kg]	1958 [888]	1971 [894]	1987 [901]	2000 [907]
Ship Weight Ibs. [kg]	2084 [945]	2097 [951]	2113 [958]	2126 [964]
See Page 22 for Notes.	r -1	. J		nates Metric Conversion

		CONTINUED —
212,000 [60.30]	212,000 [60.30]	
10.8	10.8	
14	14	
7000/6750 [3303/3185]	7000/6750 [3303/3185]	
200,000 [56.88]	200,000 [56.88]	
150,900 [42.91]	150,900 [42.91]	
	· ·	
	.0.02	
125 000/250 000 [36 62/73 25] :	175 000/350 000 [51 27/102 55]	
	•	
נאון טייט	บ.กอ [เฮ]	
0/0	0/01	
	• •	
53.3 [4.95]	53.3 [4.95]	
2 / 18 [7]	2 / 18 [7]	
Louvered	Louvered	
Rifled	Rifled	
0.375 [9.5]	0.375 [9.5]	
26.67 [2.48]	26.67 [2.48]	
2 / 18 [7]	2 / 18 [7]	
TX Valves	TX Valves	
1/1 [25.4]	1/1 [25.4]	
•	•	
	• •	
	- ·	
, . ,	, , ,	
Single / Multiple	Single / Multiple	
1	1	
3	3	
1725	1725	
56	56	
Disposable	Disposable	
Yes	Yes	
(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	
294/302 [8335/8562]	294/302 [8335/8562]	
<u> </u>		
2145 [973]	2158 [979]	
- LJ	F	
	10.8 14 7000/6750 [3303/3185] 200,000 [56.88] 150,900 [42.91] 49,100 [13.96] 18.52 125,000/250,000 [36.62/73.25] 101,250/202,500 [29.67/59.33] 15-45 [8.3-25] / 15-45 [8.3-25] / 15-45 [8.3-25] 81 10 2 0.75 [19] 2/Scroll 91 Louvered Rifled 0.375 [9.5] 53.3 [4.95] 2 / 18 [7] Louvered Rifled 0.375 [9.5] 26.67 [2.48] 2 / 18 [7] TX Valves 1/1 [25.4] Propeller 4/24 [609.6] Direct/1 14800 [6984] 4 at 1/3 HP 1075 FC Centrifugal 2/18x9 [457x229] Belt (Adjustable) Single / Multiple 1 3 1725 56 Disposable Yes (8)2x25x20 [51x635x508]	10.8 14 14 14 14 14 17000/6750 [3303/3185] 200,000 [56.88] 150,900 [42.91] 150,900 [42.91] 149,100 [13.96] 18.52 18.52 18.52 125,000/250,000 [36.62/73.25] 175,000/350,000 [51.27/102.55] 101,250/202,500 [29.67/59.33] 141,750/283,500 [41.53/83.06] 15-45 [8.3-25] / 25-55 [13.9-30.6] / 16-25 [13.9-30.6] / 25-55 [13.9-30.6] / 10-25 [13.9-30.6] / 25-55 [13.9-30.6] / 10-25 [13.9-30.6] / 25-55 [13.9-30.6] / 10-25 [13.9-30.6] / 25-55 [13.9-30.6] / 10-25 [13.9-30.6] / 25-55 [13.9-30.6] / 10-25 [13.9-30.6] / 25-55 [13.9-30.6] / 10-25 [13.9-30.6] / 25-55 [13.9-30.6] / 10-25 [13.9-30.6] / 25-55 [13.9-30.6] / 10-25 [13.9-30.6] / 25-55 [13.9-30.6] / 10-25 [13.9-30.6] / 25-55 [13.9-30.6] / 10-25 [13.9-30.6] / 25-55 [13.9-30.6] / 10-25 [13.9-30.6] / 25-55 [13.9-30.6] / 10-25 [13.9-30.6] / 25-55 [13.9-30.6] / 10-25 [13.9-30.6] / 25-55 [13.9-30.6] / 10-25 [13.9-30.6] / 25-55 [13.9-30.6] / 10-25 [13.9-30.6] / 25-55 [13.9-30.6] / 10-25 [13.9-30.6] / 25-55 [13.9-30.6] / 10-25 [13.9-30.6] / 25-55 [13.9-30.6] / 10-25 [

Model RKNL- Series (with VFD)	H210CS25E	H210CS35E	H210DR25E	H210DR35E
Cooling Performance ^A				CONTINUED
Gross Cooling Capacity Btu [kW]	212,000 [60.30]	212,000 [60.30]	212,000 [60.30]	212,000 [60.30]
EER	10.8	10.8	10.8	10.8
IEER B	14	14	14	14
Nominal CFM/AHRI Rated CFM [L/s]	7000/6750 [3303/3185]	7000/6750 [3303/3185]	7000/6750 [3303/3185]	7000/6750 [3303/3185]
AHRI Net Cooling Capacity Btu [kW]	200,000 [56.88]	200,000 [56.88]	200,000 [56.88]	200,000 [56.88]
Net Sensible Capacity Btu [kW]	150,900 [42.91]	150,900 [42.91]	150,900 [42.91]	150,900 [42.91]
Net Latent Capacity Btu [kW]	49,100 [13.96]	49,100 [13.96]	49,100 [13.96]	49,100 [13.96]
Net System Power kW	18.52	18.52	18.52	18.52
Heating Performance (Gas) ^c		10.02	10.02	
Heating Input Btu [kW] (1st Stage / 2nd Stage)	125 000/250 000 [36 62/73 25]	175 000/350 000 [51 27/102 55]	1 125 000/250 000 [36 62/73 25]	175 000/350 000 [51 27/102 5
Heating Output Btu [kW] (1st Stage / 2nd Stage)				
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	25-55 [13.9-30.6] /	15-45 [8.3-25] /	25-55 [13.9-30.6] /
(1st Stage / 2nd Stage)	15-45 [8.3-25]	25-55 [13.9-30.6]	15-45 [8.3-25]	25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	10	14	10	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor	0.70 [10]	0.70 [10]	0.70 [10]	0.70 [10]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ^D	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD				
• •	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	14800 [6984]	14800 [6984]	14800 [6984]	14800 [6984]
No. Motors/HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	5	5	3	3
Motor RPM	1725	1725	1725	1725
Motor Frame Size	184	184	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	294/302 [8335/8562]	294/302 [8335/8562]	294/302 [8335/8562]	294/302 [8335/8562]
Weights	20 1/002 [0000/0002]	20 1,002 [0000/0002]	20 ,,002 [0000,0002]	20 1/ 002 [0000/0002]
Net Weight lbs. [kg]	2174 [986]	2187 [992]	2145 [973]	2158 [979]
• • • •				
Ship Weight lbs. [kg]	2301 [1044]	2314 [1050]	2272 [1031]	2285 [1036]

Model RKNL- Series (with VFD)	H210DS25E	H210D\$35E	
Cooling Performance ^A			CONTINUED
Gross Cooling Capacity Btu [kW]	212,000 [60.30]	212,000 [60.30]	
EER	10.8	10.8	
IEER ^B	14	14	
Nominal CFM/AHRI Rated CFM [L/s]	7000/6750 [3303/3185]	7000/6750 [3303/3185]	
AHRI Net Cooling Capacity Btu [kW]	200,000 [56.88]	200,000 [56.88]	
Net Sensible Capacity Btu [kW]	150,900 [42.91]	150,900 [42.91]	
Net Latent Capacity Btu [kW]	49,100 [13.96]	49,100 [13.96]	
Net System Power kW	18.52	18.52	
Heating Performance (Gas) ^c			
Heating Input Btu [kW] (1st Stage / 2nd Stage)	125,000/250,000 [36.62/73.25]	175,000/350,000 [51.27/102.55]	
Heating Output Btu [kW] (1st Stage / 2nd Stage)	101,250/202,500 [29.67/59.33]	141,750/283,500 [41.53/83.06]	
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	25-55 [13.9-30.6] /	
(1st Stage / 2nd Stage)	15-45 [8.3-25]	25-55 [13.9-30.6]	
Steady State Efficiency (%)	81	81	
No. Burners	10	14	
No. Stages	2	2	
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	
Compressor			
No./Type	2/Scroll	2/Scroll	
Outdoor Sound Rating (dB) ^D	91	91	
Outdoor Coil—Fin Type	Louvered	Louvered	
Tube Type	Rifled	Rifled	
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	
Indoor Coil—Fin Type	Louvered	Louvered	
Tube Type	Rifled	Rifled	
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	
Refrigerant Control	TX Valves	TX Valves	
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	
Outdoor Fan—Type	Propeller	Propeller	
No. Used/Diameter in. [mm]	4/24 [609.6]	4/24 [609.6]	
Drive Type/No. Speeds	Direct/1	Direct/1	
CFM [L/s]	14800 [6984]	14800 [6984]	
No. Motors/HP	4 at 1/3 HP	4 at 1/3 HP	
Motor RPM	1075	1075	
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	
Drive Type	Belt (Adjustable)	Belt (Adjustable)	
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	
No. Motors	1	1	
Motor HP	5	5	
Motor RPM	1725	1725	
Motor Frame Size	184	184	
Filter—Type	Disposable	Disposable	
Furnished	Yes	Yes	
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	294/302 [8335/8562]	294/302 [8335/8562]	
Weights	234/302 [0333/0302]	23 1 /302 [0333/0302]	
_	2174 [096]	2187 [002]	
Net Weight Ibs. [kg]	2174 [986]	2187 [992]	
Ship Weight lbs. [kg]	2301 [1044]	2314 [1050]	

Model RKNL- Series (with VFD)	H240CR30E	H240CR40E	H240CS30E	H240CS40E
Cooling Performance ^A				CONTINUED
Gross Cooling Capacity Btu [kW]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]
EER	10.8	10.8	10.8	10.8
IEER B	14	14	14	14
Nominal CFM/AHRI Rated CFM [L/s]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]
AHRI Net Cooling Capacity Btu [kW]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]
Net Sensible Capacity Btu [kW]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]
Net Latent Capacity Btu [kW]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]
Net System Power kW	21.11	21.11	21.11	21.11
Heating Performance (Gas) ^C	21.11	21.11	21.11	21.11
Heating I put Btu [kW] (1st Stage / 2nd Stage)	150 000/300 000 [//3 05/87 0]	200 000/400 000 [58 6/117 2]	150 000/300 000 [/3 05/87 0]	200 000/400 000 [58 6/117
Heating Output Btu [kW] (1st Stage / 2nd Stage)				· · · · · · ·
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	25-55 [13.9-30.6] /	15-45 [8.3-25] /	25-55 [13.9-30.6] /
(1st Stage / 2nd Stage)	15-45 [8.3-25]	25-55 [13.9-30.6]	15-45 [8.3-25]	25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	12	14	12	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor	0.70 [10]	0.70 [10]	0.70 [10]	0.70 [10]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ^D	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	5	5	7 1/2	7 1/2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	184	184	213	213
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	402/331 [11397/9384]	402/331 [11397/9384]	402/331 [11397/9384]	402/331 [11397/9384]
Weights	.02,001 [11001/0004]	.02,001 [11001/0001]	.52,551 [11001/0001]	.52,551 [11501/0004]
Net Weight lbs. [kg]	2289 [1038]	2303 [1045]	2327 [1056]	2341 [1062]
Ship Weight lbs. [kg]	2415 [1095]	2430 [1102]	2453 [1113]	2468 [1119]
omp moight hos. [Ng]	2410 [1000]	[۱۱۵۷] د ۱۱۵۲	2-100 [1110]	2700 [1113]

See Page 22 for Notes.

Model RKNL- Series (with VFD)	H240CT30E	H240CT40E	H240DR30E	H240DR40E
Cooling Performance ^A				CONTINUED
Gross Cooling Capacity Btu [kW]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]
EER	10.8	10.8	10.8	10.8
IEER ^B	14	14	14	14
Nominal CFM/AHRI Rated CFM [L/s]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]
AHRI Net Cooling Capacity Btu [kW]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]
Net Sensible Capacity Btu [kW]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]
Net Latent Capacity Btu [kW]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]
Net System Power kW	21.11	21.11	21.11	21.11
Heating Performance (Gas) ^C	21.11	21.11	21.11	21.11
Heating Input Btu [kW] (1st Stage / 2nd Stage)	150 000/300 000 [43 95/87 9]	200 000/400 000 [58 6/117 2]	150 000/300 000 [43 95/87 9]	200 000/400 000 [58 6/117
Heating Output Btu [kW] (1st Stage / 2nd Stage)				
Temperature Rise Range °F [°C]				
(1st Stage / 2nd Stage)	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	12	14	12	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor	0.73 [13]	0.70 [10]	0.70 [10]	0.70 [10]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ^D	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	7 1/2	7 1/2	5	5
Motor RPM	1725	1725	1725	1725
Motor Frame Size	213	213	184	184
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	402/331 [11397/9384]	402/331 [11397/9384]	402/331 [11397/9384]	402/331 [11397/9384]
Weights	£	[[. [>
Net Weight Ibs. [kg]	2325 [1055]	2340 [1061]	2289 [1038]	2303 [1045]
Ship Weight lbs. [kg]	2452 [1112]	2466 [1119]	2415 [1095]	2430 [1102]
See Page 22 for Notes.		1		nates Metric Conversio

See Page 22 for Notes.

Model RKNL- Series (with VFD)	H240DS30E	H240DS40E	H240DT30E	H240DT40E
Cooling Performance ^A				CONTINUED
Gross Cooling Capacity Btu [kW]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]
EER	10.8	10.8	10.8	10.8
IEER B	14	14	14	14
Nominal CFM/AHRI Rated CFM [L/s]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]
AHRI Net Cooling Capacity Btu [kW]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]
Net Sensible Capacity Btu [kW]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]
Net Latent Capacity Btu [kW]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]
Net System Power kW	21.11	21.11	21.11	21.11
Heating Performance (Gas) ^C				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	150 000/300 000 [43 95/87 9]	200 000/400 000 [58 6/117 2]	150 000/300 000 [43 95/87 9]	200 000/400 000 [58 6/117
Heating Output Btu [kW] (1st Stage / 2nd Stage)				
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	25-55 [13.9-30.6] /	15-45 [8.3-25] /	25-55 [13.9-30.6] /
(1st Stage / 2nd Stage)	15-45 [8.3-25]	25-55 [13.9-30.6]	15-45 [8.3-25]	25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	12	14	12	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ^D	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	0/24 [000:0] Direct/1	0/24 [000:0] Direct/1	0/24 [000:0] Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
**	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Speeds (Standard / VFD) No. Motors	Silligie / Multiple	Siligle / Multiple	Siligle / Multiple	Single / Multiple
		·		•
Motor HP	7 1/2	7 1/2	7 1/2	7 1/2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	184	213	184	213
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	402/331 [11397/9384]	402/331 [11397/9384]	402/331 [11397/9384]	402/331 [11397/9384]
Weights	0007 [1050]	0011 (1000)	0005 (4055)	0040 5400 13
Net Weight lbs. [kg]	2327 [1056]	2341 [1062]	2325 [1055]	2340 [1061]
Ship Weight lbs. [kg]	2453 [1113]	2468 [1119]	2452 [1112]	2466 [1119]

See Page 22 for Notes.

Model RKNL- Series (with VFD)	H300CR40E	H300CS30E	H300CS40E	H300DR30E
Cooling Performance ^A				CONTINUED -
Gross Cooling Capacity Btu [kW]	312000 [88.74]	312000 [88.74]	312000 [88.74]	312000 [88.74]
EER/SEER ^B	9.8	9.8	9.8	9.8
Nominal CFM/AHRI Rated CFM [L/s]	13	13	13	13
AHRI Net Cooling Capacity Btu [kW]	10000/8350 [4719/3940]	10000/8350 [4719/3940]	10000/8350 [4719/3940]	10000/8350 [4719/3940]
Net Sensible Capacity Btu [kW]	286,000 [81.34]	286,000 [81.34]	286,000 [81.34]	286,000 [81.34]
Net Latent Capacity Btu [kW]	206,100 [60.40]	206,100 [60.40]	206,100 [60.40]	206,100 [60.40]
IEER¢	79,900 [23.41]	79,900 [23.41]	79,900 [23.41]	79,900 [23.41]
Net System Power kW	29.18	29.18	29.18	29.18
Heating Performance (Gas) ^D	23.10	23.10	23.10	23.10
Heating Input Btu [kW] (1st Stage / 2nd Stage)	200 000/400 000 [59 6/117 2]	150 000/200 000 [42 05/97 0]	200 000/400 000 [50 6/117 2]	150 000/200 000 [42 05/97
			200,000/400,000 [58.6/117.2]	
Heating Output Btu [kW] (1st Stage / 2nd Stage)				
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	15-45 [8.3-25] / 15-45 [8.3-25]	10-40 [5.6-22.2] / 10-40 [5.6-22.2]	25-45 [13.9-25] / 15-45 [8.3-25]	10-40 [5.6-22.2] / 10-40 [5.6-22.2]
Steady State Efficiency (%)	81	81	81	81
No. Burners	14	12	14	12
No. Stages	2	2	2	2
•				
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor	0.00	0/0 !!	0/0 !!	0/0 !!
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	92	92	92	92
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
, ,	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors				
Motor PPM	7 1/2	10	10	7 1/2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	213	215	215	213
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	339/357 [9611/10121]	339/357 [9611/10121]	339/357 [9611/10121]	339/357 [9611/10121]
Weights				
Weights Net Weight Ibs. [kg]	2402 [1090]	2399 [1088]	2413 [1095]	2388 [1083]

See Page 22 for Notes.

Model RKNL- Series (with VFD)	H300DR40E	H300DS30E	H300DS40E	
Cooling Performance ^A				
Gross Cooling Capacity Btu [kW]	312000 [88.74]	312000 [88.74]	312000 [88.74]	
EER	9.8	9.8	9.8	
IEER ^B	13	13	13	
Nominal CFM/AHRI Rated CFM [L/s]	10000/8350 [4719/3940]	10000/8350 [4719/3940]	10000/8350 [4719/3940]	
AHRI Net Cooling Capacity Btu [kW]	286,000 [81.34]	286,000 [81.34]	286,000 [81.34]	
Net Sensible Capacity Btu [kW]	206100 [60.40]	206100 [60.40]	206100 [60.40]	
Net Latent Capacity Btu [kW]	79,900 [23.41]	79,900 [23.41]	79,900 [23.41]	
Net System Power kW	29.18	29.18	29.18	
Heating Performance (Gas) ^c				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	200.000/400.000 [58.6/117.2]	150.000/300.000 [43.95/87.9]	200.000/400.000 [58.6/117.2]	
Heating Output Btu [kW] (1st Stage / 2nd Stage			, , ,	
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	10-40 [5.6-22.2] /	15-45 [8.3-25] /	
(1st Stage / 2nd Stage)	15-45 [8.3-25]	10-40 [5.6-22.2]	15-45 [8.3-25]	
Steady State Efficiency (%)	81	81	81	
No. Burners	14	12	14	
No. Stages	2	2	2	
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	
Compressor	5 5 [10]	2 0 [10]	2o [o]	
No./Type	2/Scroll	2/Scroll	2/Scroll	
Outdoor Sound Rating (dB)D	92	92	92	
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	
Tube Type	Rifled	Rifled	Rifled	
Tube Size in. [mm] OD				
• •	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	
Tube Type	Rifled	Rifled	Rifled	
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	
Refrigerant Control	TX Valves	TX Valves	TX Valves	
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	
Outdoor Fan—Type	Propeller	Propeller	Propeller	
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	
Motor RPM	1075	1075	1075	
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	
No. Motors	1	1	1	
Motor HP	7 1/2	10	10	
Motor RPM	1725	1725	1725	
Motor Frame Size	213	215	215	
ilter—Type	Disposable	Disposable	Disposable	
Furnished	Yes	Yes	Yes	
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	339/357 [9611/10121]	339/357 [9611/10121]	339/357 [9611/10121]	
Veights	000/007 [0011/10121]	000/007 [0011/10121]	555/557 [5511/10121]	
Net Weight Ibs. [kg]	2402 [1090]	2399 [1088]	2413 [1095]	
Ship Weight lbs. [kg]	2529 [1147]	2525 [1145]	2540 [1152]	

NOTES:

- A. Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 340/360.
- B. EER and Integrated Energy Efficiency Ratio (IEER) is rated at AHRI conditions in accordance with AHRI Standard 340/360.
- C. Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standard Institute standards. Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level.
- D. Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.
- E. 25 ton model (C300) is outside the scope of AHRI Standard 340/360.

GROSS SYSTEMS PERFORMANCE DATA-H180

				EN	TERING INDOC	OR AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]
		DR ①	.04	.08	.13	.04	.08	.13	.04	.08	.13
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	226.5 [66.4] 148.8 [43.6] 12.6	217.8 [63.8] 126.2 [37.0] 12.3	210.4 [61.7] 108.5 [31.8] 12.1	214.3 [62.8] 174.1 [51.0] 12.4	206.0 [60.4] 149.6 [43.9] 12.2	199.0 [58.3] 130.2 [38.2] 12.0	206.3 [60.5] 193.4 [56.7] 12.2	198.4 [58.1] 167.5 [49.1] 12.0	191.7 [56.2] 146.8 [43.0] 11.8
UTDO	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	222.2 [65.1] 146.6 [43.0] 13.1	213.6 [62.6] 124.3 [36.4] 12.9	206.4 [60.5] 106.9 [31.3] 12.7	209.9 [61.5] 171.9 [50.4] 13.0	201.8 [59.1] 147.8 [43.3] 12.7	195.0 [57.1] 128.7 [37.7] 12.5	202.0 [59.2] 191.3 [56.1] 12.8	194.2 [56.9] 165.7 [48.6] 12.6	187.6 [55.0] 145.3 [42.6] 12.4
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	217.5 [63.7] 144.1 [42.2] 13.8	209.1 [61.3] 122.3 [35.9] 13.5	202.0 [59.2] 105.2 [30.8] 13.3	205.3 [60.2] 169.5 [49.7] 13.6	197.3 [57.8] 145.7 [42.7] 13.4	190.7 [55.9] 127.0 [37.2] 13.1	197.3 [57.8] 188.8 [55.3] 13.5	189.7 [55.6] 163.6 [48.0] 13.2	183.3 [53.7] 143.5 [42.1] 13.0
R Y B	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	212.5 [62.3] 141.4 [41.5] 14.5	204.3 [59.9] 120.0 [35.2] 14.2	197.4 [57.9] 103.3 [30.3] 14.0	200.2 [58.7] 166.7 [48.9] 14.3	192.5 [56.4] 143.5 [42.1] 14.0	186.0 [54.5] 125.1 [36.7] 13.8	192.3 [56.4] 186.2 [54.6] 14.2	184.9 [54.2] 161.4 [47.3] 13.9	178.6 [52.3] 141.6 [41.5] 13.7
U L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	207.2 [60.7] 138.5 [40.6] 15.2	199.2 [58.4] 117.6 [34.5] 14.9	192.4 [56.4] 101.2 [29.7] 14.7	194.9 [57.1] 163.9 [48.0] 15.1	187.4 [54.9] 141.1 [41.4] 14.8	181.0 [53.0] 123.0 [36.1] 14.5	187.0 [54.8] 183.3 [53.7] 14.9	179.8 [52.7] 159.0 [46.6] 14.6	173.7 [50.9] 139.6 [40.9] 14.4
M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	201.5 [59.1] 135.4 [39.7] 16.0	193.7 [56.8] 115.0 [33.7] 15.7	187.2 [54.9] 99.1 [29.1] 15.4	189.2 [55.4] 160.7 [47.1] 15.9	181.9 [53.3] 138.4 [40.6] 15.6	175.8 [51.5] 120.8 [35.4] 15.3	181.3 [53.1] 180.1 [52.8] 15.7	174.3 [51.1] 156.3 [45.8] 15.4	168.4 [49.4] 137.3 [40.2] 15.1
R A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	195.5 [57.3] 132.0 [38.7] 16.9	188.0 [55.1] 112.2 [32.9] 16.5	181.6 [53.2] 96.6 [28.3] 16.3	183.2 [53.7] 157.3 [46.1] 16.7	176.2 [51.6] 135.6 [39.8] 16.4	170.2 [49.9] 118.3 [34.7] 16.1	175.3 [51.4] 175.3 [51.4] 16.5	168.5 [49.4] 153.4 [45.0] 16.2	162.8 [47.7] 134.8 [39.5] 16.0
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	189.2 [55.4] 128.4 [37.6] 17.8	181.9 [53.3] 109.1 [32.0] 17.4	175.7 [51.5] 93.9 [27.5] 17.1	176.9 [51.8] 153.7 [45.1] 17.6	170.1 [49.9] 132.6 [38.9] 17.3	164.3 [48.2] 115.8 [33.9] 17.0	169.0 [49.5] 169.0 [49.5] 17.5	162.5 [47.6] 150.5 [44.1] 17.1	156.9 [46.0] 132.3 [38.8] 16.8
	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	182.5 [53.5] 124.5 [36.5] 18.7	175.5 [51.4] 105.9 [31.0] 18.4	169.5 [49.7] 91.2 [26.7] 18.1	170.2 [49.9] 149.9 [43.9] 18.6	163.7 [48.0] 129.4 [37.9] 18.2	158.1 [46.3] 113.0 [33.1] 17.9	162.3 [47.6] 162.3 [47.6] 18.4	156.0 [45.7] 147.2 [43.2] 18.1	150.8 [44.2] 129.6 [38.0] 17.8

GROSS SYSTEMS PERFORMANCE DATA-H210

				EN	ITERING INDO	OR AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
	CI	FM [L/s]	8400 [3964]	7025 [3315]	5600 [2643]	8400 [3964]	7025 [3315]	5600 [2643]	8400 [3964]	7025 [3315]	5600 [2643]
L_		DR ①	.06	.09	.13	.06	.09	.13	.06	.09	.13
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	258.4 [75.7] 193.9 [56.8] 13.0	249.5 [73.1] 168.8 [49.5] 12.8	240.3 [70.4] 144.5 [42.4] 12.5	244.1 [71.5] 224.6 [65.8] 12.8	235.7 [69.1] 197.4 [57.9] 12.6	227.0 [66.5] 170.8 [50.1] 12.4	231.9 [68.0] 231.9 [68.0] 12.7	223.9 [65.6] 217.1 [63.6] 12.4	215.7 [63.2] 189.1 [55.4] 12.2
UTDO	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power		244.0 [71.5] 158.3 [46.4] 13.4	235.0 [68.9] 135.2 [39.6] 13.1	238.4 [69.9] 212.9 [62.4] 13.4	230.2 [67.5] 186.9 [54.8] 13.2	221.7 [65.0] 161.5 [47.3] 13.0	226.2 [66.3] 226.2 [66.3] 13.3	218.4 [64.0] 206.6 [60.6] 13.0	210.4 [61.7] 179.8 [52.7] 12.8
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power		238.2 [69.8] 149.0 [43.7] 14.0	229.4 [67.2] 126.9 [37.2] 13.7	232.4 [68.1] 202.7 [59.4] 14.1	224.4 [65.8] 177.7 [52.1] 13.8	216.1 [63.3] 153.4 [45.0] 13.6	220.2 [64.5] 220.2 [64.5] 13.9	212.6 [62.3] 197.4 [57.9] 13.7	204.8 [60.0] 171.7 [50.3] 13.4
R Y B	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	240.4 [70.5] 162.9 [47.8] 14.9	232.1 [68.0] 141.0 [41.3] 14.7	223.5 [65.5] 119.9 [35.1] 14.4	226.1 [66.3] 193.6 [56.7] 14.8	218.3 [64.0] 169.6 [49.7] 14.5	210.3 [61.6] 146.3 [42.9] 14.3	213.9 [62.7] 213.9 [62.7] 14.6	206.5 [60.5] 189.3 [55.5] 14.4	198.9 [58.3] 164.5 [48.2] 14.1
U L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	233.8 [68.5] 155.3 [45.5] 15.7	225.7 [66.1] 134.2 [39.3] 15.4	217.4 [63.7] 114.0 [33.4] 15.1	219.5 [64.3] 186.0 [54.5] 15.5	212.0 [62.1] 162.9 [47.8] 15.2	204.1 [59.8] 140.3 [41.1] 15.0	207.3 [60.8] 207.0 [60.7] 15.3	200.2 [58.7] 182.6 [53.5] 15.1	192.8 [56.5] 158.6 [46.5] 14.8
E M P E R	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power		219.1 [64.2] 128.7 [37.7] 16.2	211.0 [61.8] 109.2 [32.0] 15.9	212.6 [62.3] 179.6 [52.6] 16.3	205.3 [60.2] 157.3 [46.1] 16.0	197.7 [57.9] 135.5 [39.7] 15.7	200.4 [58.7] 200.4 [58.7] 16.1	193.5 [56.7] 177.0 [51.9] 15.9	186.4 [54.6] 153.8 [45.1] 15.6
A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power		212.1 [62.2] 124.3 [36.4] 17.0	204.3 [59.9] 105.5 [30.9] 16.7	205.4 [60.2] 174.6 [51.2] 17.1	198.3 [58.1] 152.9 [44.8] 16.8	191.0 [56.0] 131.8 [38.6] 16.5	193.2 [56.6] 193.2 [56.6] 17.0	186.5 [54.7] 172.7 [50.6] 16.7	179.7 [52.7] 150.2 [44.0] 16.4
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	212.2 [62.2] 140.3 [41.1] 18.2	204.9 [60.1] 121.3 [35.6] 17.9	197.3 [57.8] 102.9 [30.2] 17.5	197.9 [58.0] 171.0 [50.1] 18.0	191.1 [56.0] 149.9 [43.9] 17.7	184.0 [53.9] 129.3 [37.9] 17.4	185.7 [54.4] 185.7 [54.4] 17.9	179.3 [52.5] 169.6 [49.7] 17.6	172.7 [50.6] 147.6 [43.3] 17.2
	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power		197.3 [57.8] 119.4 [35.0] 18.8	190.1 [55.7] 101.6 [29.8] 18.5	190.1 [55.7] 168.7 [49.5] 19.0	183.5 [53.8] 148.0 [43.4] 18.6	176.8 [51.8] 127.9 [37.5] 18.3	177.9 [52.1] 177.9 [52.1] 18.8	171.8 [50.3] 167.8 [49.2] 18.5	165.4 [48.5] 146.1 [42.8] 18.1

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH

Power —KW input

NOTES: ① When the entering air dry bulb is other than $80^{\circ}F$ [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

GROSS SYSTEMS PERFORMANCE DATA-H240

					ITERING INDOC	OR AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	9600 [4531]	7725 [3646]	6400 [3020]	9600 [4531]	7725 [3646]	6400 [3020]	9600 [4531]	7725 [3646]	6400 [3020]
<u> </u>		DR ①	.06	.11	.15	.06	.11	.15	.06	.11	.15
0	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	283.5 [83.1] 187.4 [54.9] 15.4	271.5 [79.6] 156.3 [45.8] 15.1	263.0 [77.1] 136.0 [39.9] 14.9	269.6 [79.0] 220.5 [64.6] 15.3	258.2 [75.7] 186.7 [54.7] 15.0	250.2 [73.3] 164.4 [48.2] 14.7	258.7 [75.8] 245.6 [72.0] 15.1	247.8 [72.6] 209.7 [61.5] 14.8	240.0 [70.3] 185.7 [54.4] 14.6
UTDO	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	280.8 [82.3] 186.4 [54.6] 16.2	269.0 [78.8] 155.6 [45.6] 15.9	260.6 [76.4] 135.4 [39.7] 15.6	267.0 [78.2] 219.6 [64.4] 16.0	255.7 [74.9] 186.0 [54.5] 15.7	247.7 [72.6] 163.8 [48.0] 15.5	256.1 [75.1] 244.7 [71.7] 15.9	245.3 [71.9] 209.0 [61.3] 15.5	237.6 [69.6] 185.2 [54.3] 15.3
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	277.4 [81.3] 184.9 [54.2] 17.0	265.7 [77.9] 154.4 [45.3] 16.7	257.4 [75.4] 134.4 [39.4] 16.4	263.5 [77.2] 218.1 [63.9] 16.9	252.4 [74.0] 184.8 [54.2] 16.5	244.5 [71.7] 162.7 [47.7] 16.3	252.6 [74.0] 243.1 [71.3] 16.7	242.0 [70.9] 207.8 [60.9] 16.3	234.4 [68.7] 184.2 [54.0] 16.1
R Y B U	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power		261.6 [76.7] 152.7 [44.8] 17.5	253.4 [74.3] 132.9 [39.0] 17.3	259.3 [76.0] 216.2 [63.4] 17.7	248.3 [72.8] 183.2 [53.7] 17.4	240.6 [70.5] 161.5 [47.3] 17.1	248.4 [72.8] 241.1 [70.7] 17.6	237.9 [69.7] 206.1 [60.4] 17.2	230.5 [67.6] 182.8 [53.6] 16.9
L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	268.1 [78.6] 180.2 [52.8] 18.8	256.7 [75.2] 150.5 [44.1] 18.4	248.7 [72.9] 131.1 [38.4] 18.2	254.2 [74.5] 213.5 [62.6] 18.7	243.5 [71.4] 181.1 [53.1] 18.3	235.9 [69.1] 159.6 [46.8] 18.0	243.3 [71.3] 238.6 [69.9] 18.5	233.0 [68.3] 204.0 [59.8] 18.1	225.8 [66.2] 181.0 [53.1] 17.8
H M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	262.2 [76.8] 177.1 [51.9] 19.8	251.1 [73.6] 148.0 [43.4] 19.4	243.3 [71.3] 129.0 [37.8] 19.1	248.3 [72.8] 210.4 [61.7] 19.6	237.8 [69.7] 178.5 [52.3] 19.2	230.4 [67.5] 157.4 [46.1] 18.9	237.4 [69.6] 235.3 [69.0] 19.5	227.4 [66.6] 201.4 [59.0] 19.1	220.3 [64.6] 178.7 [52.4] 18.8
R A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	255.5 [74.9] 173.4 [50.8] 20.8	244.7 [71.7] 145.0 [42.5] 20.4	237.1 [69.5] 126.4 [37.1] 20.1	241.6 [70.8] 206.6 [60.6] 20.7	231.4 [67.8] 175.4 [51.4] 20.2	224.2 [65.7] 154.7 [45.3] 19.9	230.7 [67.6] 230.7 [67.6] 20.5	221.0 [64.8] 198.4 [58.2] 20.1	214.1 [62.7] 176.2 [51.6] 19.8
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	248.0 [72.7] 169.2 [49.6] 21.9	237.5 [69.6] 141.5 [41.5] 21.5	230.1 [67.4] 123.4 [36.2] 21.1	234.1 [68.6] 202.4 [59.3] 21.7	224.2 [65.7] 171.9 [50.4] 21.3	217.2 [63.7] 151.7 [44.5] 21.0	223.2 [65.4] 223.2 [65.4] 21.6	213.8 [62.7] 194.9 [57.1] 21.1	207.1 [60.7] 173.1 [50.7] 20.8
	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	239.6 [70.2] 164.3 [48.2] 23.1	229.5 [67.3] 137.5 [40.3] 22.6	222.3 [65.1] 119.9 [35.1] 22.2	225.8 [66.2] 197.7 [58.0] 22.9	216.2 [63.4] 168.0 [49.2] 22.4	209.5 [61.4] 148.4 [43.5] 22.1	214.9 [63.0] 214.9 [63.0] 22.7	205.8 [60.3] 191.0 [56.0] 22.2	199.4 [58.4] 169.8 [49.8] 21.9

DR —Depression ratio
dbE —Entering air dry bulb
wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH
Sens —Sensible capacity x 1000 BTUH

Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

🔑 Air

GROSS SYSTEMS PERFORMANCE DATA-H300

					ITERING INDOC	OR AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		M [L/s]	12000 [5663]	9475 [4472]	8000 [3776]	12000 [5663]	9475 [4472]	8000 [3776]	12000 [5663]	9475 [4472]	8000 [3776]
_		DR ①	.02	.08	0.11	.02	.08	0.11	.02	.08	0.11
0	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power			348.9 [102.3] 182.0 [53.3] 20.0			331.8 [97.2] 218.4 [64.0] 19.7	347.0 [101.7] 326.2 [95.6] 20.2	[]	321.6 [94.3] 245.5 [72.0] 19.5
UTDO	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power						325.7 [95.5] 215.9 [63.3] 20.7	340.4 [99.8] 322.6 [94.6] 21.2	324.6 [95.1] 271.1 [79.5] 20.7	315.5 [92.5] 243.0 [71.2] 20.4
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power						318.9 [93.5] 213.2 [62.5] 21.7	333.0 [97.6] 318.6 [93.4] 22.2		308.6 [90.4] 240.2 [70.4] 21.4
R Y B	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power						311.3 [91.2] 210.1 [61.6] 22.7	324.9 [95.2] 314.4 [92.2] 23.3	309.8 [90.8] 264.5 [77.5] 22.7	301.1 [88.2] 237.2 [69.5] 22.4
U L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power			320.1 [93.8] 170.5 [50.0] 24.1			303.1 [88.8] 207.0 [60.7] 23.8	315.9 [92.6] 309.7 [90.8] 24.4	301.3 [88.3] 260.8 [76.4] 23.9	292.8 [85.8] 234.0 [68.6] 23.5
E M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power			311.1 [91.2] 167.1 [49.0] 25.3			294.1 [86.2] 203.6 [59.7] 25.0	306.2 [89.7] 304.7 [89.3] 25.6	292.1 [85.6] 256.9 [75.3] 25.1	283.8 [83.2] 230.5 [67.6] 24.7
R A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power			301.4 [88.3] 163.4 [47.9] 26.5			284.3 [83.3] 199.8 [58.6] 26.2	295.7 [86.7] 295.7 [86.7] 26.9		274.1 [80.3] 226.8 [66.5] 25.9
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power			290.9 [85.3] 159.5 [46.8] 27.8			273.9 [80.3] 195.9 [57.4] 27.5	284.4 [83.3] 284.4 [83.4] 28.3		263.6 [77.3] 222.9 [65.3] 27.2
	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power			279.7 [82.0] 155.3 [45.5] 29.2			262.7 [77.0] 191.8 [56.2] 28.9	272.4 [79.8] 272.4 [79.8] 29.7		252.4 [74.0] 218.8 [64.1] 28.6

DR —Depression ratio dbE —Entering air dry bulb wbE —Entering air wet bulb

Total —Total capacity x 1000 BTUH
Sens —Sensible capacity x 1000 BTUH

Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

AIRFLOW PERFORMANCE — 15 TON [52.8 kW]-SIDEFLOW

		6	>	2878	2995	3118	3248	3384	3527	3676	3832	3994	ı	ı	ı	1
		2.0 [.50]	RPM \	881 28	887 26	892 31	897 32	303 33 33	36 36	914 36	920 38	926 36	<u>.</u>	<u>.</u>	<u>.</u>	_
			N R	2761 8	2873 8	8 7667	3117 8	3248 9	6 9888	3531 9	3682 9	3839 9	- 03	4173 -	4350 -	
		9[4	\ W	863 27	868 28	874 26	879 31	885 32		897 35	903 36	38 606	916 40	922 41	929 43	1
		<u></u>	V RF	2647 86	37.55 86	2869 87	2989 87	3116 88	3249 891		3232 90)6 8898		4013 92	4185 92	4364 -
		8 [.4	M W						873 32	879 3389			3847	905 40	912 41	919 43
		1.6 [.40] 1.7 [.42] 1.8 [.45] 1.9 [.47]	V RPM	37 844	40 850	49 855	65 861	298 28	3116 87	-	98 886	41 892	95 899	3826 90		
		7[.4	RPM W	825 2537	830 2640	36 2749	12 2865	849 2987	855 31	3251	868 3392	875 3541	3695		15 4024	12 4198
		<u>-</u>			28 83	33 836	14 842	_	32 85	16 861	53 86		16 881	32 888	35 895	35 902
		6 [.40	N M	5 2430	811 2528	7 2633	3 2744	0 2861	6 2985	3 3116	0 3253	9628 9	3 3546	1 3702	8 3865	5 400
		-	/ RPM	2326 805	20 81	2520 817	2626 823	39 830	98 836	34 843	3116 850	928 926	98 00	52 871	3710 878	3875 885 4035
		1.5 [.37]	× Μ	5 23	1 2420		4 262	0 2739	7 2858	4 2984		8 3255	5 3400	3 3552		8 387
			RPM	2254 785	16/ 09	262 0	2 804	0 810	218 21	824	2984 831	8 838	8 845	15 853	098 69	898 6
		1.4 [.35]	×		1 2350	7 2410	4 2512	1 2620	8 2735	5 2856	2 298	9 3118	7 3258	4 3405	2 3559	9 3719
		1.4	RPM W RPM	4 764	8 771	222 9	7 784	1 791	4 798	1 805	4 812	3 819	9 827	2 834	0 842	6 849
		1.3 [.32]	M	723 2052 744 2154) 2248	7 2346	1 2447) 2551	3 2614	765 2657 785 2731	2854) 2983	3 3119	3262	3 3410	3566
	Pa]	1.3		747	2 750	1 757	792 0	2 770	8 778	7 785	8 792	800	4 808	1 815	5 823	831
	External Static Pressure—Inches of Water [kPa]	1.1 [.27] 1.2 [.30]	×	202	729 2145	736 2241	743 2340 764	2442	2548	265	2728	2852	2984	3121	3265	3270 812 3416
	of Wa	1.2	RPM	723	129	3 736		750	757	3 765	3 773	780	188	96/	804	812
	ches ([.27]	8	1947	2038	2133	2231	2331	2436	2543	2653	2767	2884	2984	3124	3270
	Ī	Ξ.	RPM	. 104	80/	715	722	729	737	744	752	09/	292	9//	282	. 793
	ssure	0.8 [.20] 0.9 [.22] 1.0 [.25]	>	679 1841	686 1930 708	693 2023 715	701 2119	2218	2321	724 2426 744	2535	2648	748 2763	2882	3003	773 3127
	ic Pre	-0.	RPM		989	663	701	802	716	724	731	739	748	92/	764	773
	Stat	[.22]	≥	1732	1820	1911	2002	2103	2204	2308	2415	2526	2640	2756	2877	3000
	terna	0.9	RPM	929	693	671	829	989	694	702	710	718	727	735	744	2870 753
	Ĕ	.20]	8	1621	1707	1797	1890	1986	2085	680 2187	2293	2402	705 2514	2629	2748	2870
		0.8	RPM	632	640	648	655	699	672		889	269	202	714	723	732
		[.17]	Μ	1508	1593	1681	1772	1866	1964	2065	2169	2276	2386	2500	2617	2737
		0.7	RPM	809					649				683		701	711
ase		15]	Μ	583 1393 608	1476 616	575 1442 600 1562 624	583 1530 608 1652 632	1745 640	1840 649	1683 610 1813 634 1940 657	570 1650 595 1783 619 1913 643 2042 666	604 1885 628 2017 652 2148 674	589 1854 614 1991 637 2125 661 2257	1822 599 1961 623 2099 647 2235 670 2369 692	2484	2602
- 3 Ph		0.6	RPM	583	291	009	809	919	625	634	643	652	661	029	629	689
75 —		.12]	M	—	I	1442	1530	592 1621	601 1715 625	1813	1913	2017	2125	2235	2349	2466
160, 5		0.5	RPM	I	I	275	583	592	601	610	619	628	637	647	929	999
230, 2		.	M	_		I	I	1	1588	1683	1783	1885	1991	2099	2211	2327
208/		0.4	RPM	-	I	I	1	I	9/9	282	595	604	614	623	633	643
Itage		.07	×	Ι	I	Ι	I	Ι	I	I	1650	579 1750	1854	1961	2072	2185
N		0.3	RPM	_	I	I	I	I	I	I	570	213	589	266	609	619
1180		02]	×	1	I	I	I	Ι	1	Ι	I	ı	I	1822	1930	2042
KNL		0.2 [.	RPM	Ι	ı	ı	ı	ı	I	ı	ı	ı	ı	2.4	584 1930 609 2072 633 2211 656 2349 679 2484	595
Model RKNL-H180 Voltage 208/230, 460, 575 — 3 Phase		02]	<u> </u>	1	ı	Ι	I	Ι	I	Ι	I	ı	ı	ı	Ι	1897 595 2042 619 2185 643 2327 666 2466 689 2602
Mo		0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15] 0.7	RPM W	-	ı	ı	ı	ı	ı	ı	1	Ι	1	ı	Ι	
				265]		454]	548]	643]	737]			_	114]	209]		7200 [3398] 570
	¥ 5	CEM [1 /c]		4800 [2265]	5000 [2359]	5200 [2454]	5400 [2548]	5600 [2643]	5800 [2737]	6000 [2831]	6200 [2926]	6400 [3020]	6600 [3114]	6800 [3209]	7000 [3303]	200 [3,
			,	48	2(25	5,	56	25	9	39	6,	99	39	7	7,5

NOTE: L-Drive left of bold line, M-Drive right of bold line.

_		_	_	_	_					
				9	2//					
				9	808					
	28.5]	2H	99	4	840					
M, S	5.0 [3728.5]	BK105H	1VP-56	3	873					
				2	903					
	3.0 [2237.1] BK105H 1VL-44 5.660 6.40 6.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0									
	2 3 4 5 6 72 69771									
				9	909					
R	237.1]	05H	-44	4	640					
L,	3.0 [2	BK1	1VL	3	699					
				2	701					
				-	233					
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM					

NOTES: 1. Factory sheave settings are shown in bold type.

2. Do not set motor sheave below minimum turns open shown.

Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
 Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

COMPONENT AIR RESISTANCE—15 TON [52.8 kW]

ÇFM	4800 [2265]	5000 [2360]	5200 [2454]	5400 [2549]	5600 [2643]	5800 [2737]	6000 [2832]	6200 [2926]	6400 [3020]	6600 [3115]	6800 [3209]	7000 [3304]	7200 [3398]
[L/S]					Res	Resistance — Inches of Water [kPa]	- Inches o	f Water [k	Pa]				
Wet Ceil	0.03	0.04	0.05	90.0	90.0	0.07	0.08	0.09	0.10	0.10	0.11	0.12	0.13
Met coll	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.02]	[0.02]	[0.02]	[0.05]	[0.02]	[0.03]	[0.03]	[0.03]
	0.05	0.05	0.05	0.05	0.05	90'0	0.05	90.0	90.0	90.0	0.07	0.08	0.08
DOWILLOW	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.02]	[0.02]	[0.02]
Downflow Economizer	60.0	0.10	0.10	0.11	0.12	0.13	0.13	0.14	0.15	0.16	0.16	0.17	0.18
R.A. Damper Open	[0.02]	[0.02]	[0.02]	[0.03]	[0.03]	[0.03]	[0.03]	[0.03]	[0.04]	[0.04]	[0.04]	[0.04]	[0.04]
Horizontal Economizer	00.00	0.01	0.01	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.05	90.0	90.0
R.A. Damper Open	[00.0]	[0.00]	[00:00]	[0.00]	[00.00]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]
Concentric Grill RXRN-AD80 or	0.21	0.25	0.28	0.32	0.35	68.0	0.43	0.46	0.50	0.54	0.57	0.61	0.64
RXRN-AD81 & Transition RXMC-CJ07	[0.05]	[0.06]	[0.07]	[0.08]	[0.09]	[0.10]	[0.11]	[0.11]	[0.12]	[0.13]	[0.14]	[0.15]	[0.16]
o Mady and canonad	0.068	0.072	9/0.0	0.08	0.084	0.088	0.092	0.096	0.1	0.104	0.108	0.112	0.116
riessure Diup Meny o	[0.02]	[0.02]	[0.02]	[0.02]	[0.02]	[0.02]	[0.02]	[0.02]	[0.02]	[0.02]	[0.03]	[0.03]	[0.03]
Or NEDN aca Councered	600'0	0.015	0.021	0.028	0.034	0.04	0.046	0.052	0.058	0.065	0.071	0.077	0.083
riessure Diop MENV 13	[0.00]	[0.00]	[00:00]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.02]	[0.02]	[0.02]	[0.02]

NOTE: Add component resistance to duct resistance to determine total external static pressure.

AIRFLOW CORRECTION FACTORS—15 TON [52.8 kW]

				•		•							
ACTUAL—CFM	4800	2000	5200	5400	2600	2800	0009	6200	6400	0099	0089	7000	7200
[L/s]	[2265]	[2360]	[2454]	[2549]	[2643]	[2737]	[2832]	[2926]	[3020]	[3115]	[3209]	[3304]	[3398]
TOTAL MBTUH	0.97	0.97	0.98	0.98	66'0	1.00	1.00	1.01	1.02	1.02	1.03	1.03	1.04
SENSIBLE MBTUH	0.87	06:0	0.92	0.94	0.97	0.99	1.02	1.04	1.06	1.09	1.11	1.14	1.16
POWER KW	0.98	0.98	0.99	0.99	66.0	1.00	1.00	1.00	1.01	1.01	1.01	1.02	1.02
NOTES: Multiply correction factor times gross performance data-resulting sensible of	n factor times gr	oss performance	data-resulting	sensible capacity c	y cannot exceed total capacity	total capacity.					[] Design	Designates Metric Conversions	Conversions

AIRFLOW PERFORMANCE - 17.5 TON [61.5 kW]-SIDEFLOW

																		\neg
		[.50]	Μ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		2.0	RPM		١	1	١	1	1	1	١	1	1	1	1	I	1	1
			M	-	Ι	-	Ι	-	-	-	I	-	-	-	-	I	Ι	I
		1.9 [.47]	RPM	I	ı	I	ı	I	I	I	I	I	I	I	I	I	I	I
		45]	M	803	3923	4053	4193	ı	ı	1	ı	Ι	1	1	1	1	1	I
		1.8 [RPM	927	931	7 986	941 4	1	ı	1	1	Ι	1	1	1	Т	1	Ι
		. [Zt	W	3628	3745	8288	4011	4160	4319	4489	-	_	_	_	_	_	-	1
		1.7 [.42] 1.8 [.45]	RPM	E 906	911 3	916 3	921 4	927 4	933 4	940 4	-	-	-	-	-	-	-	1
			W			3698	3833	3980	4137	4304	4482	4670	1		1	<u> </u>	1	1
		1.5 [.37] 1.6 [.40]	RPM W	885 3455	890 3570	896	902 3	808	914 4	921 4	928 4	936 4	ı	1	ı	ī	1	
		7] 1		3285	3366	3223 8	3657	3802 6	3957	4123 9	4299	4485 6	4682	4889	_	1	1	1
		.5 [.3	RPM W	63 33	869 33	875 33	881 36	888 3	895 36	905 4	910 42	917 4	926 40	934 48	· 	1	· 	1
				3119 863	3230 8	3353 8	3485 8	3628 8	3781 8	3945 9	4119 9	4303 9	4498 9	4703 9	4918 -	5144 -	İ	·
		1.4 [.35]	RPM W	841 31	847 32	854 33		98 38	875 37	883 38		899 43	908 44	917 47	926 48	936 51	1	<u>'</u>
			V RF	2955 84			3316 861				42 891							l
		1.3 [.32]	W RPM W	9 29	2 3065	2 3185		7 3457	5 3608	3 3770	1 3942	0 4124	9 4317	9 4520	9 4734	9 4958	9 5192	0 5437
	(Pa]		RP	15 819	13 825	1 832	0 840	847	855	863	8 871	088 61	688 61	1 899	5 309	74 919	17 929	9 940
	iter [1	1.2 [.30]	M	3 2795	3 2903	3021	3 3150	3289	1 3438	3298	3768	3949	4139	14341	4552	4774	5007	3 5249
	of Wa	1.2	RPI	3 796	4 803	018	7 818	4 826	834	9 843	3 852	3 861	5 871	1 881	1 891	1 901	1 912	5 923
	External Static Pressure—Inches of Water [kPa]	1.0 [.25] 1.1 [.27]	RPM W RPM	773 2638	780 2744	2860	2987	3124	3272	3429	3598	3776	3962	4164	4374	4594	4824	889 4884 906 5065
	Ī	1.1	RPN	223	280	788	962	802	813	822	832	841	851	862	872	883	895	906
	ssure	[.25]	×	2484	2588	2703	2827	2962	3108	3264	3430	3607	3794	3991	4199	4417	4645	4884
	c Pre	1.0	RPM W RPM	749	292	992	774	282	792	805	811	822	835	843	854	98	877	889
	Stati	.22]	Μ	2334	2436	2548	2671	2804	2947	3101	3266	3440	3625	3821	4026	4243	4469	4706
	ernal	0.9	RPM	2186 725 2334 749	2286 734	742	751	761	770	780	791	801	812	823	835	847	828	4531 871 4706
	E	.20]	W	2186	2286	2397	2517	2649	2790	2942	3104	3277	3460	3654	3857	4072	4296	4531
		0.8 [.20] 0.9 [.22]	RPM W	701	710	719 2397	728 2517	738	748	759	69/	780	792	803	815 3857	828	840	853
			M	6 2042	5 2140	2248	5 2367	2496	2636	2786	2946	9 3117	3298	3490	3692	8 3904	4127	4359
		0.7 [.17]	5	929	685	695	202	715		_	748	126	$\overline{}$	283	962	808	-	832
Se		15]	W	006	966	103	220	347	485	633		096	139	329	1529		096	
3 Pha		. 9 [PM	351 1	361 1	571 2	581 2	392 2	703 2	714 2	726 2	738 2	750 3	763 3	775 3	288	302 3	816 4
2		12] [W	1762 651 1900 670	928	961	2076 681 2220	201	337	483	640	807	984	171	369	278	362	026
0, 57		.5[PM	325 1	335 1	346 1	357 2	368 2	379 2	391 2	703 2	716 2	728 2	742 3	755 3	769 3	783 3	797 4
10, 46		<u> </u>	W	627 (719 (1822 646 1961 671 2103	935 (2058 668 2201 692 2347	2192 679 2337 703 2485 726	2336 691 2483 714 2633 737	491 7	2 939	831	017 7	213 7	419 7	936	298
Model RKNL-H210 Voltage 208/230, 460, 575 — 3 Phase		.4[.1	RPM W RP	599 1627 625	610 1719 635 1856 661 1996	621 18	632 1935 657	44 20	-2 959	68 2.	634 2203 657 2345 681 2491 703 2640 726 2791	93 2	.07 2 _i	'20 3 ₁	34 3.	48 3	.62 3 ₁	77 3
age 2		7] 0	WR	- 2	9 —	9 —	9 2621	1919 644	351 6	644 2193 668	345 6	9 809	382 7	366 7	.7 090	264 7	179 7	704 7
Volt		.3[.0	\ Mc	<u>.</u>	<u>'</u> 	_	607 17	619 16	632 2051	44 2.	57 25	71 25	84 26	98 28	13 30	27 32	42 32	57 37
무		5] 0.	V RF	<u> </u>	 -	_)9 —	9 —	1912 63	2022 64	03 6	64 6,	36 6	17 6	10 7	12 7	25 74	48 7
IL-H2		2[.0	Μ	Н	-		_		607 19	620 20	34 22	18 23	32 25	76 27	11 29	90	33	37 35
R] 0	/ RP	_	-	 -	 -				34 63	23 64	32 66	72 67	32 69	33 70	74 72	35 73
Mode.		1 [.02	M	-	<u> </u>	_	<u> </u>		_	-	0 206	4 222	9 236	3 257	9 276	4 29¢	0 317	9338
_		0	RP	3] —	7] —	1 –	<u> </u>	[o	4] —	9]	3] 61	3] 62	2] 63	3] 65·	1] 66	5] 68	9] 70	4] 71
	All	10 10 10 10 10 10 10 10	P /- 1	5600 [2643]	5800 [2737]	5000 [2831	6200 [2926]	6400 [3020]	6600 [3114]	6800 [3209]	7000 [3303] 610 2064	7200 [3398] 624 2223 648 2364 671 2508 693 2656 716 2807 738 2960 75	400 [3492] 639 2392 662 2536 684 2682 707 2831 728 2984 750 3139 <u> 77</u>	'600 [3586] 653 2572 676 2717 698 2866 720 3017 742 3171 763 3329 783 3490	7800 [3681] 669 2762 691 2910 713 3060 734 3213 755 3369 775 3529 796 3692	8000 [3775] 684 2963 706 3112 727 3264 748 3419 769 3578 789 3739	8200 [3869] 700 [3174 721 3325 742 3479 762 3636 783 3796 802 3960 82	8400 [3964] 716 3395 737 3548 757 3704 777 3863 797 4026 816 4191
	_	- E	5	260	580	900	620	640(1099	1089	700	720(740(760(780(800(820(840(

NOTE: L-Drive left of bold line, M-Drive right of bold line.

_					
				9	775
				2	808
	28.5]	H2	26	4	840
M, 8	M, S M, S 5.0 [3728.5] BK105H 1VP-56 5 6 1 2 3 605 572 927 903 873 8				
				7	806
				1	276
				9	2/5
				9	209
L, R	3.0 [2237.1]	BK105H	1VL-44	4	640
L,	3.0 [23	BK1	1VL	3	699
				2	701
				-	233
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold type.
2. Do not set motor sheave below minimum turns open shown.

Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
 Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

[] Designates Metric Conversions

28

COMPONENT AIR RESISTANCE-17.5 TON [61.5 kW]

	2600	2800	0009	6200	6400	0099	0089	7000	7200	7400	2600	7800	8000	8200	8400
CFM [6]	[2643]	[2737]	[2831]	[2926]	[3020]	[3114]	[3209]	[3303]	[3398]	[3492]	[3586]	[3681]	[3775]	[3869]	[3964]
[[-,5]						Resist	ance —	Resistance — Inches of Water	of Water	[kPa]					
Wet Ceil	90.0	0.07	80.0	0.09	0.10	0.10	0.11	0.12	0.13	0.14	0.14	0.15	0.16	0.17	0.18
Wet coll	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[:03]	[.03]	[.03]	[:03]	[.04]	[.04]	[.04]	[.04]
- Control of the cont	0.05	0.05	0.05	90.0	90.0	90.0	0.07	0.08	80.0	0.09	0.10	0.11	0.12	0.13	0.14
DOWIIIOW	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[:03]	[:03]	[:03]	[.03]
Downflow Economizer	0.12	0.13	0.13	0.14	0.15	0.16	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23	0.24
R.A. Damper Open	[:03]	[:03]	[:03]	[.03]	[.04]	[.04]	[.04]	[.04]	[.04]	[.05]	[.05]	[.05]	[.05]	[90.]	[90]
Horizontal Economizer	0.02	0.03	0.03	0.04	0.04	0.05	0.05	90.0	90.0	0.07	0.07	80.0	60.0	60.0	0.10
R.A. Damper Open	[.00]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]
Concentric Grill RXRN-AD80 or	0.35	0.39	0.43	0.46	0.50	0.54	0.57	0.61	0.64	89.0	0.72	0.75	0.79	0.83	98.0
RXRN-AD81 & Transition RXMC-CJ07	[.09]	[.10]	Ξ	Ξ	Ξ	[.13]	[.14]	[.15]	[.16]	[.17]	[.18]	[.19]	[.20]	[.21]	[.21]
Concentric Grill RXRN-AD86 &	0.14	0.17	0.20	0.23	0.26	0.29	0.32	0.35	0.38	0.41	0.44	0.47	0.50	0.53	0.56
Transition RXMC-CK08	[.03]	[.04]	[.05]	[.06]	[.06]	[.07]	[.08]	[.09]	[.09]	[.10]	[.11]	[.12]	[.12]	[.13]	[.14]
Drocento Droc MEDV 0	0.084	0.088	0.092	960.0	0.1	0.104	0.108	0.112	0.116	0.12	0.124	0.128	0.132	0.136	0.14
riessure Drup Menv o	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]
Decoming Date MEDV 49	0.034	0.04	0.046	0.052	0.058	0.065	0.071	0.077	0.083	0.089	0.095	0.102	0.108	0.114	0.12
riessure Diup MENV 13	[.01]	[.01]	[.01]	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[:03]	[:03]	[:03]

AIRFLOW CORRECTION FACTORS-17.5 TON [61.5 kW]

ACTUAL—CFM	2600	2800	0009	6200	6400	0099	0089	7000	7200	7400	2600	7800	8000	8200	8400
[L/s]	[2643]	[2737]	[2831]	[2926]	[3020]	[3114]	[3209]	[3303]	[3398]	[3492]	[3286]	[3681]	[3775]	[3869]	[3964]
TOTAL MBUH	96:0	0.97	26.0	96.0	0.98	66.0	0.99	1.00	1.00	1.01	1.01	1.02	1.03	1.03	1.04
SENSIBLE MBUH	98:0	0.88	06:0	0.92	0.94	96.0	0.98	1.00	1.02	1.04	1.06	1.08	1.10	1.12	1.14
POWER KW	0.99	0.99	0.99	0.99	1.00	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.02	1.02	1.02
NOTES: Multiply correction	orrection factor times gross performance data-resulting sensible	oss performan	ice data-resul	ting sensible o	apacity canno	ot exceed tota	l capacity.					_	Designates	Metric C	onversions

AIRFLOW PERFORMANCE - 20 TON [70.3 kW]-SIDEFLOW (C/H240)

7		=	>	21	11	4432	4603	4784	4976	79	5392	5616	5850	6094	Т	ı	ī	П	ı	П	ĺ
		0.5	١Wc	937 4121	44 4271	950 44	957 46	964 47	971 49	978 5179	986 23	993 26	1001	1008 60	_		1				
		0.8 [2.20] 0.9 [2.21] 1.0 [2.25] 1.1 [2.71] 1.2 [3.01] 1.3 [3.21] 1.4 [3.5] 1.5 [3.71] 1.6 [4.0] 1.7 [4.21] 1.8 [4.5] 1.9 [4.71] 2.0 [5.01] 1.0 [4.71]	W RPM	ı	4026 9				4810 9							- 8049	_	1	<u> </u>	· 	
		9[4	١W	923 3902	930 40	933 4283	940 4448	947 4624	954 48	962 5007	969 5214	977 5432	985 5660	993 2899	985 5954 1001 6148	1009 64	<u> </u>	<u> </u>	 -	1	
		1.	V RF		3912 9				4650 9						54 10	08 10	6472 -		<u> </u>	<u>'</u>	l
		8 [.4	۱ M	906 3761	912 39	919 4072	926 4240	932 4417	938 46	945 4841	953 5043	961 5255	969 5477	977 5710	82 28	993 6208	1002 64	1010 6747	<u>'</u>	-	l
		2]	V RF		3769 9			4264 9	4447 9									41 10	Ŀ	-	l
		7 [.4	M	888 3621	894 37	901 3926	909 4091	916 42	923 44	930 4637	936 4878	944 5084	952 5300	961 5528	969 5765	978 6013	986 6272	995 6541	04 68		l
		1.	/ RP																942 6040 958 6225 973 6418 989 6616 1004 6821	01 —	l
		6 [.40	M	3342 869 3481	876 3626	37	3794 891 3942	38 4112	906 4292	4322 914 4479	22 46	930 4880	4927 936 5130	14 53	3 22	5645 962 5826	.1 60	30 63	99 68	98 6901	l
		<u>-</u>	/ RP	42 86	3484 87	34 88	94 86	31 898 ,		22 91	15 92	17 93	27 93	16 94	36 80	45 96	32 97	36 Gt	18	866 9699	l
		5 [.37	M	0 33		827 3346 846 3490 865 3634 884 3780	3 376	1 3961	9 4137	7 432	870 4197 888 4356 905 4515 922 4675	4 4717		4809 915 4977 931 5146 944 5352	5030 924 5201 937 5408 953 5584		927 5498 939 5712 955 5892 971 6079	5565 933 5784 949 5963 964 6149 980 6342	3 64	3 669	l
		-	RP	810 3065 830 3203 850	838 3342 857	98 00	835 3499 854 3646 873	863 3811 881	871 3984 889	4009 879 4165 897	06 99	897 4554 914	4596 906 4761 922	7 93	11 93	946	2 95	96 89	26 97	937 6122 952 6307 968 6498 983	l
		1.35	M	320	3 334	3 346	4 364	3 381	1 398	9 416	3 435	7 455	3 476	5 497	4 52C	5260 933 5434	9 571	969 6	3 622	3 646	
		1.4	RPI	5 83(1 838	6 840	6 85	1 863	1 87	879	2 88	2 89.	906	9 91	76 0	0 933	8 93	4 949	0 95	2 96	l
		[.32	M	306	3201	334	349	1 3661	3831	400	(419	4392		3 480	, 503	, 526	549	8 228	604	630	l
	Pa	1.3	RPI	9 810	0 819	2 827	2 835	1 844	8 853	4 862		1 880	2 889	868 2	206 0	7 917	2 927	2 933	8 942	2 952	
	ter 😾	[.30]	M	785 2789	3060	807 3202	816 3352	825 3511	3678	3699 843 3854	834 3880 852 4038	4070 862 4231	4432	4475 881 4642	4860	2087	5322	226	5818	. 612	l
	of Wa	1.2	RPI	785	862	807		825	834	843	852	862	871	881	891	1 901	911	921	5636 931	1 937	l
	ches ([.27]	M	2670	773 2808 798	2955	3207	3362	3526	3696	3880		4268	447	4690	4914	5146	2387	2636	288	
	External Static Pressure—Inches of Water [kPa]	1.1	RPIV	741 2553 763 2670		761 2826 783 2955	2977 796 3207	802	815	783 3341 805 3545 824		844	854	4309 864	874	884	894	5209 905 5387	915	910 5709 926 5894	l
	SSure	[.25]	8	2553	2685	2826	2977	3139	3375	3545	815 3723	3910	4105	4308	4521	867 4742	4971	5209	5455	5709	l
	ic Pre	1.0	RPM	741	751	761	772	783	262	802		825	832	846	856		877	888	839		
	Stat	[.22]	Μ	2439	2564	2699	2844	2999	3165	3341	795 3567	3750	3942	4143	4352	4570	4796	5031	882 5274	5526	l
	terna	0.9	MbM	719	67/	682	092	761	277	783	26/	908	816	827	838	849	4622 860	4854 871 5031	882	894	l
	ŭ	.20]	٨	2218 698 2328 719 2439	707 2446 729	2452 718 2574 739 2699	2585 728 2713 750 2844 772	739 2862 761	750 3021	3190	3216 773 3370	3559	797 3780	808 3978 827 4143 846	4184	4399		4854	4915 865 5094	5343 894 5526	
		0.8	RPM	869		718	728	739		761	773	785			819	831	842	853	865	877	
		.17]	M	2218	2330	2452	2585	2727	2880	3043	3216	3399	3592	3796	4017	4229	6446	4678	4915	5161 877	l
		0.7 [RPM	9/9	989	969	902	717	728		751	292	9//	789	800	812	824	835	847	859	
ase		.15]	M		2217	2332	2458	2594	2741	2897	3064	3241	3427	3625	3832	4059	4276	817 4502 835	4736	4979	
P		0.6	RPM	654	664	674	684	695	907	718	729	741	754	292	780	793	802	817	829	842	l
ا ا		.12]	Ν	632 2007 654 2111	642 2106 664 2217	2215	2334	2464	2604	2754	2914	3085	3265	3456	3657	3868	4089	4327	4558	4798	l
. oo.		0.5[RPM	632	642	652	663	673	684	969	707	719	732	745	758	771	785	268	811	823	
.ડ∪, 4		101	M	I	I	630 2100 652 2215 674 2332 696	641 2213 663 2334 684 2458 706	651 2336 673 2464 695 2594	663 2470 684 2604 706 2741	630 2339 652 2475 674 2613 696 2754 718 2897 740	2480 664 2622 686 2767 707 2914 729 3064	654 2631 676 2780 698 2931 719 3085 741 3241	3105	3290	3484	3689	3904	4129	4381	4617	l
7/9/17		0.4 [.	RPM	ı	I	630	641	651	693	674	989	869	710	723	736	749	292	777	792	805	l
MODEI KKNL-HZ4U VOITAGE ZUB/Z3U, 40U, 3/3 — 3 PNASE		[/0	M	ı	ı	ı	Ι		2338	2475	2622	2780	2948	3126	3314	3512	3721	3939	4168	4407	
0		0.3 [.	N/S	ı	ı	ı	ı	630 2211	641	652	664	929	889	701	714	727	741	222	69/	784	l
740		02]	W	ı	Ι	1	ı	ı	ı	333	480	9831	2793	964	3146	3338	3540	3752	3975	1207	l
NL-H		.2[.	PM	ı	1	1	1	ı	ı	330 2	642 2	354 2	999	379 2	392 3	202	219	733	747	762 4	
e R		12]	W	ı	1	ı	ı	ı	1	1	<u> </u>	485 (640	802 (086	166	361	295	783	010	l
MOC		1.1.0	RPM W RPM W RPM W RPM W RPM W RPM W	1	· 	1	1	ı	<u> </u>	i	1	632 2485	344 2	357 2.	370 2	683 3166 705 3338 727 3512 749 3689 771 3868 793 4059 812	3, 3,	711 3.	725 3	739 4010 762 4207 784 4407 805 4617 823 4798 842 4979	
		FIUW CEM II (c1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15]	رة ح					_	_	_	_	9 [9/	8200 [3870] 644 [2640] 666 [2793] 688 [2948] 710 [3105] 732 [3265] 754 [3427]	8400 [3964] 657 2805 679 2964 701 3126 723 3290 745 3456 767 3625 789	8600 [4059] 670 2980 692 3146 714 3314 736 3484 758 3657 780 3832 800		9000 [4248] 697 [3361] 719 [3540] 741 [3721] 763 [3904] 785 [4089] 805 [4276] 824	9200 [4342] 711 3567 733 3752 755 3939 777 4129 798 4327	9400 [4436] 725 3783 747 3975 769 4168 792 4381 811 4558 829 4736 847	31] 7	
:			1	6400 [3020]	6600 [3115]	6800 [3209]	7000 [3304]	7200 [3398]	7400 [3492]	7600 [3587]	7800 [3681]	8000 [3776]	00 [38	00 [39	00 [40	8800 [4153]	00 [42	00 [43	00 [44	9600 [4531]	
			õ	4	99	.89	2	72	74	9/	78	8	82	8	98	88	90	92	94	96	

NOTE: L-Drive left of bold line, M-Drive right of bold line.

Drive Package			Ļ	L, R					M, S					N(fie	N(field installed only), T	ed only),	_	
Motor H.P. [W]			5.0[37	0.0 [3728.5]					7.5 [5592.7]	12.7]					7.5 [5592.7]	32.7]		
Blower Sheave			BK1	BK130H					BK130H	돈					BK120H	동		
Motor Sheave			1VP	IVP-56					1VP-71	7					1VP-71	71		
Turns Open	1	2	3	4	2	9	-	2	3	4	2	9	-	2	3	4	2	9
RPM	756	734	200	683	658	631	928	905	874	847	820	793	1009	981	922	928	899	870

NOTES: 1. Factory sheave settings are shown in bold type.
2. Do not set motor sheave below minimum turns open shown.

Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
 Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

COMPONENT AIRFLOW RESISTANCE-20 TON [70.3 kW] (C/H240)

	6400		0089	7000	7200		2009	7800		8200	8400		8800		9200	9400	0096
CFM	[3020]	[3114]	[3209]	[3303]	[3398]	[3492]	[3586] [3681]	[3681]	[3775]	[3869]	[3964]	[4058]	[4153]	[4247]	[4341]	[4436]	[4530]
[5/3]							Resista	ance —	luches (Resistance — Inches of Water [kPa]	[kPa]						
Wet Coil	0.00	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.05	90'0	90.0	0.07	0.07
Wel coll	[.00]	[.00]	[.00]	[.00]	[.00]	[.00]	[.00]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.02]	[.02]
Dountlan	90.0	90.0	0.07	0.08	80.0	60.0	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.18	0.19	0.20	0.22
Downlow	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[.03]	[:03]	[.03]	[.04]	[.04]	[.04]	[.05]	[.05]	[.05]
Downflow Economizer	0.15	0.16	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.30
R.A. Damper Open	[.04]	[.04]	[.04]	[.04]	[.04]	[.05]	[.05]	[.05]	[.05]	[90:]	[90:]	[90.]	[.06]	[.07]	[.07]	[.07]	[.07]
Horizontal Economizer	0.04	0.05	0.05	90.0	90.0	20.0	0.07	80.0	60.0	0.09	0.10	0.10	0.11	0.11	0.12	0.12	0.13
R.A. Damper Open	[.01]	[.01]	[.01]	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[:03]	[:03]	[:03]	[:03]	[:03]
Concentric Grill RXRN-AD86	0.26	0.29	0.32	0.35	0.38	0.41	0.44	0.47	0.5	0.53	0.56	0.59	0.62	9.02	69.0	0.72	0.75
& Transition RXMC-CK08	[.06]	[.07]	[.08]	[.09]	[.09]	[.10]	[11]	[.12]	[.12]	[.13]	[.14]	[.15]	[.15]	[.16]	[.17]	[.18]	[.19]
O NOOM WOOD O	0.1	0.104	0.108	0.112	0.116	0.12	0.124	0.128	0.132	0.136	0.14	0.144	0.148	0.152	0.156	0.16	0.164
riessure Diup MENV 8	[.02]	[.02]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]	[.04]	[.04]	[.04]	[.04]	[.04]
Decoming Days MCDV 42	0.058	0.065	0.071	0.077	0.083	0.089	0.095	0.102	0.108	0.114	0.12	0.126	0.132	0.138	0.145	0.151	0.157
riessure Diup MENV 13	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[:03]	[:03]	[:03]	[:03]	[:03]	[.04]	[.04	[.04]
																	I

AIRFLOW CORRECTION FACTORS-20 TON [70.3 kW] (C/H240)

										•							
ACTUAL—CFM	6400	0099	0089	2000	7200	7400	0092	7800	8000	8200	8400	0098	8800	0006	9200	9400	0096
[L/s]	[3020]	[3114]	[3209]	[3303]	[3398]	[3492]	[3586]	[3681]	[3775]	[3869]	[3964]	[4058]	[4153]	[4247]	[4341]	[4436]	[4530]
TOTAL MBH	0.97	0.97	0.98	96:0	66:0	66:0	1.00	1.00	1.01	1.01	1.02	1.02	1.03	1.03	1.03	1.04	1.04
SENSIBLE MBH	0.88	06.0	0.92	0.94	96:0	26:0	0.99	1.01	1.03	1.05	1.07	1.09	1.10	1.12	1.14	1.16	1.18
POWER KW	0.98	0.99	0.99	0.99	0.99	1.00	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.01	1.02	1.02	1.02
NOTES: Multiply correction factor times gross performance data-resulting sensible	on factor tim	es gross perl	formance da	ta-resulting	8	pacity cannot	t exceed total	capacity.						[] Des	Designates M	Aetric Conversions	versions

AIRFLOW PERFORMANCE - 25 TON [87.9 kW]-SIDEFLOW

П		_	>	17	197	31	62:	4	18	80	1	ı	1	1	1	1	1	1	1	1	1	1	1		
		0[.50]	2	.285 60	.609 81	28 6331	37 6579	17 6841	57 71	1068 7408		-	-	Ľ	-			H	-	-		_	1	Н	
		2.0	RPM	1009	5 1018	1028	1037	3 104	1057	9 100	<u></u>				-	I	1		1		1	ļ	1		
		[.47]	٨	5720	593	616	6407	999	769	721	7518	1	1	1	1	I	1	1	I	1	1	I	I	1	
		1.9	RPM	994	1003	1012	1022	1032	1042	1052	1063	ı	1	1	1	I	1	1	1	I	1	1	1	1	
			M	2262	5774	2669	3235	3486	3752	7031	7325	7632	7954	Ι	I	I	I	Ι	I	Ι	ı	Ι	Ι	Ι	
		1.8 [.45]	RPM	626	988 5774 1003 5935	997 5997 1012 6164	9 200	017	027	037 7	048 7	1058 7632	1069 7	П	Т	ī	1	Т	ī	ī	П	ī	ī	П	
			W	2410		l	1 19	101	102	144	32 1	34 1		181	Ī	1	1	<u> </u>	1	 -	1	1	1	_	
		1.7 [.42]		₅ 83 5	973 5614	982 5832	992 6064 1007 6235 1022 6407	02 63	12 65	22 68	32 71	43 74	54 77	55 8081	_	-	1		÷	<u>'</u>	-	_	_	Н	
			RPM					987 6134 1002 6310 1017 6486 1032 6663 1047	997 6389 1012 6570 1027 6752 1042 6934	10	110	10	10	3 10	2	- 2	Ė	<u> </u>	<u> </u>	 -		Ė	-		
		[.40]	N	948 5256	958 5455	2967 5667	7 5894	7 613	2 638	399 2	769 2	8 723	9 754	0 787	1061 8212	2 8565		_	_	 -		_	-	_	
		1.6	RPM				5 977			992 6473 1007 6658 1022 6844 1037 7031 1052 7219	987 6561 1002 6750 1017 6941 1032 7132 1048 7325 1063	998 6847 1013 7042 1028 7238 1043 7434	103	105	106	3 1072				1		1	-		
		[.37]	٨	920 4854	943 5296	952 5503	962 5725	972 5960	982 6209	6473	6750	7042	7347	1997	800	8348	8710	1	-	1	1	1	1	1	
		1.5[RPM	920			962	972			1002	1013	1024	1034	1046	1057	1053 8488 1068	1	I	I	1	1	1	1	
			M	4680	4912	924 5157	2222	5787	6031	6289	6561	6847	7147	7461	2789	8131	8488	8828	-		Ι	_	-	-	
		1.4 [.35]	RPM	803	914	924	947	957	296	977	286	866	600	019	031	042	053	990	I	I	ı	ı	I	I	
		[.32]	W	510	735	972	223	614	853	105	372	653	947	. 992	. 629	916	. 292	. 289	9011	1	Т	_	_	_	
		1.3[.	RPM W	886 4510	897 4735	908 4972	919 5223	942 5614	952 5853	962 6105	972 6372	983 6653	994 6947 1009 7147 1024 7347 1039 7548 1054 7751	205 7	J16 7	727 7	338 8)20 B	JE 1	1	1	_	_	_	
	kPa]		WR	4344	4561	4791	5034	5290	2228	5923		6460		990 7052 1005 7256 1019 7461 1034 7667 1050 7873 1065	1000 1000 1016 1020 1031 1789 1046 1000	997 7488 1012 7701 1027 7916 1042 8131 1057 8348	1008 7828 1023 8047 1038 8267	1005 7959 1020 8182 1035 8407 1050 8632 1065	1901 0828	- 89	- 0296	_	_	_	
	ater	1.2 [.30]	M	869 43	880 45	891 47	902 50	913 52	924 55	947 56	958 6184	968 64	979 6749) 106	01 73	12 77	23 80	35 84	46 87	1058 9168	36 02	1	Ė	_	
	of W		RPM									_	_		32 10	38 10	28 10	32 10	1032 8550 1046	33 10	9 1070		- -		
	ches	1.1 [.27]	W	1 4182	863 4392	874 4614	886 4850	897 5098	8 5359	919 5633	943 5997	953 6267	964 6551	975 6849	986 7162	7 748	8 782	0 818	2 855	1043 8933	1041 9089 1055 9329	8 9739	-	-	
	<u>آ</u>	1.1	RPM	1 851					1 908					\vdash		l	100	102	l 103	104	3 105	1068	3		
	ssure	1.0 [.25]	8	4024	845 4226	856 4442	868 4670	880 4910	5164	5430	915 5710	926 6002	949 6355	960 6647	971 6954	982 7275	993 7610	795	1017 8321	1029 8698	806	1053 9494	9913	Ι	
	: Pre	1.0	RPM	833	845	l	898	880	892	903	915	926	646		971	985		1005					1065	1	
	External Static Pressure—Inches of Water [kPa]	22]	M	3870	4065	4273	4493	4727	4973	5232	5504	22.88	6085	6446	6748	2002	7393	7736	8094	8465	8851	9250	9664	0092	
	rnal	0.9[.22]	RPM	814	826	838	820	862	874	988	868	910	922	945	926	296	626	066	1002	1014		1038		063 1	
	Exte	20]	NR	3720	8068	4108	4321	4547	4786	2037	5302	629		6171	6542				1 2867	233 1	8376 1011 8613 1026	1 200	9168 1035 9416 1050	33 9585 1048 9838 1063 10092	
		0.8[.2	RPM	794 3.	807 39	820 4	832 43	845 4	857 47	869 50	881 5;	893 59	905 5869	917 6	941 6	953 6852	964 7176	975 7514	12 286	999 8233	11 86	8765 1023 9007	32 64	48 98	
		0			H						l										2 10	35 10	38 10	35 10	
		7[.17	M	<u> </u>	 -	1 3947	3 4153	6 4371	9 4603	1 4847	4 5104	6 5373	9 2 2 2 2	1 5951	3 6259	26 6580	9 6961	961 7294	7640	4 8001	9 83	18 876	1 916	3 958	
		0.	WRP	ı	1	8	9 81	0 82	83	0 88		8/	88	2 90	5 91	6	5 94		97	1 98	66	4 100	1021	3 103	
hase		[.15]	M	Ι	1	ı	794 3989	807 4200	820 4424	833 4660	828 4720 846 4910	859 5172	854 5242 872 5447	884 5735	897 6035	893 6122 909 6349	922 6675	202	958 7415	969 7771	981 8140	994 8524 100	895	933	
-3		9.0	W RPM	Ι	1	1	762	208	82(846		872			6		946	326	396	98-1	766	1006	1018	
575 -		.12]		Ι	1	1	Ι	I	801 4249	815 4478	4720	841 4975	5242	867 5523	5816	6122	906 6441	6772	1612	955 7541	967 7905	979 8283	9298	9082	
460,		0.5	RPM	1	1	1	I	1	801	815		841	854	867	880		906	918	943 7191	922	296		991	1004	
30,		10]	M	I	Ι	1	Ι	1	Ι	4300	4534	4781	5042	5315	2600	5899	6210	5534	5871	7313	7671	8044	8431	8832	9
208/		.4[PM	Ι	Ι	ī	Ι	ı	Ι	795 4300	608	823	836	849	863	928	688	305	915	940	925	964	977	986	170
tage		1/2	W	Т	П	ī		ı		1	352	265	845	110	389	089	984	301	089	972	328	908	187	583	t of h
Ν		.3[.0	W RPM W RPM W RPM	1		ı	1	ı		ī	790 4352 809 4534	804 4592 823 4781	798 4652 817 4845 836 5042	813 4910 831 5110 849 5315	45 5	58 5	72 5	85 6	9 66	12 6	25 7	20 2	62 8	75 8	4517
8		<u>.</u>	V R	_	<u>.</u>	1	<u>.</u> I	 -	<u>.</u> 	 -		8	52 8	10 8	81 8	65 8	61 8	71 8	8 8	28 9	75 9	36 9	44 9	34 9	
E-H3		2 [.0		_	Ė			-	-	-			8 46	3 49	7 51	0 54	4 57	9 8	2 63	29 9	0/ 6	2 74	8 79	0 83	11
Model RKNL-H300 Voltage 208/230, 460, 575 — 3 Phase		0.1[.02] 0.2[.05] 0.3[.07] 0.4[.10] 0.5[.12] 0.6[.15]	RPM W RPM	_	 -	1	1		 -			1	\vdash	4 81	808 4978 827 5181 845 5389 863 5600 880 5816	4 84	836 5543 854 5761 872 5984 889 6210	2 86	88 0	1 89	2 90	10 92	94	96 /	1 12
lode		[02	N	I	-	1	1	1	1	1		1	1	793 4714	497	525	554	584	616	648	682	718	754	808	of bo
2		0.1	RPI		1	1	1	1	1	1	I	1	1		808	822		820	864	878	892	906	920	946	1001
١.	_ ;	آ - ×	9	3775]	3869]	3964]	4058]	4153]	4247]	4341]	4436]	4530]	4624]	10000 [4719]	10200 [4813]	10400 [4908] 822 5254 840 5465 858 5680 876 5899	10600 [5002]	10800 [5096] 850 5845 868 6071 885 6301 902 6534 <u> 918 6772 946 7074 </u>	11000 [5191] 864 6160 882 6393 899 6630 915 6871	11200 [5285] 878 6487 895 6728 912 6972 940 7313	11400 [5379] 892 [6827] 909 [7075] 925 [7328] 952 [7671	11600 [5474] 906 7180 922 7436 950 7806 964 8044	11800 [5568] 920 7546 948 7944 962 8187 977 8431 991 8676 1006 8921	12000 [5663] 946 8087 960 8334 975 8583 989 8832 1004 9082 1019 9333 103	
	A P	CEM [1 /c]		8000 [3775]	8200 [3869]	8400 [3964]	8600 [4058]	8800 [4153]	9000 [4247]	9200 [4341	9400 [4436]	9600 [4530]	9800 [4624]	7 000	200 [4	400 [1 009	3 008	1 000	200 [400 [3 009	3 008	1 000	MOTE: 1 Drive loft of hold line M Drive right of hold line
		٢	•	œ	œ	œ́	œ́	œ	6	6	Ó	Ó	6	10	10	ė	é	9	Ξ	Ξ	É	Ξ	Ξ	12	5

Drive lett of bold line, M-Drive right of bold

Drive Package			L,	L, R					M, S			
Motor H.P. [W]			7.5 [5592.7]	592.7]					10 [7457.0]	[0.75		
Blower Sheave			BK1	BK130H					BK120H	HO		
Motor Sheave			1VP-71	-71					1VP-75	75		
Turns Open	1	2	3	4	9	9	1	2	3	4	5	9
RPM	919	894	869	844	817	790	1067	1039 1012	1012	982	953	925

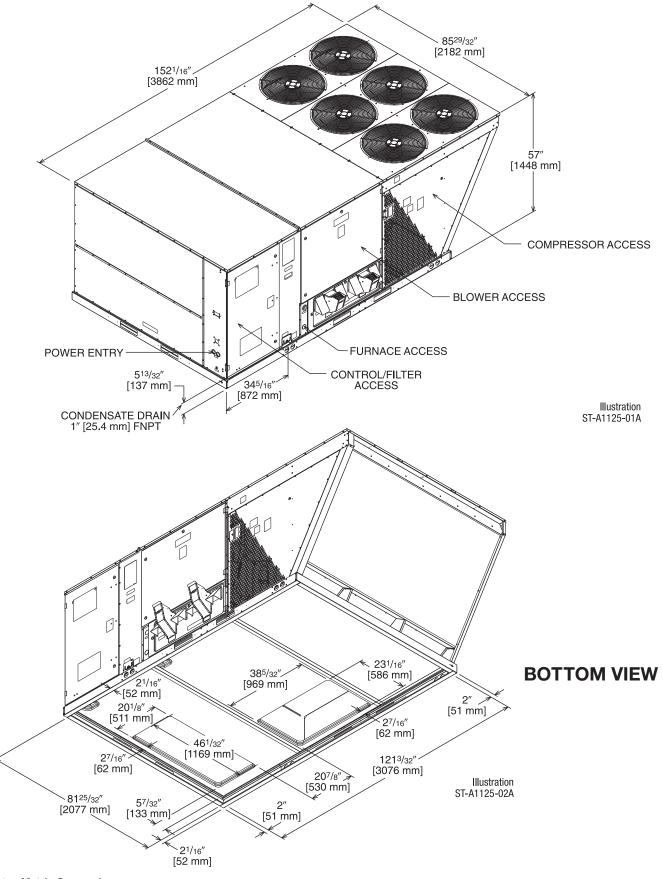
NOTES: 1. Factory sheave settings are shown in bold type.
2. Do not set motor sheave below minimum turns open shown.
3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
4. Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

COMPONENT AIR RESISTANCE—25 TON [87.9 kW]

	8000	8400	8800	9200	0096	10000	10400	10400 10800	11200	11600	12000
CFM	[3775]	[3964]	[4153]	[4341]	[4341] [4530]	[4719]	[4908]	[2096]	[5285]	[5474]	[5663]
[[2]]				Resist	ance —	Resistance — Inches of Water [kPa]	of Water	· [kPa]			
Wet Ceil	0.07	60.0	0.10	0.12	0.13	0.15	0.16	0.18	0.19	0.21	0.22
Met coll	[.02]	[.02]	[.02]	[:03]	[:03]	[.04]	[.04]	[90.]	[.05]	[.05]	[.05]
	0.12	0.14	0.16	0.19	0.22	0.25	0.29	0.33	0.37	0.42	0.46
MOMILION	[:03]	[:03]	[.04]	[.05]	[:05]	[90.]	[.07]	[80.]	[60:]	[10]	Ξ
Downflow Economizer	0.22	0.24	0.26	0.28	0.3	0.32	0.34	0.37	0.39	0.41	0.44
R.A. Damper Open	[.05]	[90:]	[90]	[.07]	[.07]	[.08]	[.08]	[60:]	[.10]	[10]	Ξ
Horizontal Economizer	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19
R.A. Damper Open	[.02]	[.02]	[:03]	[.03]	[:03]	[:03]	[.04]	[.04]	[.04]	[.04]	[.05]
Concentric Grill RXRN-AD88	0.17	0.23	0.30	0.36	0.43	05.0	0.56	0.63	69.0	92.0	0.82
& Transition RXMC-CL09	[.04]	[90:]	[.07]	[.09]	[.11]	[.12]	[.14]	[.16]	[.17]	[.19]	[.20]
O NOOM WEDN O	0.132	0.14	0.148	0.156	0.164	0.172	0.18	0.188	0.196	0.204	0.212
riessule Diop Meny 6	[:03]	[:03]	[.04]	[.04]	[.04]	[.04]	[.04]	[.05]	[.05]	[.05]	[.05]
Decoming Days MCDV 42	0.108	0.12	0.132	0.145	0.157	0.169	0.182	0.194	0.206	0.219	0.231
riessure Diop Men 13	[:03]	[:03]	[:03]	[.04]	[.04]	[.04]	[.04]	[.05]	[.05]	[.05]	[90.]

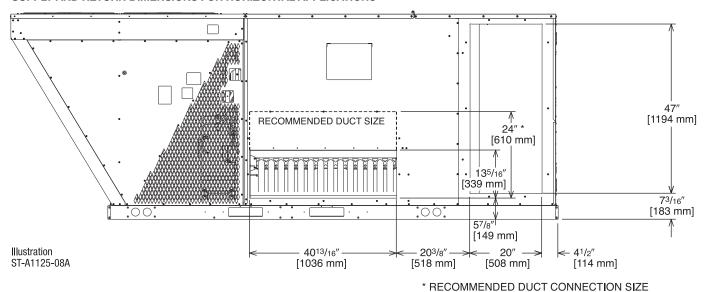
AIRFLOW CORRECTION FACTORS-25 TON [87.9 kW]

ACTUAL—CFM	8000	8400	0088	9200	0096	10000	10400	10800	11200	11600	12000
[/ /8]	[3775]	[3964]	[4153]	[4341]	[4530]	[4719]	[4908]	[5096]	[5285]	[5474]	[5663]
TOTAL MBTUH	0.97	86:0	66'0	66'0	1.00	1.01	1.02	1.03	1.03	1.04	1.05
SENSIBLE MBTUH	0.89	0.92	96.0	86.0	1.01	1.04	1.08	1.11	1.14	1.17	1.20
POWER KW	0.99	66'0	1.00	1.00	1.00	1.01	1.01	1.01	1.02	1.02	1.02

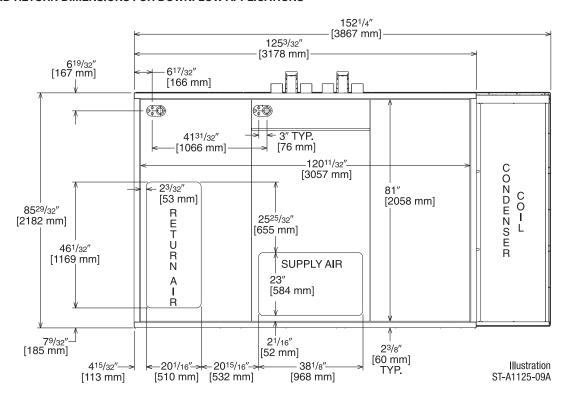

NOTES: Multiply correction factor times gross performance data-resulting sensible capacity cannot exceed total capacity.

		ELECTRICAL	DATA – RKNL- SERIE	:\$	
		H180CR	H180CS	H180DR	H180DS
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506
ioi	Volts	208/230	208/230	460	460
ll at	Minimum Circuit Ampacity	78/78	81/81	38	40
Unit Information	Minimum Overcurrent Protection Device Size	90/90	90/90	45	45
5	Maximum Overcurrent Protection Device Size	100/100	100/100	45	50
	No.	2	2	2	2
	Volts	200/230	200/230	460	460
-	Phase	3	3	3	3
Mot	RPM	3450	3450	3450	3450
i	HP, Compressor 1	7	7	7	7
ress	Amps (RLA), Comp. 1	25/25	25/25	12.2	12.2
Compressor Motor	Amps (LRA), Comp. 1	164/164	164/164	100	100
ತ	HP, Compressor 2	7	7	7	7
	Amps (RLA), Comp. 2	25/25	25/25	12.2	12.2
Compressor Motor Com	Amps (LRA), Comp. 2	164/164	164/164	100	100
	No.	4	4	4	4
Mot	Volts	208/230	208/230	460	460
sor	Phase	1	1	1	1
res	HP	1/3	1/3	1/3	1/3
l m	Amps (FLA, each)	2.4/2.4	2.4/2.4	1.4	1.4
ŭ	Amps (LRA, each)	4.7/4.7	4.7/4.7	2.4	2.4
_	No.	1	1	1	1
Fan	Volts	208/230	208/230	460	460
후	Phase	3	3	3	3
Evaporator Fan	HP	3	5	3	5
Eva	Amps (FLA, each)	11.5/11.5	14.9/14.9	4.6	6.6
1	Amps (LRA, each)	74.5/74.5	82.6/82.6	38.1	46.3

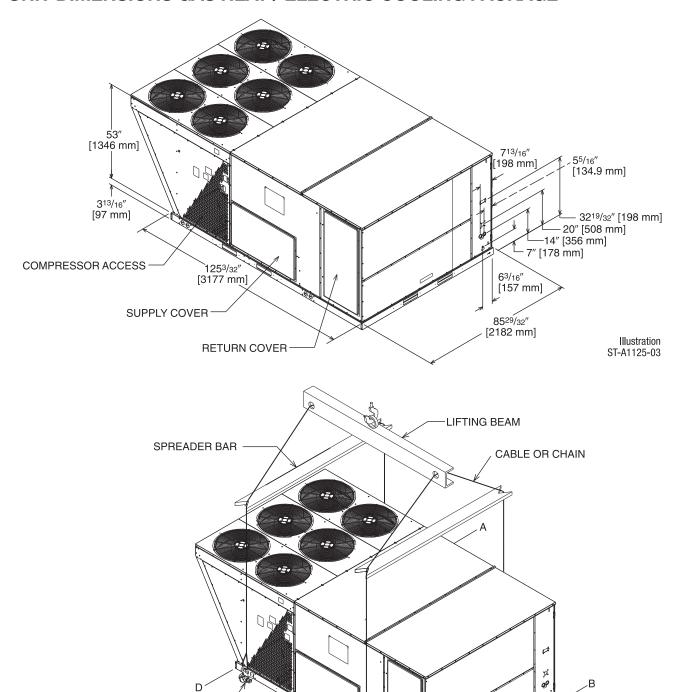
		ELECTRICAL I	DATA – RKNL- SERIE	ES .	
		H210CR	H210CS	H210DR	H210DS
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506
io	Volts	208/230	208/230	460	460
mat	Minimum Circuit Ampacity	88/88	91/91	44	46
Unit Information	Minimum Overcurrent Protection Device Size	100/100	100/100	50	50
n	Maximum Overcurrent Protection Device Size	110/110	110/110	50	50
	No.	2	2	2	2
Ī	Volts	200/230	200/230	460	460
a	Phase	3	3	3	3
Compressor Motor	RPM	3450	3450	3450	3450
. i	HP, Compressor 1	7 1/2	7 1/2	7 1/2	7 1/2
ress	Amps (RLA), Comp. 1	29.5/29.5	29.5/29.5	14.7	14.7
g	Amps (LRA), Comp. 1	195/195	195/195	95	95
3	HP, Compressor 2	7 1/2	7 1/2	7 1/2	7 1/2
Ī	Amps (RLA), Comp. 2	29.5/29.5	29.5/29.5	14.7	14.7
Ī	Amps (LRA), Comp. 2	195/195	195/195	95	95
5	No.	4	4	4	4
Mot	Volts	208/230	208/230	460	460
	Phase	1	1	1	1
Compressor Motor	HP	1/3	1/3	1/3	1/3
d l	Amps (FLA, each)	2.4/2.4	2.4/2.4	1.4	1.4
3	Amps (LRA, each)	4.7/4.7	4.7/4.7	2.4	2.4
	No.	1	1	1	1
Fan	Volts	208/230	208/230	460	460
Į į	Phase	3	3	3	3
oora	HP	3	5	3	5
Evaporator Fan	Amps (FLA, each)	11.5/11.5	14.9/14.9	4.6	6.6
_ [Amps (LRA, each)	74.5/74.5	82.6/82.6	38.1	46.3


		ELECTI	RICAL DATA –	RKNL- SERIE	S		
		H240CR	H240CS	H240CT	H240DR	H240DS	H240DT
	Unit Operating Voltage Range	187-253	187-253	187-253	414-506	414-506	414-506
ioi	Volts	208/230	208/230	208/230	460	460	460
l al	Minimum Circuit Ampacity	101/101	109/109	109/109	52	56	56
Unit Information	Minimum Overcurrent Protection Device Size	110/110	125/125	125/125	60	60	60
5	Maximum Overcurrent Protection Device Size	125/125	125/125	125/125	60	70	70
	No.	2	2	2	2	2	2
	Volts	200/230	200/230	200/230	460	460	460
	Phase	3	3	3	3	3	3
Mot	RPM	3450	3450	3450	3450	3450	3450
, j	HP, Compressor 1	10	10	10	10	10	10
res	Amps (RLA), Comp. 1	33.3/33.3	33.3/33.3	33.3/33.3	17.9	17.9	17.9
Compressor Motor	Amps (LRA), Comp. 1	239/239	239/239	239/239	125	125	125
ŏ	HP, Compressor 2	7 1/2	7 1/2	7 1/2	7 1/2	7 1/2	7 1/2
	Amps (RLA), Comp. 2	29.5/29.5	29.5/29.5	29.5/29.5	14.7	14.7	14.7
Compressor Motor	Amps (LRA), Comp. 2	195/195	195/195	195/195	95	95	95
	No.	6	6	6	6	6	6
	Volts	208/230	208/230	208/230	460	460	460
sor	Phase	1	1	1	1	1	1
res	HP	1/3	1/3	1/3	1/3	1/3	1/3
m	Amps (FLA, each)	2.4/2.4	2.4/2.4	2.4/2.4	1.4	1.4	1.4
<u> </u>	Amps (LRA, each)	4.7/4.7	4.7/4.7	4.7/4.7	2.4	2.4	2.4
_	No.	1	1	1	1	1	1
Fan	Volts	208/230	208/230	208/230	460	460	460
ţ	Phase	3	3	3	3	3	3
Evaporator Fan	HP	5	7 1/2	7 1/2	5	7 1/2	7 1/2
Eva	Amps (FLA, each)	14.7/14.7	23.1/23.1	23.1/23.1	6.6	9.6	9.6
	Amps (LRA, each)	82.6/82.6	136/136	136/136	46.3	67	67

		H300CR	H300CS	H300DR	H300DS
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506
6	Volts	208/230	208/230	460	460
nati	Minimum Circuit Ampacity	147/147	149/149	60	63
Unit Information	Minimum Overcurrent Protection Device Size	175/175	175/175	70	70
n	Maximum Overcurrent Protection Device Size	175/175	175/175	70	80
	No.	2	2	2	2
	Volts	200/240	200/240	460	460
a	Phase	3	3	3	3
Mot	RPM	3450	3450	3450	3450
. j	HP, Compressor 1	11 1/2	11 1/2	11 1/2	11 1/2
Compressor Motor	Amps (RLA), Comp. 1	48.1/48.1	48.1/48.1	18.6	18.6
ğ İ	Amps (LRA), Comp. 1	245/245	245/245	125	125
3	HP, Compressor 2	11 1/2	11 1/2	11 1/2	11 1/2
	Amps (RLA), Comp. 2	48.1/48.1	48.1/48.1	18.6	18.6
	Amps (LRA), Comp. 2	245/245	245/245	125	125
'n	No.	6	6	6	6
Mot	Volts	208/230	208/230	460	460
Sor	Phase	1	1	1	1
Compressor Motor	HP	1/3	1/3	1/3	1/3
g [Amps (FLA, each)	2.4/2.4	2/2	1.4	1.4
3	Amps (LRA, each)	4.7/4.7	3.9/3.9	2.4	2.4
	No.	1	1	1	1
Fan	Volts	208/230	208/230	460	460
ģ [Phase	3	3	3	3
Evaporator Fan	HP	7 1/2	10	7 1/2	10
Eva	Amps (FLA, each)	24.2/24.2	28.5/28.5	9.6	12.5
-	Amps (LRA, each)	136/136	178/178	67	74.6


[] Designates Metric Conversions

SUPPLY AND RETURN DIMENSIONS FOR HORIZONTAL APPLICATIONS


DUCT SIDE VIEW (REAR)

SUPPLY AND RETURN DIMENSIONS FOR DOWNFLOW APPLICATIONS

BOTTOM VIEW

UNIT DIMENSIONS GAS HEAT / ELECTRIC COOLING PACKAGE

WEIGHTS

Accessory	Shipping—Ibs [kg]	Operating—lbs [kg]
Economizer—Downflow	155 [70.31]	146 [66.22]
Economizer—Horizontal	165 [74.80]	155 [70.31]
Fresh Air Damper (Manual)	51 [23.13]	40 [18.14]
Fresh Air Damper (Motorized)	46 [20.87]	35 [15.88]
Roof Curb 14"	170 [77.11]	164 [74.39]

⁵/8" [15.9 mm] — SHACKLE (EACH CORNER)

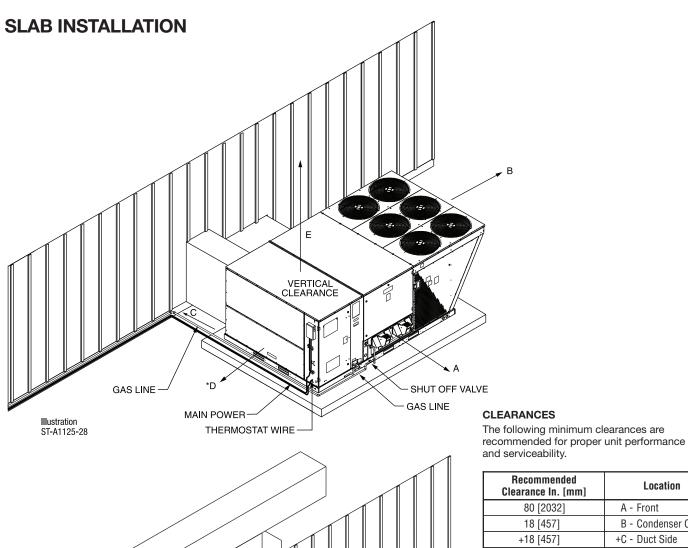
Corner weights measured at base of unit.

32%

Capacity Tons [kW]

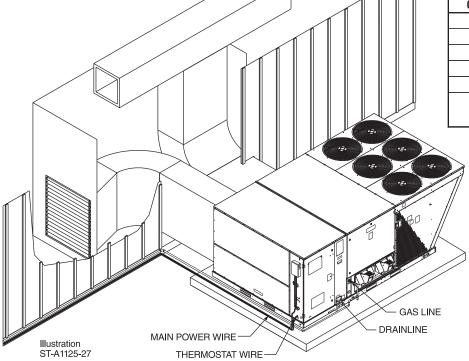
15-25 [52.8-87.9]

Corner Weights by Percentage


16%

27%

D


24%

^[] Designates Metric Conversions

Location A - Front B - Condenser Coil +C - Duct Side *18 [457] *D - Evaporator End 60 [1524] E - Above *Without Economizer. 48" [1219 mm] With Economizer

+Without Horizontal Economizer, 42" [1067 mm] with Horizontal Economizer

FIELD INSTALLED ACCESSORY EQUIPMENT

Accessory	Model Number	Shipping Weight Lbs. [kg]	Installed Weight Lbs. [kg]	Factory Installation Available?
Downflow Economizer w/Single Enthalpy (DDC)	AXRD-01RMDCM3	277 [125.6]	168 [76.2]	Yes
Downflow Economizer w/Smoke Detector (DDC)	AXRD01RMDDM3	280 [127.0]	171 [77.6]	Yes
Dual Enthalpy Kit	RXRX-AV04	1 [.5]	.5 [0.2]	No
Horizontal Economizer w/Single Enthalpy (DDC)	AXRD-01RMHCM3	333 [151.0]	301 [36.5]	No
Carbon Dioxide Sensor (Wall Mount)	RXRX-AR02	3 [1.4]	2 [1.0]	No
Power Exhaust (208/230V)	RXRX-BGF05C	119 [54.0]	59 [26.8]	No
Power Exhaust (460V)	RXRX-BGF05D	119 [54.0]	59 [26.8]	No
Manual Fresh Air Damper*	AXRF-KFA1	61 [27.7]	52 [23.6]	No
Motorized Kit for Manual Fresh Air Damper*	RXRX-AW03	42 [19.1]	35 [15.9]	No
Modulating Motor Kit w/position feedback for RXRF-KFA1	RXRX-AW05	45 [20.4]	38 [17.2]	No
Roofcurb, 14"	RXKG-CBH14	184 [83.5]	176 [79.8]	No
Roofcurb Adapter to RXRK-E56	RXRX-CJCE56	465 [210.9]	415 [88.2]	No
Roofcurb Adapter to RXKG-CAF14	RXRX-CJCF14	555 [251.7]	505 [29.1]	No
Concentric Diffuser (Step-Down, 18" x 36")	RXRN-AD81	310 [140.6]	157 [71.2]	No
Concentric Diffuser (Step-Down, 24" x 48")	RXRN-AD86	367 [166.5]	212 [96.2]	No
Concentric Diffuser (Step-Down, 28" x 60")	RXRN-AD88	410 [186.0]	370 [67.8]	No
Concentric Diffuser (Flush, 18" x 36")	RXRN-AD80	213 [96.6]	115 [52.2]	No
Downflow Transition (Rect. to Rect., 18" x 36")	RXMC-CJ07	81 [36.7]	74 [33.6]	No
Downflow Transition (Rect. to Rect., 24" x 48")	RXMC-CK08	81 [36.7]	74 [33.6]	No
Downflow Transition (Rect. to Rect., 28" x 60")	RXMC-CL09	81 [36.7]	74 [33.6]	No
Low-Ambient Control Kit (1 Per Compressor)	RXRZ-C02	3 [1.4]	2 [0.9]	Yes
Unwired Convenience Outlet	RXRX-AN01	2 [0.9]	1.5 [.7]	Yes
Unfused Service Disconnect+	RXRX-AP01	10 [4.5]	9 [4.1]	Yes
Comfort Alert (1 per Compressor)	RXRX-AZ01	3 [1.4]	2 [0.9]	Yes
BACnet Communication Card	RXRX-AY01	1 [0.5]	1 [0.5]	No
LonWorks Communication Card	RXRX-AY02	1 [0.5]	1 [0.5]	No
Room Humidity Sensor	RHC-ZNS4	1 [0.5]+	1 [0.5]+	No*
Room Temperature and Relative Humidity Sensor	RHC-ZNS5	1 [0.5]+	1 [0.5]+	No*
Hail Guard Louvers	AXRX-AAD01L	55 [24.8]	45 [20.3]	Yes
MERV 8 Filter	RXMF-M08A22520	2 [0.9]	1 [0.45]	No
MERV 13 Filter	RXMF-M13A22520	2 [0.9]	1 [0.45]	No

^{*}Motorized Kit and Manual Fresh Air Damper must be combined for a complete Motorized Outside Air Damper Selection. +Do not use on or RKNL-C 300C voltage models.

^[] Designates Metric Conversions

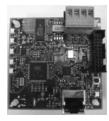
FLUSH MOUNT ROOM TEMPERATURE SENSORS FOR NETWORKED DDC APPLICATIONS

ROOM TEMPERATURE SENSOR RHC-ZNS1 with TIMED OVERRIDE BUTTON

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

ROOM TEMPERATURE SENSOR RHC-ZNS2 with TIMED OVERRIDE BUTTON and STATUS INDICATOR

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time. Status Indicator Light transmits ALARM flash code to occupied space.



ROOM TEMPERATURE SENSOR RHC-ZNS3 with SETPOINT ADJUSTMENT and TIMED OVERRIDE BUTTON

 $10k\Omega$ room temperature sensor with setpoint adjustment transmits room temperature to DDC system along with desired occupied room temperature setpoint. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

COMMUNICATION CARDS Field Installed

BACnet® COMMUNICATION CARD RXRX-AY01

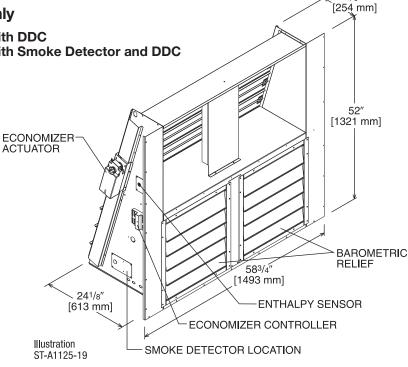
The field installed BACnet® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the BACnet Application Specific Controller device profile. The BACnet® Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network.

LonWorks® COMMUNICATION CARD RXRX-AY02

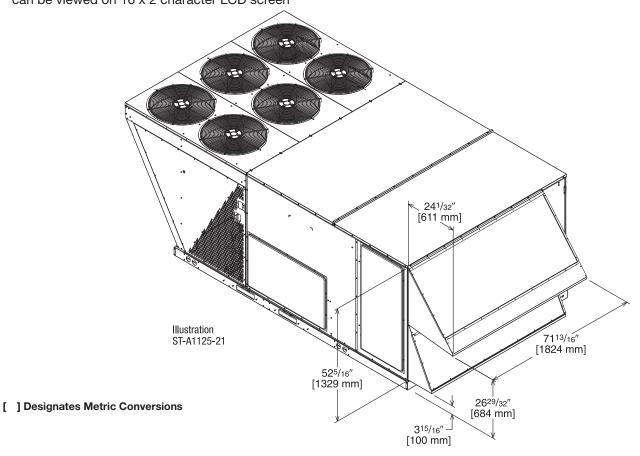
The field installed LonWorks® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network.

10

ECONOMIZERS


Use to Select Factory Installed Options Only

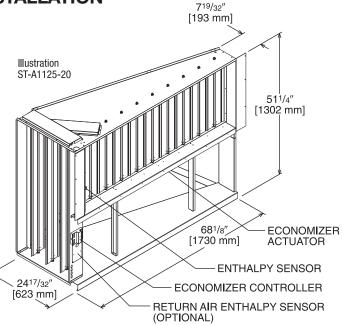
AXRD-01RMDCM3—Single Enthalpy (Outdoor) with DDC AXRD-01RMDDM3-Single Enthalpy (Outdoor) with Smoke Detector and DDC


RXRX-AR02—Dual Enthalpy Upgrade Kit

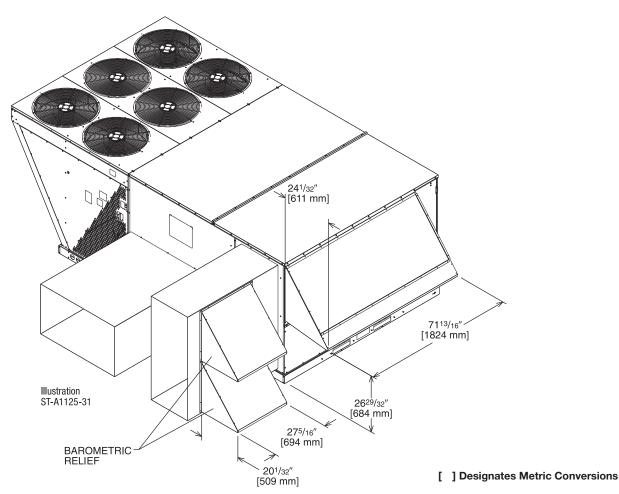
RXRX-AV04—Optional Wall-Mounted CO, Sensor

- Features Honeywell Controls
- Available Factory Installed or Field Accessory
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Downflow Duct Application
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS) or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 character LCD screen

TOLERANCE ± .125

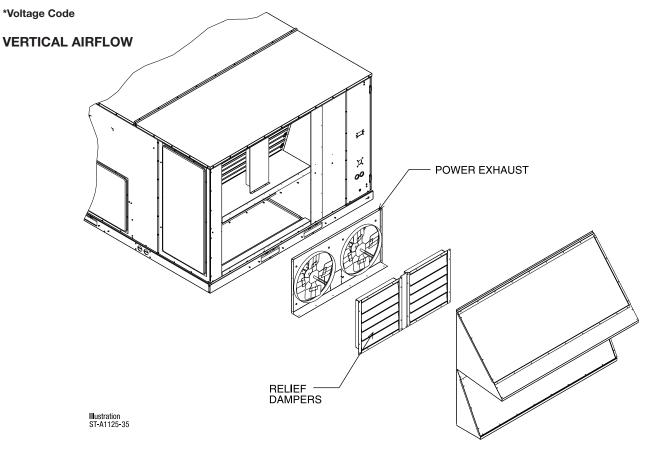

ECONOMIZER FOR HORIZONTAL DUCT INSTALLATION

Field Installed Only


AXRD01RMHCM3—Single Enthalpy (Outdoor) with DDC

RXRX-AV04 – Dual Enthalpy Upgrade Kit RXRX-AR02 – Wall-mounted CO₂ Sensor

- Features **Honeywell** Controls
- Available as a Field Installed Accessory Only
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Horizontal Duct Application
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS) or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 LCD screen



TOLERANCE ± .125

POWER EXHAUST KIT FOR AXRD-PMCM3 & SMCM3 ECONOMIZERS

RXRX-BGF05 (C, D, or Y*)

Model No.	No.	Volts	Phase	HP	Low Speed		High Speed ①		FLA	LRA
Model No.	of Fans	VUIIS		(ea.)	CFM [L/s] ②	RPM	CFM [L/s] ②	RPM	(ea.) (e	(ea.)
RXRX-BGF05C	2	208-230	1	0.75	4100 [1935]	850	5200 [2454]	1050	5	4.97
RXRX-BGF05D	2	460	1	0.75	4100 [1935]	850	5200 [2454]	1050	2.2	3.4
RXRX-BGF05Y	2	575	1	0.75	4100 [1935]	850	5200 [2454]	1050	1.5	2.84

NOTES: ① Power exhaust is factory set on high speed motor tap. ② CFM is per fan at 0" w.c. external static pressure.

FRESH AIR DAMPER

MOTORIZED DAMPER KIT **RXRX-AW03** (Motor Kit for AXRF-KFA1) RXRX-AW05 (Modulating Motor Kit with position feedback for AXRF-KFA1)

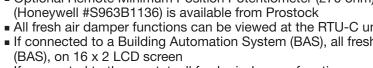
- Features Honeywell Controls
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin **Electrical Connections**
- Pre-Configured No Field Adjustments Necessary
- Addition of Dual Enthalpy Upgrade Kit allows limited economizer function
- CO₂ Sensor Input Available for Demand Control Ventilation (DCV)
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock
- All fresh air damper functions can be viewed at the RTU-C unit controller display
- If connected to a Building Automation System (BAS), all fresh air damper functions can be viewed on the (BAS), on 16 x 2 LCD screen

Illustration ST-A1125-16

53" [1346 mm]

541/2" [1386 mm]

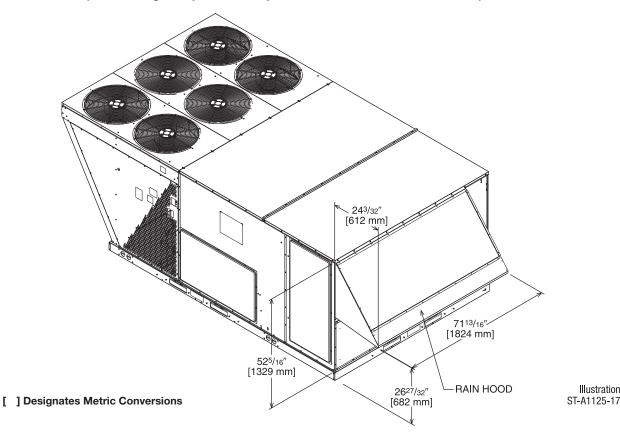
71/8" [181 mm]


[381 mm]

Illustration

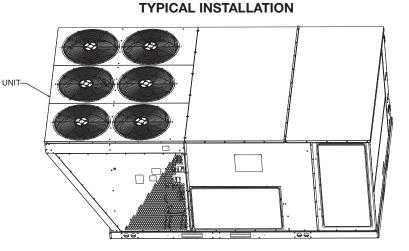
181/2"

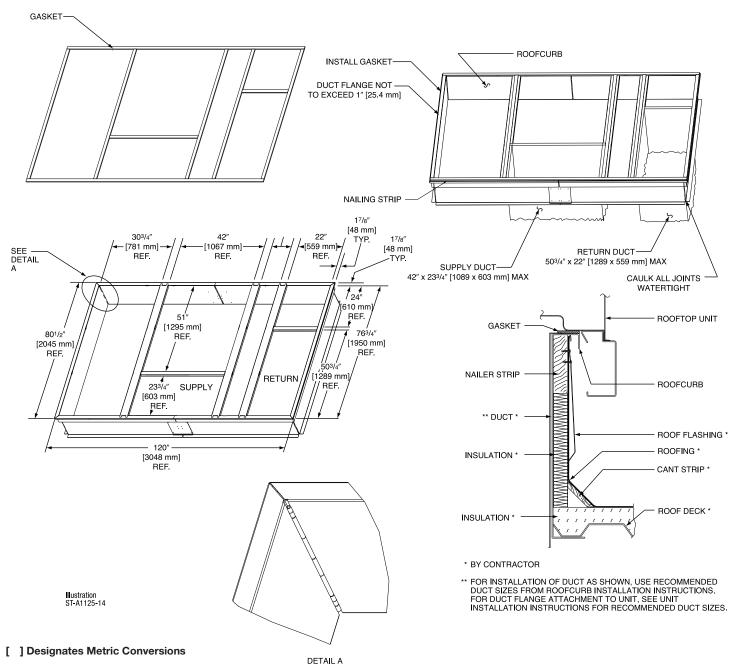
[470 mm]


■ If connected to thermostat, all fresh air damper functions can be viewed on 16 x 2 LCD screen

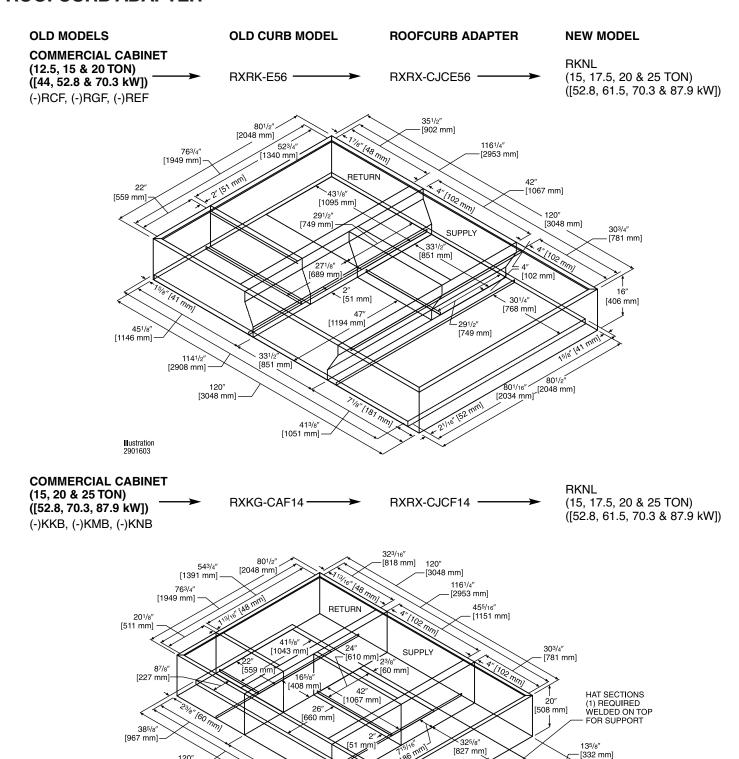
AXRF-KFA1 (Manual)

RXRX-AW03 (Motorized damper kit for manual fresh air damper)


RXRX-AW05 (Modulating damper kit with position feedback for AXRF-KFA1)



ROOFCURBS (Full Perimeter)


- Rheem's new roofcurb designs can be utilized on 15, 17.5, 20 and 25 ton [52.8, 61.5. 70.3 and 87.9 kW] models.
- One available height (14" [356 mm]).
- Quick assembly corners for simple and fast assembly.
- 1" [25.4 mm] x 4" [102 mm] Nailer provided.
- Insulating panels not required because of insulated outdoor base pan.
- Sealing gasket (28" [711 mm]) provided with Roofcurb.
- Packaged for easy field assembly.

ROOFCURB ASSEMBLY

ROOFCURB ADAPTER

[] Designates Metric Conversions

Illustration

2901604

120 [3048 mm]

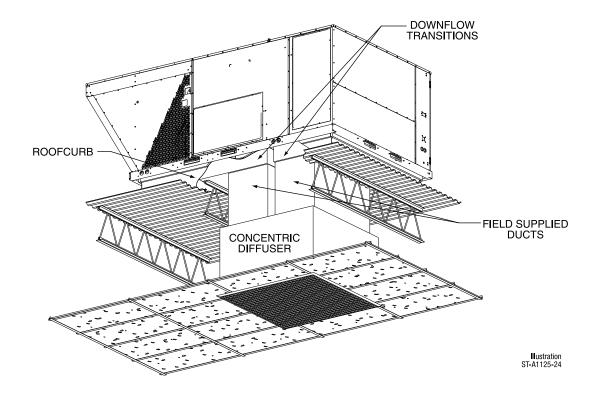
> 495/16 [1253 mm]

> > 14115/16"

[3605 mm]

[829 mm]

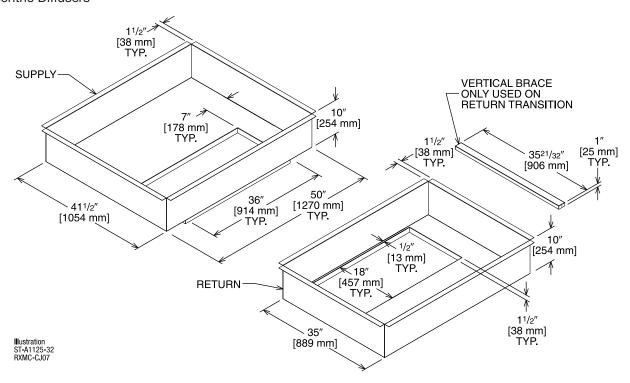
[497 mm]


[332 mm]

[827 mm]

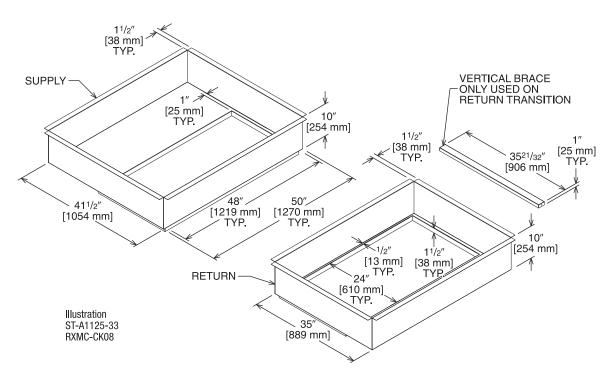
[2048 mm]

53³/8" -[1381 mm]

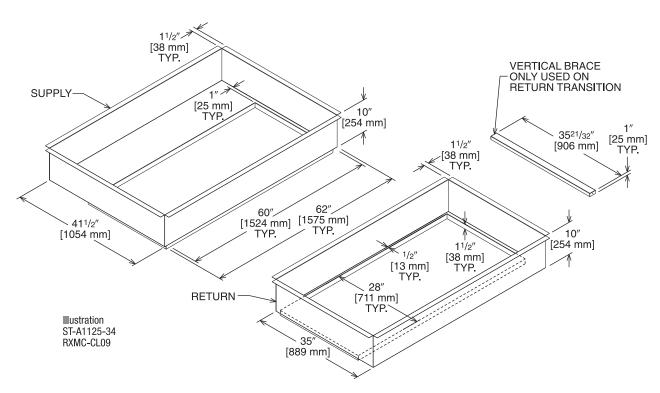

CONCENTRIC DIFFUSER APPLICATION

DOWNFLOW TRANSITION DRAWINGS

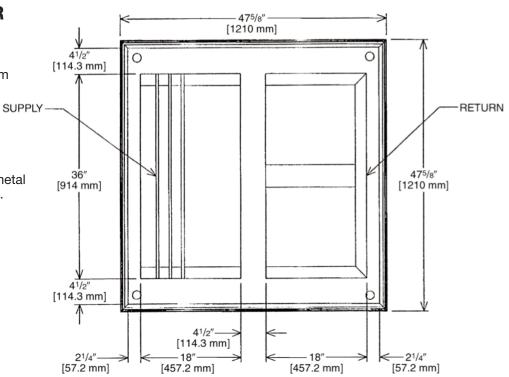
RXMC-CJ07 (15 Ton) [52.8 kW]

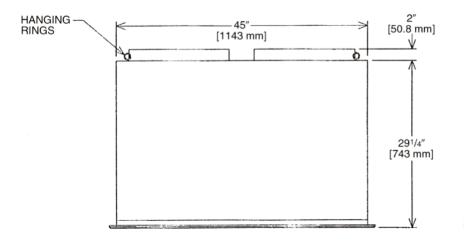

■ Used with RXRN-AD80 and RXRN-AD81 Concentric Diffusers

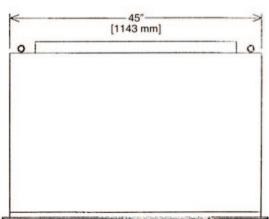
DOWNFLOW TRANSITION DRAWINGS (Cont.)


RXMC-CK08 (20 Ton) [70.3 kW]

■ Used with RXRN-AD86 Concentric Diffusers


RXMC-CL09 (25 Ton) [87.9 kW]

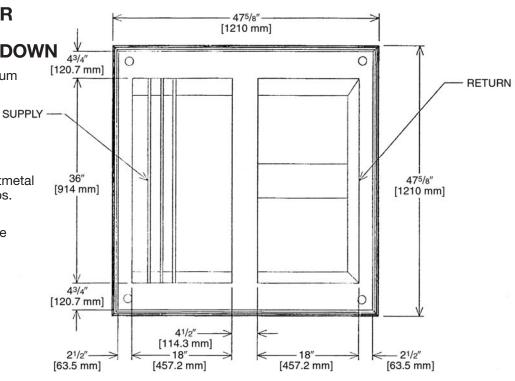

■ Used with RXRN-AD88 Concentric Diffusers

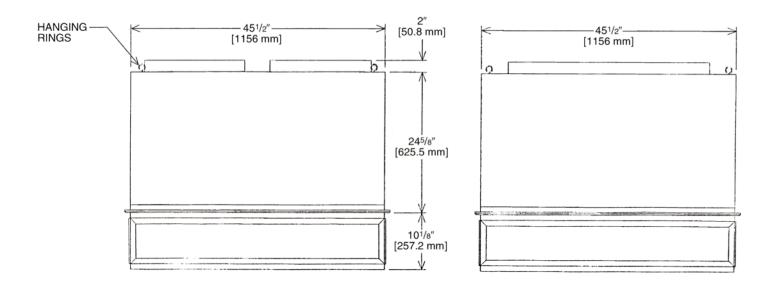


CONCENTRIC DIFFUSER RXRN-AD80 SERIES 15 TON [52.8 kW] FLUSH

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs. [.7 kg] duct liner.

CONCENTRIC DIFFUSER SPECIFICATIONS

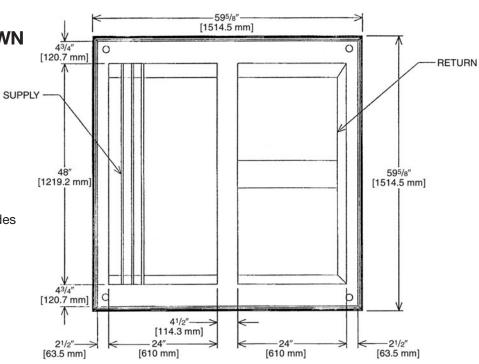

PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
	5600 [2643]	0.36	28-37	1000	2082
	5800 [2737]	0.39	29-38	1036	2156
RXRN-AD80	6000 [2832]	0.42	40-50	1071	2230
NANN-ADOU	6200 [2926]	0.46	42-51	1107	2308
	6400 [3020]	0.50	43-52	1143	2379
	6600 [3115]	0.54	45-56	1179	2454

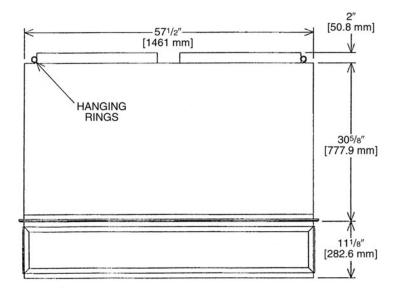


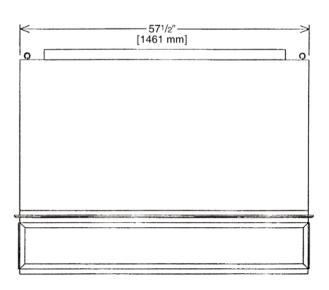
CONCENTRIC DIFFUSER RXRN-AD81 SERIES 15 TON [52.8 kW] STEP DOWN

 All aluminum diffuser with aluminum return air eggcrate.

- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

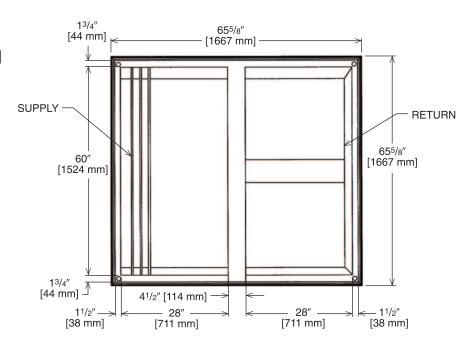


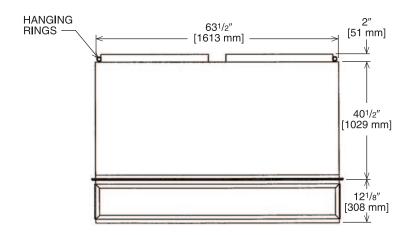

CONCENTRIC DIFFUSER SPECIFICATIONS

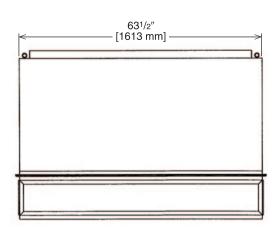

PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
	5600 [2643]	0.36	39-49	920	920
	5800 [2737]	0.39	42-51	954	954
RXRN-AD81	6000 [2832]	0.42	44-54	1022	1022
DANIN-ADOT	6200 [2926]	0.46	45-55	1056	1056
	6400 [3020]	0.50	46-55	1090	1090
	6600 [3115]	0.54	47-56	1124	1124

CONCENTRIC DIFFUSER RXRN-AD86 SERIES 20 TON [70.3 kW] STEP DOWN

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs. [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.


CONCENTRIC DIFFUSER SPECIFICATIONS


PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
	7200 [3398]	0.39	33-38	827	827
	7400 [3492]	0.41	35-40	850	850
	7600 [3587]	0.43	36-41	873	873
	7800 [3681]	0.47	38-43	896	896
RXRN-AD86	8000 [3776]	0.50	39-44	918	918
	8200 [3870]	0.53	41-46	941	941
	8400 [3964]	0.56	43-49	964	964
	8600 [4059]	0.59	44-50	987	987
	8800 [4153]	0.63	47-55	1010	1010



CONCENTRIC DIFFUSER RXRN-AD88 SERIES 25 TON [87.9 kW] STEP DOWN

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

CONCENTRIC DIFFUSER SPECIFICATIONS

PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
	10000 [4719]	0.51	46-54	907	907
	10500 [4955]	0.58	50-58	953	953
	11000 [5191]	0.65	53-61	998	998
RXRN-AD88	11500 [5427]	0.73	55-64	1043	1043
	12000 [5663]	0.82	58-67	1089	1089
	12500 [5898]	0.91	61-71	1134	1134
	13000 [6134]	1.00	64-74	1179	1179

Guide Specifications RKNL-H180 thru H300

You may copy this document directly into your building specification. This specification is written to comply with the 2004 version of the "master format" as published by the Construction Specification Institute. www.csinet.org.

GAS HEAT PACKAGED ROOFTOP

HVAC Guide Specifications

Size Range: 15 to 25 Nominal Tons

Section Description

23 06 80 Schedules for Decentralized HVAC Equipment

23 06 80.13 Decentralized Unitary HVAC Equipment Schedule

23 06 80.13.A. Rooftop unit schedule

1. Schedule is per the project specification requirements.

23 07 16 HVAC Equipment Insulation

23 07 16.13 Decentralized, Rooftop Units:

- 1. Interior cabinet surfaces shall be insulated with a minimum 3/4-in. thick, minimum 1-1/2 lb density, flexible fiberglass insulation bonded with a phenolic binder, with aluminum foil facing on the air side.
- 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.

23 09 13 Instrumentation and Control Devices for HVAC

23 09 13.23 Sensors and Transmitters

23 09 13.23.A. Thermostats

1. Thermostat must

a. have capability to energize 2 different stages of cooling, and 2 different stages of heating.

b. must include capability for occupancy scheduling.

23 09 23 Direct-digital Control system for HVAC

23 09 23.13 Decentralized, Rooftop Units:

23 09 23.13.A. RTU-C controller

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-32VAC input power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 158°F (70°C), 10% 95% RH (non-condensing).
- 4. Controller shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, fire shutdown, return air enthalpy, fan status, remote time clock/door switch.
- 5. Shall accept a CO2 sensor in the conditioned space, and be Demand Control Ventilation (DCV) ready.
- 6. Shall provide the following outputs: Economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, heat stage 2, heat stage 3, exhaust/ occupied.
- 7. Unit shall provide surge protection for the controller through a circuit breaker.
- 8. Shall have a field installed communication card allowing the unit to be Internet capable, and communicate at a Baud rate of 19.2K or faster
- 9. Shall have an LED display independently showing the status of activity on the communication bus, and processor operation.
- 10. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
- 11. Software upgrades will be accomplished by local download. Software upgrades through chip replacements are not allowed.
- 12. Shall be shock resistant in all planes to 5G peak, 11ms during operation, and 100G peak, 11ms during storage.
- 13. Shall be vibration resistant in all planes to 1.5G @ 20-300 Hz.
- 14. Shall support a bus length of 4000 ft max, 60 devices per 1000 ft section, and 1 RS-485 repeater per 1000 ft sections.
- 23 09 23.13.B. Open protocol, direct digital controller:
 - 1. Shall be ASHRAE 62-2001 compliant.
 - 2. Shall accept 18-30VAC, 50-60Hz, and consume 15VA or less power.
 - 3. Shall have an operating temperature range from -40°F (-40°C) to 130°F (54°C), 10% 90% RH (non-condensing).
 - 4. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
 - 5. The BACnet® plug in communication card shall include built-in protocol for BACNET (MS/TP and PTP modes)
 - 6. The LonWorks™ plug in communication card shall include the Echelon processor required for all Lon applications.
 - 7. Shall allow access of up sto 62 network variables (SNVT). Shall be compatible with all open controllers
 - 8. Baud rate Controller shall be selectable through the EIA-485 protocol communication port.
 - 9. Shall have an LED display independently showing the status of serial communication, running, errors, power, all digital outputs, and all analog inputs.
 - 10. Shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, compressor lock-out, fire shutdown, enthalpy switch, and fan status/filter status/ humidity/ remote occupancy.

- 11. Shall provide the following outputs: economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, heat stage 3, exhaust.
- 12. Software upgrades will be accomplished by either local or remote download. No software upgrades through chip replacements are allowed.

23 09 33 Electric and Electronic Control System for HVAC

23 09 33.13 Decentralized, Rooftop Units:

23 09 33.13.A. General:

- 1. Shall be complete with self-contained low-voltage control circuit protected by a resettable circuit breaker on the 24-v transformer side. Transformer shall have 100VA capabilities.
- 2. Shall utilize color-coded wiring.
- 3. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microprocessor. See heat exchanger section of this specification.
- 4. Shall include a central control terminal board to conveniently and safely provide connection points for vital control functions such as: smoke detectors, phase monitor, economizer, thermostat, DDC control options, loss of charge, freeze sensor, high pressure switches.
- 5. Unit shall include a minimum of one 10-pin screw terminal connection board for connection of control wiring.

23 09 33.23.B. Safeties:

- 1. Compressor over-temperature, over current.
- 2. Loss of charge switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. Loss of charge switch shall use different color wire than the high pressure switch. The purpose is to assist the installer and service technician to correctly wire and or troubleshoot the rooftop unit.
 - c. Loss of charge switch shall have a different sized connector than the high pressure switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 3. High-pressure switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. High pressure switch shall use different color wire than the low pressure switch. The purpose is to assist the installer and service person to correctly wire and or troubleshoot the rooftop unit.
 - c. High pressure switch shall have a different sized connector than the loss of charge switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 4. Freeze protection sensor, evaporator coil.
- 5. Automatic reset, motor thermal overload protector.
- 6. Heating section shall be provided with the following minimum protections.
 - a. High-temperature limit switches.
 - b. Induced draft motor pressure switch.
 - c. Flame rollout switch.
 - d. Flame proving controls.

23 09 93 Sequence of Operations for HVAC Controls

23 09 93.13 Decentralized, Rooftop Units:

23 40 13 Panel Air Filters

23 40 13.13 Decentralized, Rooftop Units:

23 40 13.13.A. Standard filter section shall

- 1. Shall consist of factory-installed, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
- 2. Unit shall use only one filter size. Multiple sizes are not acceptable.
- 3. Filter face velocity shall not exceed 365 fpm at nominal airflows.
- 4. Filters shall be accessible through an access panel as described in the unit cabinet section of the specification (23 81 19.13.H).

23 81 19 Self-Contained Air Conditioners

23 81 19.13 Small-Capacity Self-Contained Air Conditioners

23 81 19.13.A. General

- 1. Outdoor, rooftop mounted, electrically controlled, heating and cooling unit utilizing a(n) hermetic scroll compressor(s) for cooling duty and gas combustion for heating duty.
- 2. Factory assembled, single-piece heating and cooling rooftop unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, and special features required prior to field start-up.
- 3. Unit shall use environmentally safe, R-410A refrigerant.
- 4. Unit shall be installed in accordance with the manufacturer's instructions.
- 5. Unit must be selected and installed in compliance with local, state, and federal codes.

23 81 19.13.B. Quality Assurance

- 1. Unit meets ASHRAE 90.1-2004 minimum efficiency requirements.
- 2. 3 phase units are Energy Star qualified.
- 3. Unit shall be rated in accordance with AHRI Standards 210 and 360.
- 4. Unit shall be designed to conform to ASHRAE 15, 2001.
- 5. Unit shall be UL-tested and certified in accordance with ANSI Z21.47 Standards and UL-listed and certified under Canadian standards as a total package for safety requirements.
- 6. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 7. Unit casing shall be capable of withstanding 500-hour salt spray exposure per ASTM B117 (scribed specimen).
- 8. Unit casing shall be capable of withstanding Federal Test Method Standard No. 141 (Method 6061) 5000-hour salt spray.
- 9. Unit shall be designed in accordance with ISO 9001:2000, and shall be manufactured in a facility registered by ISO 9001:2000.
- 10. Roof curb shall be designed to conform to NRCA Standards.
- 11. Unit shall be subjected to a completely automated run test on the assembly line. The data for each unit will be stored at the factory, and must be available upon request.
- 12. Unit shall be designed in accordance with UL Standard 1995, including tested to withstand rain.
- 13. Unit shall be constructed to prevent intrusion of snow and tested to prevent snow intrusion into the control box up to 40 mph.

23 81 19.13.C. Delivery, Storage, and Handling

- 1. Unit shall be stored and handled per manufacturer's recommendations.
- 2. Lifted by crane requires either shipping top panel or spreader bars.
- 3. Unit shall only be stored or positioned in the upright position.

23 81 19.13.E. Project Conditions

As specified in the contract.

23 81 19.13.F. Operating Characteristics

- 1. Unit shall be capable of starting and running at 115°F (46°C) ambient outdoor temperature, meeting maximum load criteria of AHRI Standard 210/240 or 360 at ± 10% voltage.
- 2. Compressor with standard controls shall be capable of operation down to 40°F (4°C), ambient outdoor temperatures. Accessory low ambient kit is necessary if mechanically cooling at ambient temperatures below 40°F (4°C).
- 3. Unit shall discharge supply air vertically or horizontally as shown on contract drawings.
- 4. Unit shall be factory configured for vertical supply & return configurations.
- 5. Unit shall be field convertible from vertical to horizontal configuration.

23 81 19.13.G. Electrical Requirements

1. Main power supply voltage, phase, and frequency must match those required by the manufacturer.

23 81 19.13.H. Unit Cabinet

- 1. Unit cabinet shall be constructed of galvanized steel, and shall be bonderized and coated with a baked enamel finish on all externally exposed surfaces.
- 2. Unit cabinet exterior paint shall be: film thickness, (dry) 0.003 inches minimum, gloss (per ASTM D523, 60°F / 16°C): 60, Hardness: H-2H Pencil hardness.
- 3. Evaporator fan compartment interior cabinet insulation shall conform to AHRI Standards 210 or 360 minimum exterior sweat criteria. Interior surfaces shall be insulated with a minimum 3/4-in. thick, 1 lb. density, flexible fiberglass insulation, aluminum foil-face coated on the air side.
- 4. Base of unit shall have locations for thru-the-base gas and electrical connections (factory installed or field installed), standard.
- 5. Base Rail
 - a. Unit shall have base rails on all sides.
 - b. Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.

- c. Holes shall be provided in the base rail for moving the rooftop by fork truck.
- d. Base rail shall be a minimum of 14 gauge thickness.
- 6. Condensate pan and connections:
 - a. Shall be a sloped condensate drain pan made of a non-corrosive material.
 - b. Shall comply with ASHRAE Standard 62.
 - c. Shall use a 1" x 11-1/2 NPT drain connection through the side of the drain pan. Connection shall be made per manufacturer's recommendations.

7. Gas Connections:

- a. All gas piping connecting to unit gas valve shall enter the unit cabinet at a single location on side of unit (horizontal plane).
- b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base gas-line location using a raised, embossed portion of the unit basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.

8. Electrical Connections

- a. All unit power wiring shall enter unit cabinet at a single, factory-prepared, knockout location.
- b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base electrical location(s) using a raised, embossed portion of the unit basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.
- 9. Component access panels (standard)
 - a. Cabinet panels shall be easily removable for servicing.
 - b. Stainless steel metal hinges are standard on all doors.
 - c. Panels covering control box, indoor fan, indoor fan motor and gas components (where applicable), shall have 1/4 turn latches.

23 81 19.13.I. Gas Heat

1. General

- a. Heat exchanger shall be an induced draft design. Positive pressure heat exchanger designs shall not be allowed.
- b. Shall incorporate a direct-spark ignition system and redundant main gas valve.
- c. Heat exchanger design shall allow combustion process condensate to gravity drain; maintenance to drain the gas heat exchanger shall not be required.
- d. Gas supply pressure at the inlet to the rooftop unit gas valve must match that required by the manufacturer.
- 2. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microprocessor.
 - a. IFC board shall notify users of fault using an LED (light-emitting diode).
- 3. Standard Heat Exchanger construction
 - Heat exchanger shall be of the tubular-section type constructed of a minimum of 20-gauge aluminum coated steel for corrosion resistance.
 - b. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - c. Burners shall incorporate orifices for rated heat output up to 2000 ft. (610m) elevation. Additional accessory kits may be required for applications above 2000 ft. (610m) elevation, depending on local gas supply conditions.
- 4. Optional Stainless Steel Heat Exchanger construction
 - a. Use energy saving, direct-spark ignition system.
 - b. Use a redundant main gas valve.
 - c. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - d. All gas piping shall enter the unit cabinet at a single location on side of unit (horizontal plane).
 - e. The optional stainless steel heat exchanger shall be of the tubular-section type, constructed of a minimum of 20-gauge type 409 stainless steel.
 - f. Type 409 stainless steel shall be used in heat exchanger tubes and vestibule plate.
 - g. Complete stainless steel heat exchanger allows for greater application flexibility.
- 5. Induced draft combustion motors and blowers
 - a. Shall be a direct-drive, single inlet, forward-curved centrifugal type.

- b. Shall be made from steel with a corrosion-resistant finish.
- c. Shall have permanently lubricated sealed bearings.
- d. Shall have inherent thermal overload protection.
- e. Shall have an automatic reset feature.

23 81 19.13.J. Coils

- 1. Standard Aluminum/Copper Coils:
 - a. Standard evaporator and condenser coils shall have aluminum lanced plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.
 - b. Evaporator and condenser coils shall be leak tested to 150 psig, pressure tested to 550 psig, and qualified to UL 1995 burst test at 2,200 psi.

23 81 19.13.K. Refrigerant Components

- 1. Refrigerant circuit shall include the following control, safety, and maintenance features:
 - a. Thermal Expansion Valves (TXV) with orifice type distributor.
 - b. Refrigerant filter drier.
 - c. Service gauge connections on suction and discharge lines.
 - d. Pressure gauge access through an access port in the front and rear panel of the unit.

2. Compressors

- a. Unit shall use one fully hermetic, scroll compressor for each independent refrigeration circuit.
- b. Compressor motors shall be cooled by refrigerant gas passing through motor windings.
- Compressors shall be internally protected from high discharge temperature conditions. Advanced Scroll Temperature Protection on 240-300 sizes.
- d. Compressors shall be protected from an over-temperature and over-amperage conditions by an internal, motor overload device.
- e. Compressor shall be factory mounted on rubber grommets.
- f. Compressor motors shall have internal line break thermal and current overload protection.
- g. Crankcase heaters shall not be required for normal operating range.

23 81 19.13.L. Filter Section

- 1. Filters access is specified in the unit cabinet section of this specification.
- 2. Filters shall be held in place by filter tray, facilitating easy removal and installation.
- 3. Shall consist of factory-installed, low velocity, throw-away 2-in. thick fiberglass filters.
- 4. Filter face velocity shall not exceed 365 fpm at nominal airflows.
- 5. Filters shall be standard, commercially available sizes.
- 6. Only one size filter per unit is allowed.

23 81 19.13.M. Evaporator Fan and Motor

- 1. Evaporator fan motor:
 - a. Shall have permanently lubricated bearings.
 - b. Shall have inherent automatic-reset thermal overload protection.
 - Shall have a maximum continuous bhp rating for continuous duty operation; no safety factors above that rating shall be required.
- 2. Belt-driven Evaporator Fan:
 - a. Belt drive shall include an adjustable-pitch motor pulley.
 - b. Shall use sealed, permanently lubricated ball-bearing type.
 - c. Blower fan shall be double-inlet type with forward-curved blades.
 - d. Shall be constructed from steel with a corrosion resistant finish and dynamically balanced.

23 81 19.13.N. Condenser Fans and Motors

- 1. Condenser fan motors:
 - a. Shall be a totally enclosed motor.
 - b. Shall use permanently lubricated bearings.
 - c. Shall have inherent thermal overload protection with an automatic reset feature.
 - d. Shall use a shaft-down design. Shaft-up designs including those with "rain-slinger devices" shall not be allowed.
- 2. Condenser Fans shall:
 - a. Shall be a direct-driven propeller type fan.
 - b. Shall have aluminum blades riveted to corrosion-resistant steel spiders and shall be dynamically balanced.

23 81 19.13.O. Special Features

- 1. Integrated Economizers:
 - a. Integrated, gear-driven parallel modulating blade design type capable of simultaneous economizer and compressor operation.
 - b. Independent modules for vertical or horizontal return configurations shall be available. Vertical return modules shall be available as a factory installed option.
 - c. Damper blades shall be galvanized steel with metal gears. Plastic or composite blades on intake or return shall not be acceptable.
 - d. Shall include all hardware and controls to provide free cooling with outdoor air when temperature and/or humidity are below setpoints.
 - e. Shall be equipped with gear driven dampers for both the outdoor ventilation air and the return air for positive air stream control.
 - f. Shall be capable of introducing up to 100% outdoor air.
 - g. Shall be equipped with a barometric relief damper capable of relieving up to 100% return air. The barometric relief damper shall include seals, hardware and hoods to relieve building pressure. Damper shall gravity close upon unit shut down.
 - h. Shall be designed to close damper(s) during loss-of-power situations with spring return built into motor.
 - i. An outdoor single-enthalpy sensor shall be provided as standard. Outdoor air enthalpy set point shall be adjustable and shall range from the enthalpy equivalent of 63°F @ 50% rh to 73°F @ 50% rh. Additional sensor options shall be available as accessories.
 - j. The economizer controller shall also provide control of an accessory power exhaust unit function. Factory set at 70%, with a range of 0% to 100%.
 - k. The economizer shall maintain minimum airflow into the building during occupied period and provide design ventilation rate for full occupancy. A remote potentiometer may be used to override the damper set point.
 - I. Economizer controller shall accept a 2-10Vdc CO2 sensor input for IAQ/DCV control. In this mode, dampers shall modulate the outdoor-air damper to provide ventilation based on the sensor input.
 - m. Actuator shall be direct coupled to economizer gear. No linkage arms or control rods shall be acceptable.
 - n. Economizer controller shall provide indications when in free cooling mode, in the DCV mode, or the exhaust fan contact is closed.

2. Two-Position Damper

- a. Damper shall be a Two-Position Damper. Damper travel shall be from the full closed position to the field adjustable %open setpoint.
- b. Damper shall include adjustable damper travel from 25% to 100% (full open).
- c. Damper shall include single or dual blade, gear driven damper and actuator motor.
- d. Actuator shall be direct coupled to economizer gear. No linkage arms or control rods shall be acceptable.
- e. Damper will admit up to 100% outdoor air for applicable rooftop units.
- f. Damper shall close upon indoor (evaporator) fan shutoff and/or loss of power.
- g. The damper actuator shall plug into the rooftop unit's wiring harness plug. No hard wiring shall be required.
- h. Outside air hood shall include aluminum water entrainment filter.
- 3. Manual damper
 - a. Manual damper package shall consist of damper, air inlet screen, and rain hood which can be preset to admit up to 50% outdoor air for year round ventilation.
- 4. Head Pressure Control Package
 - a. Controller shall control coil head pressure by condenser-fan cycling.
- 5. Liquid Propane (LP) Conversion Kit
 - a. Package shall contain all the necessary hardware and instructions to convert a standard natural gas unit for use with liquefied propane, up to 2000 ft (610m) elevation.
- 6. Unit-Mounted, Non-Fused Disconnect Switch:
 - a. Switch shall be factory-installed, internally mounted.
 - b. National Electric Code (NEC) and UL approved non-fused switch shall provide unit power shutoff.
 - c. Shall be accessible from outside the unit.
 - d. Shall provide local shutdown and lockout capability.
 - e. Non-Powered convenience outlet.
 - f. Outlet shall be powered from a separate 115-120v power source.
 - g. A transformer shall not be included.
 - h. Outlet shall be field-installed and internally mounted with easily accessible 115-v female receptacle.

- i. Outlet shall include 15 amp GFI receptacle.
- i. Outlet shall be accessible from outside the unit.

7. Flue Discharge Deflector:

- a. Flue discharge deflector shall direct unit exhaust vertically instead of horizontally.
- b. Deflector shall be defined as a "natural draft" device by the National Fuel and Gas (NFG) code.

8. Thru-the-Base Connectors:

a. Kits shall provide connectors to permit gas and electrical connections to be brought to the unit through the unit basepan.

9. Propeller Power Exhaust:

- a. Power exhaust shall be used in conjunction with an integrated economizer.
- b. Independent modules for vertical or horizontal return configurations shall be available.
- c. Horizontal power exhaust is shall be mounted in return ductwork.
- d. Power exhaust shall be controlled by economizer controller operation. Exhaust fans shall be energized when dampers open past the 0-100% adjustable setpoint on the economizer control.

10. Roof Curbs (Vertical):

- a. Full perimeter roof curb with exhaust capability providing separate airstreams for energy recovery from the exhaust air without supply air contamination.
- b. Formed galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
- c. Permits installation and securing of ductwork to curb prior to mounting unit on the curb.

11. Universal Gas Conversion Kit:

a. Package shall contain all the necessary hardware and instructions to convert a standard natural gas unit to operate from 2000-7000 ft (610 to 2134m) elevation with natural gas or from 0-7000 ft. (90-2134m) elevation with liquified propane.

12. Outdoor Air Enthalpy Sensor:

a. The outdoor air enthalpy sensor shall be used to provide single enthalpy control. When used in conjunction with a return air enthalpy sensor, the unit will provide differential enthalpy control. The sensor allows the unit to determine if outside air is suitable for free cooling.

13. Return Air Enthalpy Sensor:

a. The return air enthalpy sensor shall be used in conjunction with an outdoor air enthalpy sensor to provide differential enthalpy control.

14. Indoor Air Quality (CO2) Sensor:

- a. Shall be able to provide demand ventilation indoor air quality (IAQ) control.
- b. The IAQ sensor shall be available in wall mount with LED display. The set point shall have adjustment capability.

15. Smoke detectors:

- a. Shall be a Four-Wire Controller and Detector.
- b. Shall be environmental compensated with differential sensing for reliable, stable, and drift-free sensitivity.
- c. Shall use magnet-activated test/reset sensor switches.
- d. Shall have tool-less connection terminal access.
- e. Shall have a recessed momentary switch for testing and resetting the detector.
- f. Controller shall include:
 - i. One set of normally open alarm initiation contacts for connection to an initiating device circuit on a fire alarm control panel
 - ii. Two Form-C auxiliary alarm relays for interface with rooftop unit or other equipment.
 - iii. One Form-C supervision (trouble) relay to control the operation of the Trouble LED on a remote test/reset station.
 - iv. Capable of direct connection to two individual detector modules.
 - v. Can be wired to up to 14 other duct smoke detectors for multiple fan shutdown applications.

26 29 23.12. Adjustable Frequency Drive

- 1. Unit shall be supplied with an electronic variable frequency drive for the supply air fan.
- 2. Drive shall be factory installed in an enclosed cabinet.
- 3. Drive shall meet UL Standard 95-5V.
- 4. The completed unit assembly shall be UL listed.
- 5. Drives are to be accessible through a tooled access hinged door assembly.
- 6. The unit manufacturer shall install all power and control wiring.
- 7. The supply air fan drive output shall be controlled by the factory installed main unit control system and drive status and operating speed shall be monitored and displayed at the main unit control panel.
- 8. Drive shall be programmed and factory run tested in the unit.

BEFORE PURCHASING THIS APPLIANCE, READ IMPORTANT ENERGY COST AND EFFICIENCY INFORMATION AVAILABLE FROM YOUR RETAILER.

GENERAL TERMS OF LIMITED WARRANTY*

Rheem will furnish a replacement for any part of this product which fails in normal use and service within the applicable periods stated, in accordance with the terms of the limited warranty.

Compressor

3 Phase, Commercial ApplicationsFive (5) Years Parts

3 Phase, Commercial Applications.....One (1) Year

Factory Standard Heat Exchanger

3 Phase, Commercial ApplicationsTen (10) Years Stainless Steel Heat Exchanger

3 Phase, Commercial ApplicationsTwenty (20) Years

^{*}For complete details of the Limited and Conditional Warranties, including applicable terms and conditions, contact your local contractor or the Manufacturer for a copy of the product warranty certificate.

In keeping with its policy of continuous progress and product improvement, Rheem reserves the right to make changes without notice.

