

Cla-Val Service Training Manual

"Simple solutions plus learning with a purpose"

Section 2

Pilot Controls	Section
Pressure Reducing	2-1
Reducing Pilot with	2-1
Remote Sensing Relief Pilot (55F & 55L) Differential Pilot	2-1 2-1
Altitude Control	2-1
Float Control	2-1
External Float Control	2-1
Modulating Float Control	2-1
Solenoid Control	2-1
Speed Control	2-1
	Pilot Controls Pressure Reducing Reducing Pilot with Remote Sensing Relief Pilot (55F & 55L) Differential Pilot Altitude Control Float Control External Float Control Modulating Float Control Solenoid Control Speed Control

Pilot Regulator Spring Color Chart

2-	1

<u>Model</u>	<u>Accessories</u>	<u>Section</u>
X42N-2	Strainer & Needle	2-2
X43	Y Strainer	2-2
X44A	Strainer and Orifice	2-2
X46	Strainer	2-2
X47A	Ejector	2-2
X52E	Orifice Plate Assembly	2-2
X58C	Restriction Assembly	2-2
X101	Position Indicator	2-2
X102	Flow Limiting Assembly	2-2
X103	Spring Lift	2-2
X105L	Limit Switch Assembly	2-2
X117C/D	Position Transmitter	2-2

CRD – Cla-Val Reducing Pilot

The CRD is a Normally Open pilot and will shift to close on rise in outlet pressure. The CRD pilot is used for most pressure reducing applications.

- MODEL - CRD Pressure Reducing Control

SYMPTOM	PROBABLE CAUSE	REMEDY
	No spring compression	Tighten adjusting screw
Fails to open	Damaged spring	Disassemble and replace
pressure lowers	Spring guide (8) is not in place	Assemble properly
	Yoke dragging on inlet nozzle	Disassemble and reassemble properly (refer to Reassembly)
	Spring compressed solid	Back off adjusting screw
Fails to close	Mechanical obstruction	Disassemble and reassemble properly (refer to Reassembly)
pressure rises	Worn disc	Disassemble remove and replace disc retainer assembly
	Yoke dragging on inlet nozzle	Disassemble and reassemble properly (refer to Reassembly)
Leakage from	Damaged diaphragm	Disassemble and replace
cover vent hole	Loose diaphragm nut	Remove cover and tighten nut

DESCRIPTION

The Cla-Val Model CRD Pressure Reducing Control automatically reduces a higher inlet pressure to a lower outlet pressure. It is a direct acting, spring loaded, diaphragm type control that operates hydraulically or pneumatically. It may be used as a self-contained valve or as a pilot control for a Cla-Val main valve. It will hold a constant downstream pressure within very close pressure limits.

OPERATION

The CRD Pressure Reducing Control is normally held open by the force of the compression spring above the diaphragm; and delivery pressure acts on the underside of the diaphragm. Flow through the valve responds to changes in downstream demand to maintain a pressure.

INSTALLATION

The CRD Pressure Reducing Control may be installed in any position. There is one inlet port and two outlets, for either straight or angle installation. The second outlet port can be used for a gage connection. A flow arrow is marked on the body casting.

ADJUSTMENT PROCEDURE

The CRD Pressure Reducing Control can be adjusted to provide a delivery pressure range as specified on the nameplate.

Pressure adjustment is made by turning the adjustment screw to vary the spring pressure on the diaphragm. The greater the compression on the spring the higher the pressure setting.

- 1. Turn the adjustment screw in (clockwise) to increase delivery pressure.
- 2. Turn the adjustment screw out (counter-clockwise) to
- decrease the delivery pressure.

3. When pressure adjustment is completed tighten jam nut on

- adjusting screw and replace protective cap.
- 4. When this control is used, as a pilot control on a Cla-Val main valve, the adjustment should be made
- under flowing conditions. The flow rate is not critical.
- but generally should be somewhat lower than normal

in order to provide an inlet pressure several psi higher than the desired setting

The approximate minir	num flow rates	s given in the	e table are	for the	main	valve
on which the CRD is ir	stalled.					

Valve Size	1 1/4" -3"	4"-8"	10"-16"	
Minimum Flow GPM	15-30	50-200	300-650	

MAINTENANCE

Disassembly

To disassemble follow the sequence of the item numbers assigned to parts in the sectional illustration.

Reassembly

Reassembly is the reverse of disassembly. <u>Caution</u>: must be taken to avoid having the yoke (17) drag on the inlet nozzle of the body (18). Follow this procedure:

- 1. Place yoke (17) in body and screw the disc retainer assembly (16) until it bottoms.
- 2. Install gasket (14) and spring (19) for 2-30 and 2-6.5 psi

range onto plug (13) and fasten into body. Disc retainer must enter guide hole in plug as it is assembled. Screw the plug in by hand. Use wrench to tighten only.

- 3. Place diaphragm (12) diaphragm washer (11) and belleville washer (20) on yoke. Screw on hex nut (10).
- 4. Hold the diaphragm so that the screw holes in the diaphragm and body align. Tighten diaphragm nut with a wrench. At the final tightening release the diaphragm and permit it to rotate 5° to 10°. The diaphragm holes should now be properly aligned with the body holes.

To check for proper alignment proceed as follows:

Rotate diaphragm clockwise and counterclockwise as far as possible. Diaphragm screw holes should rotate equal distance on either side of body screw holes $\pm 1/8$ ".

Repeat assembly procedure until diaphragm and yoke are properly aligned. There must be no contact between yoke and body nozzle during its normal movement. To simulate this movement hold body and diaphragm holes aligned. Move yoke to open and closed positions. There must be no evidence of contact or dragging.

- 5. Install spring (9) with spring guide (8).
- 6. Install cover (5), adjusting screw (2) and nut (3), then cap (1).

CLA-VAL P.O. Box 1325 • Newport Beach, CA 92659-0325 • Phone: 949-722-4800 • Fax: 949-548-5441 • E-mail: davel@da-val.com • Website da-val.com • Website da-val.com • Website da-val.com • N-CRD (R-5/05)

PARTS LIST

Pressure Reducing Control

Body and Disc Retainer Detail for Low Pressure Control

*SUGGESTED REPAIR PARTS

Item	Description	Material	Part Number	List Price
1	Сар	PL	67628J	
2	Adjusting Screw	BRS	7188201D	
3	Jam Nut (3/8-16)	SS	6780106J	
4*	Machine Screw (Fil.Hd.) 8 Req'd	303	6757821B	
5	Cover	BRS	C2544K	
6	Nameplate Screw	SS	67999D	
7	Nameplate	BRS	C0022001G	
8	Spring Guide	302	71881H	
9	Spring (15-75 psi)	CHR/VAN	71884B	
	Spring (2 - 6.5 psi)	SS	82575C	
	Spring (2 - 30 psi)	SS	81594E	
	Spring (20 - 105 psi)	CHR/VAN	20561901H	
	Spring (30 - 300 psi)	CHR/VAN	71885J	
10	Hex Nut	303	71883D	
11	Diaphragm Washer	302	71891G	
12	Diaphragm	NBR	C6936D	
13	Plug, Body	BRS	V5653A	
14*	Gasket	Fiber	40174F	
15	Plug	BRS	6766003F	
16*	Disc Retainer Assy. (15 - 75 psi)	BZ/Rub	C5256H	
	Disc Retainer Assy. (2 - 30 psi)	BZ/Rub	C5255K	
	Disc Retainer Assy. (20 - 105 psi)	BZ/Rub	20561901H	
	Disc Retainer Assy. (30 - 300 psi)	BZ/Rub	C5256H	
17	Yoke	VBZ	V6951H	
18	Body & 1/4" Seat Assy	BR/SS	8339702G	
19*	Bucking Spring (2 - 30 psi)	302	V0558G	
20	Belleville Washer	STL	7055007E	
*	Repair Kit (No Bucking Spring)	Buna [®] -N	9170003K	
*	Repair Kit (with Bucking Spring)	Buna [®] -N	9170001D	

Size	Stock	Adjustm	ent Range
(inch)	Number	psi	Ft of Water
3/8	71943-07A	2 - 6.5	4.5 - 15
3/8	71943-08J	2 - 30	4.5 - 69
3/8	71943-03K	15 - 75	35 - 173
3/8	71943-11C	20 - 105	46 - 242
3/8	71943-04H	30 - 300	69 - 692
Factory Set Pressure			
Fa	ctory Set Pre	ssure	PSI per Turn
Fa	ctory Set Pres 2 - 6.5 set @	ssure 2 3.5 psi	PSI per Turn .61
Fa	ctory Set Pre 2 - 6.5 set @ 2 - 30 set @	ssure 2 3.5 psi 2 10 psi	PSI per Turn .61 3.0
Fa	ctory Set Pre 2 - 6.5 set @ 2 - 30 set @ 15 - 75 set @	ssure 3.5 psi 10 psi 2 20 psi	PSI per Turn .61 3.0 9.0
Fa	ctory Set Pres 2 - 6.5 set @ 2 - 30 set @ 15 - 75 set @ 20 - 105 set	ssure 3.5 psi 10 psi 20 psi 20 psi 20 psi	PSI per Turn .61 3.0 9.0 12.0
Fa	ctory Set Pre- 2 - 6.5 set @ 2 - 30 set @ 15 - 75 set 20 - 105 set 30 - 300 set	ssure 3.5 psi 10 psi 20 psi 60 psi 60 psi	PSI per Turn .61 3.0 9.0 12.0 27.0

When ordering parts specify:

- · All nameplate data
- Item Description
- Item number

CLA-VAL P.O. Box 1325 • Newport Beach, CA 92659-0325 • Phone: 949-722-4600 • Fax: 949-548-5441 • E-mail: daval@da-val.com • Website da-val.com *Copyright Cla-Val 2006 Printed in USA Specificatoris subject to change without notice. PL-CRD (B-12/06) PL-CRD (R-12/06)

Pilot Controls

CRA – Cla-Val Reducing Pilot with a remote sensing port

The CRA is similar to a CRD but it also has an extra feature; it has a remote sense port. The CRA is a Normally Open pilot and will shift to close on rise in pressure. The CRA pilot is used for pressure reducing applications where a remote pressure needs to be sensed.

2 1

INSTALLATION / OPERATION / MAINTENANCE

-MODEL - CRA REMOTE SENSING TYPE Pressure Reducing Control

DESCRIPTION

The CRA Pressure Reducing Control automatically reduces a higher inlet pressure to a lower outlet pressure. It is a direct acting, spring loaded, diaphragm type valve that operates hydraulically or pneumatically and is designed to sense pressure from a remote point. It may be used as a self-contained valve or as a pilot control for a Cla-Val main valve. It will hold a constant downstream pressure at the remote sensing point within very close pressure limits.

OPERATION

The CRA Pressure Reducing Control is normally held open by the force of the compression spring above the diaphragm; delivery pressure acts on the underside of the diaphragm. Flow through the valve responds to changes in pressure at the the sensing point.

INSTALLATION

The CRA Pressure Reducing Control may be installed in any position. There is one inlet port and two outlets, for either straight or angle installation. The second outlet port can be used for a gauge connection. A flow arrow is marked on the body casting.

ADJUSTMENT PROCEDURE

The CRA Pressure Reducing Control can be adjusted to provide a delivery pressure range as specified on the nameplate.

Pressure adjustment is made by turning the adjustment screw to vary the spring pressure on the diaphragm. The greater the compression on the spring the higher the pressure setting.

1. Turn the adjustment screw in (clockwise) to increase delivery pressure.

2. Turn the adjustment screw out (counter-clockwise) to decrease the delivery pressure. When pressure adjustment is completed, tighten jam nut on adjustment screw and replace protective cap.

Flow rates are not critical during pressure setting. The approximate min imum flow rates given in the table are for the main valve on which the CRA is installed.

Valve Size	1 1/4"-3"	4"-8"	10"-16"
Minimum Flow GPM	15-30	50-200	300-650

MAINTENANCE

Disassembly

To disassemble follow the sequence of the item numbers assigned to parts in the sectional illustration.

Reassembly

Reassembly is the reverse of disassembly. Caution must be taken to avoid having the yoke (17) drag on the inlet nozzle of the body (18). Follow this procedure:

- 1. Place yoke (17) in body and screw the disc retainer assembly (16) until it bottoms.
- Install gasket (14) and spring (19) for 2-30 psi range onto plug (13) and screw into body. Disc retainer must enter guide hole in plug as it is assembled. Screw the plug in by hand. Use wrench to tighten only.
- Place gasket (25) and powertrol body (21) on yoke extension (17). Refer to sectional view for proper reassembly of (21) onto body (18).
- 4. Place lower diaphragm washer (24), "O" ring (22), diaphragm (12), upper diaphragm washer (11), and belleville washer (20) on yoke extension (17). Screw on diaphragm nut (10) finger tight.
- Place two machine screws (4) through (21) (25) and screw into body (18). Do not include the diaphragm (12) in this operation. This holds parts aligned for next step, and allows the diaphragm to move and be properly located during tightening of nut (10).
- 6. Hold the diaphragm so that screw holes in the diaphragm (12)

and powertrol body (21) align. Tighten diaphragm nut (10) with a wrench. At the final tightening release the diaphragm and permit it to rotate approximately 5° to 10° . The diaphragm holes should now be properly aligned with the body holes.

To check for proper alignment proceed as follows:

Rotate diaphragm clockwise and counterclockwise as far as possible. Diaphragm screw holes should rotate equal distance on either side of powertrol body screw holes $\pm 1/8$ ".

Repeat assembly procedure until diaphragm and yoke are properly aligned. There must be no contact between yoke and body nozzle during its normal opening and closing movement. To simulate this movement hold powertrol body and diaphragm holes aligned. Move yoke to open and closed positions. There must be no evidence of contact or dragging.

- 7. Remove machine screws per step 5.
- 8. Install spring (9) with spring guide (8) on top of spring.
- 9. Install cover (5) using eight machine screws (4).
- 10. Replace adjusting screw (2) and nut (3), then cap (1).

SYMPTOM	PROBABLE CAUSE	REMEDY
Fails to open when pressure lowers	No spring compression	Tighten adjusting screw
	Mineral buildup on yoke extension (17)	Disassemble and clean part, Replace "O" rings (22) and (23).
	Damaged spring	Disassemble and replace.
	Spring guide (8) is not in place	Disassemble and place guide (8) on top of spring (9).
	Yoke dragging on inlet nozzle	Disassembled and reassemble use procedure.
Fails to close when delivery pressure rises	Spring compressed	Back off adjusting screw
	Mineral deposit on yoke extension (17)	Disassemble and clean part. Replace "o" rings (22) and (23).
	Mechanical obstruction	Disassemble and remove obstruc- tion
	Worn disc	Disassemble, remove and replace disc retainer assem- bly. (16)
	Yoke dragging on inlet nozzle	Refer to para- graph 6
Leakage from cover vent hole	Damaged diaphragm (12)	Disassemble and replace
	Loose diaphragm nut (10)	Remove cover and tighten nut

CLA-VAL P.O. Box 1325 • Newport Beach, CA 92659-0325 • Phone: 949-722-4800 • Fax: 949-548-5441 • E-mail: clavel@cla-val.com • Website cla-val.com • Websit

PARTS LIST

REMOTE SENSING TYPE Pressure Reducing Control

When ordering parts specify:

- · All nameplate data
- Description
- Item number

SIZE (inch)	STOCK NUMBER	SEAT DIA	ADJ. RANGE (psi)
3/8	79744-03D	1/4	15-75
3/8	79744-04B	1/4	30-300
3/8	79744-06G	1/4	2-30
Factory set pressure:			PSI*per turr
15-75 set @ 20 psi			9.0
30-300 set @ 60 psi			27.0
2-	·30@ 10 psi		3.0

* Approximate - Final adjustment should be made with a pressure gauge and with flow.

ITEM DESCRIPTION PART NUMBER LIST PRICE MATERIAL PL 67628J Cap 1 2 Adjusting Screw BRS 7188201D 3 Jam Nut, 3/8-16 303 6780106J 4* Machine Screw 10-32 x 1-1/4"(Fil.Hd.) (8 required) SS 6757874A 5 Cover BRS C2544K 67999D 6 Nameplate Screw SS 7 Nameplate BRS C002201G 8 Spring Guide 302 71881H 9 Spring CHR VAN 71884B (15-75 psi) (30-300 psi) CHR VAN 71885B (2-30 psi) SS 81594E Hex Nut 5/16 - 18 303 71883D 10 Diaphragm Washer (upper) 11 302 71891G 12* Diaphragm NBR C6936D Plug, Body BRS V5653A 13 14* Gasket FIB 40174F Plug, 3/8 NPT BRS 6766003F 15 16* Disc Retainer Assy (15-75 psi & 30-300 psi) **BR/RUB** C5256H Disc Retainer Assy (2-30 psi) **BR/RUB** C5255K 17 VBZ C1799A Yoke Body & Seat Assy, Seat only 1/4" BS 8339701J 18 Bucking Spring (Required with 2-30 psi) 19* 302 VO5586 Belleville Washer STL 7055007E 20 21 Powertrol Body BRS C3388A 22* O-Ring NBR 00708J O-Ring NBR 23* 00746J Diaphragm Washer (lower) C1804J 24 BRS 25 Gasket NBC 8059401D Repair Kit (no Bucking Spring) Item 19 9170003K * Buna[®]-N Repair Kit (with Bucking Spring) Item 19 9170001D Buna[®]-N

* Suggested Repair Parts

CLA-VAL P.O. Box 1325 • Newport Beach, CA 92659-0325 • Phone: 949-722-4800 • Fax: 949-548-5441 • E-mail: clavel@cla-val.com • Website cla-val.com *Capyight Cla-Val 2005 Printed in USA Specifications subject to change without notice. PL-CRA (R-11/06)

Pilot Controls

CRL – Cla-Val Relief Pilot

The Cla-Val CRL pilot is a Normally Closed pilot that shifts to Open on rise in sensed pressure. The CRL is used for most pressure relief or pressure sustaining applications.

Normally Closed - Shifts to open on rise in sensed pressure

- MODEL - CRL **Pressure Relief Control**

DESCRIPTION

The CRL Pressure Relief Control is a direct acting, spring loaded, diaphragm type relief valve. It may be used as a self-contained valve or as a pilot control for a Cla-Val Main valve. It opens and closes within very close pressure limits.

INSTALLATION

The CRL Pressure Relief Control may be installed in any position. The control body (7) has one inlet and one outlet port with a side pipe plug (24) at each port. These plugs are used for control connections or gauge applications. The inlet in the power unit body (6) is the sensing line port. A flow arrow is marked on the body casting.

OPERATION

The CRL Pressure Relief Control is normally held closed by the force of the compression spring above the diaphragm; control pressure is applied under the diaphragm.

When the controlling pressure exceeds the spring setting, the disc is lifted off its seat, permitting flow through the control.

When controlling pressure drops below spring setting, the spring returns the control to its normally closed position.

ADJUSTMENT PROCEDURE

The CRL Pressure Relief Control can be adjusted to provide a relief setting at any point within the range found on the nameplate.

Pressure adjustment is made by turning the adjustment screw (9) to vary the spring pressure on the diaphragm. Turning the adjustment screw clockwise increases the pressure required to open the valve. Counterclockwise decreases the pressure required to open the valve.

When pressure adjustments are complete the jam nut (10) should be tightened and the protective cap (1) replaced. If there is a problem of tampering, lock wire holes have been provided in cap and cover. Wire the cap to cover and secure with lead seal.

DISASSEMBLY

The CRL Pressure Relief Control does not need to be removed from the line for disassembly. Make sure that pressure shut down is accompanied prior to disassembly. If the CRL is removed from the line for disassembly be sure to use a soft jawed vise to hold body during work.

Refer to Parts List Drawing for Item Numbers.

- Remove cap (1), loosen jam nut (10) and turn adjusting 1. screw counterclockwise until spring tension is relieved.
- 2. Remove the eight screws (4) holding the cover (3) and powerunit body (6). Hold the cover and powerunit together and place on a suitable work surface. See NOTE under REASSEMBLY.
- 3. Remove the cover (3) from powerunit body (6). The spring (12) and two spring guides (11).
- 4 Remove nut (13) from stem (19) and slide off the belleville washer (14), the upper diaphragm washer (15) and the diaphragm (16).
- 5 Pull the stem (19) with the disc retainer assembly (21) through the bottom of powerunit. The lower diaphragm washer (17) will slide off of stem top.
- Remove jam nut (23) and disc retainer assembly (21) from stem. 6. Use soft jawed pliers or vise to hold stem. The polished surface of stem must not be scored or scratched.
- 7. The seat (22) need not be removed unless it is damaged. If removal is necessary use proper size socket wrench and turn counterclockwise. Note: Some models have an integral seat in the body (7).

INSPECTION

Inspect all parts for damage, or evidence of cross threading. Check diaphragm and disc retainer assembly for tears, abrasions or other da mage. Check all metal parts for damage, corrosion or excessive wear. REPAIR AND REPLACEMENT

Minor nicks and scratches may be polished out using 400 grit wet or dry

sandpaper fine emery or crocus cloth. Replace all O-rings and any damaged parts

When ordering replacement parts, be sure to specify parts list item number and all nameplate data.

REASSEMBLY

In general, reassembly is the reverse of disassembly. However, the following steps should be observed:

- 1. Lubricate the O-Ring (18) with a small amount of a good grade of waterproof grease, (Dow Corning 44 medium grade or equal). Use grease sparingly and install O-ring in powerunit body (6).
- 2. Install stem (19) in powerunit body (6). Use a rotating motion with minimum pressure to let stem pass through O-ring.

Do Not Cut O-Bing

- 3. Install O-ring (5) at top of stem (19). Place lower diaphragm washer (17) on the stem with the serrated side up. Position diaphragm (16), upper diaphragm washer (15), with serration down, and belleville washer (14) with concave side down.
- 4. Position powerunit body (6) as shown on parts list drawing (top view).
- 5. Continue reassembly as outlined in disassembly steps 1 through 3.

Note: Item (4) Screw will have a quantity of 8 for the 0-75 and 20-200psi design and a quantity of 4 for the 100-300psi design. Item (25) Screw is used on the 100-300psi design only. Install item (25), before item (4) for preload of item (12) spring.

SYMPTOM	PROBABLE CAUSE	REMEDY
Fails to open.	Controlling pressure too low.	Back off adjusting screw until valve opens.
Fails to open with spring compression removed.	Mechanical obstruc- tion, corrosion, scale build-up on stem.	Disassemble, locate,and remove obstruction, scale.
Leakage from cover vent hole when con- trolling pressure is applied.	Diaphragm Damage	Disassembly replace damaged diaphragm.
	Loose diaphragm assembly.	Tighten upper diaphragm washer.
Fails to close.	No spring compres- sion.	Re-set pressure adjustment.
Fails to close with spring compressed.	Mechanical obstruc- tion.	Disassemble, locate and remove obstruction.

CIA-VAL P.O. Box1325 • Newport Beach, CA 92659-0325 • Phone: 949-722-4800 • Fax: 949-548-5441 • E-mail: daval@cla-val.com • Website da-val.com • Website da-

PARTS LIST

CRL

1/2" & 3/4" PRESSURE RELIEF CONTROL

ADJUSTING SO	
Alusting Scraw	
13 11 12 12 12 12 12 12 12 12 12 12 12 12	
INLET 0 TO T5 AND 20 TO 200 PSI DESIG	ŝŇ

 \sim

	SPRING	PART		
SIZE	RANGE	NUMBER		
1/2"	0-75 PSI	79222-01E		
1/2"	20-200 PSI	79222-02C		
1/2"	100-300 PSI	82809-01D		
3/4"	0-75 PSI	79229-01K		
3/4"	20-200 PSI	79229-02H		
3/4"	100-300 PSI	86005-01E		
For 100-450 PSI Contact Factory				

CRL RANGE PSI	APPROX. INCREASE FOR EACH CLOCK- WISE TURN OF ADJUSTING SCREW
0 to 75	8.5 PSI
20 to 200	28.0 PSI

When ordering parts please specify:

1. All Nameplate Data

2. Item Part Number

3. Item Description

Item	Description	Material	Part Number	Part Number	Part Number
			0-75	20-200	100-300
1	Сар	Plastic	67628J	67628J	1257601D
1A	Cap 100 to 300 psi Design	Plastic	1257601D	1257601D	1257601D
2	Nameplate	Brass			
3	Cover	Bronze	C2544K	C2544K	44587E
4*	Screw Fil.Hd.10-32 x 1.88	303 SS	6757867E	6757867E	6757867E
5*	0-Ring	Rubber	00902H	00902H	00902H
6	Body, Powerunit	Bronze	7920504D	7920504D	7920504D
7	1/2" Body	Bronze	C7928K	C7928K	C7928K
	3/4" Body	Bronze	C9083B	C9083B	C9083B
8*	0-Ring, Seat	Rubber	00718H	00718H	00718H
9	Screw, Adjusting	Brass	7188201D	7188201D	7188201D
10	Nut Hex (Locking)	303 SS	6780106J	6780106J	6780106J
11	Guide, Spring	303 SS	71881H	71881H	1630301J
12	Spring,	CHR/VAN	71884B	71885J	1630201A
13	Nut, Stem, Upper	Bronze	73034B	73034B	73034B
14	Washer, Belleville	Steel	7055007E	7055007E	7055007E
15	Washer, Diaphragm (upper)	303 SS	71891G	71891G	71891G
16*	Diaphragm	Rubber	C1505B	C1505B	C1505B
17	Washer, Diaphragm (lower)	303 SS	45871B	45871B	45871B
18*	0-Ring, Stem	Rubber	00746J	00746J	00746J
19	Stem	303 SS	8982401F	8982401F	8982401F
20*	0-Ring, Body	Rubber	00767E	00767E	00767E
21*	Retainer Assembly, Disc	303 SS	C8964D	C8964D	C8964D
22	Seat	303 SS	62187A	62187A	62187A
23	Nut, hex, Stem, Lower	Bronze	6779806G	6779806G	6779806G
24	Pipe Plug	Bronze	6784701C	6784701C	6784701C
25*	Screw Fil.Hd, 10-32 x 2.25 (Qty 4 on 100-300 psi)	303 SS	6757867E	6757867E	6757867E
	FACTORY SET POINT		50 PSI	60 PSI	100 PSI
	REPAIR KIT*		9170007A	9170007A	9170007A

CLA-VAL P.O. Box 1325 • Newport Beach, CA 92659-0325 • Phone: 949-722-4800 • Fax: 949-548-5441 • E-mail: daval@da-val.com • Website da-val.com *Capylight Cla-Val 2005 Printed in USA Specifications subject to driving without notice. PL-CRL (R-12/05) PL-CRL (R-12/05)

Pilot Controls

55F - Cla-Val Relief Pilot with external mounted sense line

The Cla-Val 55F pilot is a Normally Closed pilot that shifts to Open on rise in sensed pressure. It is like the CRL but has an extra feature; sense tubing is connected from the inlet of the pilot to the sensing port of the pilot. The 55F is often used as a stand-alone direct acting pressure relief valve.

Normally Closed - Shifts to open on rise in sensed pressure

Typical Applications

Fire Protection System Service Using the Model 55L in a fire protection system or other closed type system, prevents pressure build-up whenever line pressure exceeds the setting of the spring. The valve will relieve excess pressure to atmosphere preventing damage to the distribution network.

-MODELS- CRL & 55F

Pressure Relief Valves

- Direct Acting Precise Pressure Control
- Positive Dependable Opening
- Drip Tight Closure
- No Packing Glands or Stuffing Boxes
- Sensitive to Small Pressure Variations

The Cla-Val Model CRL and 55F Pressure Relief Valves are direct-acting, spring loaded, diaphragm type relief valves. Often used as pilot controls for Cla-Val Hytrol valves, they can also be used as self-contained pressure relief valves. These valves may be installed in any position and open and close within very close pressure limits.

The Model CRL and 55F are normally held closed by the force of the compression spring above the diaphragm. Control pressure is applied under the diaphragm. When the controlling pressure exceeds the spring setting, the disc is lifted off its seat, permitting flow through the control. When control pressure drops below the spring setting, the spring forces the control back to its normally closed position. The controlling pressure is applied to the chamber beneath the diaphragm through an external tube on the Model 55F and a sensing port on the CRL.

Pressure adjustment is simply a matter of turning the adjusting screw to vary the spring pressure on the diaphragm. The CRL & 55F are available in three pressure ranges: 0 to 75 psi, 20 to 200 psi, and 100 to 300 psi. To prevent tampering, the adjustment cap can be wire sealed by using the lock wire holes provided in the cap and cover.

Note: Also Available in Seawater Service Material

Dimensions (In Inches) 55F Model

Pressure Relief Valve

• UL Listed

- Factory Mutual Approved
- Direct Acting Precise Pressure Control
- Positive Dependable Opening
- Drip Tight Closure
- No Packing Glands or Stuffing Boxes
- Sensitive to Small Pressure Variations

The Cla-Val Model 55L (**UL Listed FM approved**) Pressure Relief Valve is a direct-acting, spring loaded, diaphragm type relief valve. The valve may be installed in any position and will open and close within very close pressure limits.

The Model 55L is normally held closed by the force of the compression spring above the diaphragm. When the controlling pressure applied under the diaphragm exceeds the spring setting, the disc is lifted off its seat, permitting flow through the control. When control pressure drops below the spring setting, the spring forces the control back to its normally closed position. The controlling pressure is applied to the chamber beneath the diaphragm through an external tube on the 55L.

Pressure adjustment is simply a matter of turning the adjusting screw to vary the spring load on the diaphragm. The 55L is available in two pressure ranges; 0 to 75 psi, 20 to 200 psi. To prevent tampering, the adjustment cap can be wire sealed by using the lock wire holes provided in the cap and cover.

Note: Also Available in Seawater Service Material

Typical Applications

Fire Protection System Service Using the Model 55L in a fire protection system or other closed type system, prevents pressure build-up whenever line pressure exceeds the setting of the spring. The valve will relieve excess pressure to atmosphere preventing damage to the distribution network.

Specifications

Size	1/2" & 3/4" Threaded
Temperature Range	Water, Air: to 180°F Max.
Materials	
Body & Cover:	Cast Bronze ASTM B62
	Cast Aluminum 356-T6 Stainless Steel ASTM A743C7-167A
Trim:	Brass & Stainless Steel 303
Rubber:	Buna-N [®] Synthetic Rubber

CRL & 55F Range PSI	Approximate Increase For Each Clockwise Turn Of Adjusting Screw
0 to 75	8.5 psi
20 to 200	28.0 psi
100 to 300	18.0 psi

CRL Basic Valve Dimensions (In Inches)

Flow Loss Chart (Full Open Valve)

Valve	Cv	Flow of Water - gpm				
Size	Factor	5	10	15	20	30
1/2"	6	0.7	2.7	6	11	
3/4"	8.5	0.3	1.4	3.1	5.5	

OPTIONAL X140 SECURITY CAP

- Controlled Security for Pilot Control Adjustment
- Long Life Stainless Steel Construction
- Tamper-Resistant Design
- X140 Customer Supplied Padlock
- X140-1 Key and Six Pin Cylinder Lock Supplied

Note: See E-X140 Locking Security Cap

When Ordering, Please Specify

Pilot Controls

CDHS-18 Differential Control Valve

is a normally open, spring loaded, diaphragm type valve that operates hydraulically and is designed to close on a rising differential pressure. When used as a pilot control with Cla-Val Valves, it acts as a flow limiting control.

INSTALLATION / OPERATION / MAINTENANCE

-MODEL-CDHS-18 3/8" Differential Control

DESCRIPTION

The Cla-Val CDHS-18 Differential Control Valve is a normally open, spring loaded, diaphragm type valve that operates hydraulically and is designed to close on a rising differential pressure. When used as a pilot control with Cla-Val Valves, it acts as a flow limiting control.

INSTALLATION

The Differential Control may be installed in any position. There is one in I et port and two outlet ports in the body for either straight or angle installation. The outlet port senses the high pressure or inlet to the differential producing device. One of the outlet ports can be used for a gauge connection. The port above the diaphragm (located in the control cover) is used to sense the low pressure or outlet side of the differential producing device. A flow arrow is marked on the body casting.

OPERATION

The Differential Control is normally held open by the compression spring and the sensing pressure above the diaphragm. When the rate of flow through the main valve increases, the sensing pressure above the diaphragm of the control decreases and the higher pressure at the outlet port closes the control; which, in turn, closes the main valve. When the rate of flow through the main valve decreases, the sensing pressure above the diaphragm increases. This opens the control and in turn opens the main valve. This action causes the main valve to modulate, limiting the flow rate to the setting of the control.

ADJUSTMENT

The Differential Control Valve can be adjusted to limit the rate of flow as specified on the data plate. Rate of flow adjustment is made by turning the adjustment screw to vary the spring pressure on the diaphragm. The greater the compression on the spring the higher the flow rate.

- 1. Turn the adjustment screw in (clockwise) to increase flow rate.
- 2. Turn the adjustment screw out (counterclockwise) to decrease flow rate.

DISASSEMBLY

The Differential Control Valve should be removed from the Hytrol Valve assembly. Make sure that pressure shutdown is accomplished prior to disconnecting assembly. During disassembly inspect all threads for damage or evidence of cross-threading.

NOTE: A bench vice equipped with soft brass jaws should be used to hold the valve body during disassembly and reassembly. DO NOT tighten vice jaws more than enough to hold unit firmly. Excessive pressure may spring or crack casting

- 1. Remove adjusting screw cap (16).
- Loosen lock nut on adjusting stem assembly (9) and turn 2 adjusting screw counterclockwise to relieve tension on spring.
- Remove bottom plug (8) and gasket (6). 3
- 4 Remove disc retainer assembly (5) and inspect sealing surface for damage or wear. Replace if necessary.
- 5 Remove 8 screws (12) and carefully lift off cover (2) spring guide (10) and spring (13) can now be removed.
- 6 Remove diaphragm assembly.
- Remove diaphragm nut (7) and diaphragm washer (4). 7.
- 8. Remove diaphragm (3), inspect for damage and replace if necessary.
- Inspect all parts for damage, corrosion, wear, foreign particles, and 9. cleanliness.
- 10. Repair minor nicks and scratches, these may be polished out using a fine grade of emery or crocus cloth.

REASSEMBLY

Prior to reassembly replace all parts which are damaged or worn. When ordering replacement parts be sure to specify item, part number, and all nameplate data.

1. Place diaphragm (3) on top of yoke (11) place diaphragm

CLA-VAL P.O. Box 1325 • Newport Beach, CA 92659-0325 • Phone: 949-722-4600 • Fax: 949-546-5441 • E-mail: daval@da-val.com • Website da-val.com • CDHS-18 (R- 1/06)

washer (4) over diaphragm with rounded edges down or next to diaphragm. Screw on diaphragm nut (7) with the spring guide shoulder in up position. The nut is not tightened at this time. Align diaphragm flange holes with and folding diaphragm as

- shown. Tighten diaphragm nut, retaining alignment shown. Place yoke assembly in body (1) and screw the disc retainer 3 assembly (5) in until it bottoms.
- 4. Screw in plug (8).

2.

NOTE: The yoke arms can be viewed through the 3/8" NPT high pressure sensing outlet. There should be even spacing between the yoke arms and the 3/8' NPT inlet boss seat assembly. There must be no drag or friction between these parts. If there is drag, repeat step 2.

- 5. Align diaphragm flange holes with the body holes and position spring and spring guide (13) (10).
- Replace cover (2) and secure with 8 screws (12).
- 7. Remove plug (8) and turn adjusting screw clockwise until the disc retainer assembly moves down.
- 8. Replace gasket (6) and plug (8).
- 9. Replace cap (16).

DIAPHRAGM HOLE ALIGNMEN T

SERVICE SUGGESTIONS

SYMPTOM	PROBABLE CAUSE	REMEDY	
FAILS TO OPEN	CONTROLLING DIFFERENTIAL NOT CHANGING	CHECK WITH GAUGE OR MANOMETERS	
	DIAPHRAGM ASSEMBLY STUCK CLOSED	DISASSEMBLE AND FREE	
	NO SPRING COMPRESSION	SCREW IN ADJUSTING STEM	
	FOREIGN OBJECT UNDER DISC RETAINER	DISASSEMBLE AND REMOVE	
FAILS TO CLOSE	INSUFFICIENT CONTROLLING DIFFERENTIAL	INCREASE DIFFERENTIAL	
	FOREIGN OBJECT UNDER DISC	DISASSEMBLE AND REMOVE	
	DISPHRAGM ASSEMBLY STUCK	DISASSEMBLE AND FREE	
	Damaged diaphragm	DISASSEMBLE AND REPLACE	
	SPRING COMPRESSED SOLID	BACK OFF ADJUSTING STEM	

PARTS LIST

(12)

3/8" Differential Control

CLA-VA

	-	-		
STAINLESS TRIM				
BODY	Seat	Stock		
SIZE	SIZE	NUMBER		
3/8"	1/4	68017		
3/8"	1/4	69597*		
*Same as 68017 except cover at 90°				

Repair Pa	Part Number	
Standard Buna-N®		9170003K
High Temp.	Viton®	9170009G

Ітем	DESCRIPTION	MATERIALS	PART NUMBER	LIST PRICE
1	Body & Seat Assembly	BFR/SS	83397-02G	
2	Cover	BRZ	C6657F	
* 3	Diaphragm	Buna N [®]	C6936JD	
4	Diaphragm Washer	BRS	C1803A	
* 5	Disc Retainer Assembly	BRS/RB	C5256H	
* 6	Gasket	FIB	40174F	
7	Diaphragm Nut	BRS	V5911C	
8	Plug, Body	BRZ	V5653A	
9	Adj. Stem Assembly	BZ/SS	C2002J	
10	Spring Guide	303	C1510B	
11	Yoke	BRZ	V6951H	
*12	Mach. Screw Fil. Hd. (8)	SS	67578-21B	
13	Spring	316SS	36773A	
14	Nameplate	BRS	C002201G	
15	Nameplate Screw	-	-	
16	Cap, Adj. Screw	PLS	12576-01D	

2 1

CLA-VAL P.O. Box 1325 • Newport Beach, CA 92959-0325 • Phone: 949-722-4800 • Fax: 949-548-5441 • E-mail: davel@da-val.com • Website da-val.com • Website da-

Pilot Controls

Section 2 - 1

CDS6 Altitude Pilot Control

is a spring-loaded, three-way, diaphragm-actuated control that provides high-level shutoff for Cla-Val 210 Series Altitude Control Valves. The CDS6 controls the high water level in a reservoir or tank without the need for floats or other devices.

INSTALLATION / OPERATION / MAINTENANCE

- MODEL - CDS6 ALTITUDE CONTROL

INTRODUCTION

The Cla-Val Model CDS6 Altitude Control is a spring loaded, 3-way, diaphragm-actuated control that provides high-level shut-off for Cla-Val Altitude Control Valves. It remotely senses pressure in the reservoir or tank. There are five altitude ranges available, 5 to 40 feet, 30 to 80 feet, 70 to 120 feet, 110 to 160 feet and 150 to 200 feet. The spring adjusting nut can be set to stop flow into the reservoir within these ranges.

INSTALLATION

The CDS6 Altitude Pilot Control is normally supplied mounted on a Cla-Val 210 Series Altitude Valve which should be installed in a horizontal run of pipe with the main valve cover up. Two line block valves are recommended for valve servicing. If the CDS6 is mounted from the main valve by a few feet, then it must be installed with adjustment springs up for ease of adjustment and servicing. Consult factory for recommendations.

After the Cla-Val 210 Series Altitude Valve is installed in the pipeline close to the reservoir, install the required remote sensing line from the CDS6 to the reservoir or tank. The sensing line allows the CDS6 to sense the static pressure head of the reservoir. The sensing line should not be installed in the flowing line between the valve and the reservoir or into turbulent flow area. These locations do not reflect the true static head of the reservoir.

The remote sensing line should be 3/4" or larger copper tubing or Schedule 40 PVC pipe. Galvanized pipe is not recommended. The sensing line should slope (minimum 2 degrees) upward from the CDS6 toward the reservoir to self -purge air out of the line. The sensing line should have no high points to entrap air. A shutoff valve at the reservoir connection is recommended. For above ground reservoirs, the connecting point for the sensing line should be a minimum of 12" to 18" above reservoir bottom (if filling from bottom) or at fill pipe connection (if filling from side). Minimum high-level set-point adjustment is approximately five feet above the remote sensing point of connection.

CDS6 STOCK NUMBER 2" SIZE	CDS6 STOCK NUMBER 2 1/2" SIZE & LARGER	ALTITUDE RANGE (FT H ₂ 0)	NUMBER OF SPRINGS	PSI CHANGE PER TURN	ALTITUDE CHANGE PER TURN
29330-06F	29330-01E	5 - 40	1	0.32	0.75
29330-07H	29330-02G	30 - 80	2	0.64	1.50
29330-08K	29330-03J	70 - 120	3	0.96	2.20
29330-09B	29330-04A	110 - 160	4	1.28	3.00
29330-10D	29330-05D	150 - 200	5	1.60	3.70

OPERATION, START-UP AND ADJUSTMENT

When the reservoir pressure (head) is lower than the set point of the spring on the CDS6 Altitude Control ports "1" and "D" are interconnected. This relieves the main valve cover pressure to atmosphere. Line pressure then opens the main valve to start filling the reservoir.

Reservoir sensing pressure increases as the liquid level rises in the reservoir. When the sensing pressure increases to the set point of the CDS6 control spring, the control shifts interconnecting port "S" and port "1". This pressurizes the main valve cover chamber and the main valve closes.

By turning the adjusting nut the liquid level shutoff point will be changed. Turn the adjusting nut clockwise to raise the liquid level shutoff point; counterclockwise to lower the liquid level shutoff point. Follow the general operation and start-up instructions regarding purging air from the valve control system.

MAINTENANCE AND INSPECTION

Under normal operating conditions the CDS6 Altitude Control will be trouble free. There is a visual check possible to determine if there is damage to the diaphragm in the control. The Lower Cover/Pilot (a) is vented to atmosphere by means of a small hole in the wall of the casting. If water is discharging out of this opening, the diaphragm should be inspected for damage.

One other visual check and indication of a problem is continuous discharge from the drain port ("D") at the bottom of the CDS6.

The volume of drained water will vary according to the valve size. Continuous draining after main valve has fully opened will indicate a problem. Refer to the service suggestions to check for probable causes and remedies.

DISASSEMBLY

During preventive maintenance or service to the CDS6 Altitude Control, all pressure to the control must be shutoff. The CK2 shutoff isolation valves in the main valve control lines should be closed before starting disassembly. Main valves 4" and larger have CK2 isolation valves installed, however main valves smaller than 4" normally do not, therefore requiring closure of shutoff valves in the main line at the valve inlet and outlet. The shutoff isolation valve or valve in the sensing line to the reservoir must also be closed.

WARNING: Failure to shutoff and release pressure prior to any disassembly can result in serious damage to equipment or injury to personnel.

- 1. Disconnect tubing at the CDS6 Altitude Control.
- 2. Remove two mounting caps screws and two lock washers.
- 3. Remove CDS6 Altitude Control from main valve to work bench or clean area. Parts must be kept clean.

DISASSEMBLY OF UPPER SPRING SECTION

- Unscrew adjusting nut (4) from upper stem (5).
 NOTE: Count the number of turns required to remove the nut (4), record this information for reference when reassembling. The CDS6 Altitude Control can then be approximately reset for the same reservoir liquid level shut-off point.
- 2. Remove the thrust washer (3), swivel retainer (2) and spring retainers if applicable.
- 3. Remove Spring(s) (6), bellows (7) and set-screw (8)
- 4. Remove twelve hex nuts (33), and twelve bolts (32), and set mounting bracket (29) aside.
 - **Note:** Assembly contains two (of twelve) longer bolts which are used for the mounting bracket.

- 5. Remove upper cover (13) from lower assembly, and push stem assembly through.
- Remove diaphragm washer nut (12), diaphragm nut washer (16) and diaphragm (14)
- 7. Separate upper stem from diaphragm washer by removing stem retaining pin. (11)
- 8. Inspect all parts for damage, wear and mineral deposits. Check O-ring (10) for wear, inspect and remove any deposit in O-ring area. Also inspect diaphragm for wear or cracks. Clean parts thoroughly and replace damaged parts as necessary. If, upon disassembly, sand and silt are found in the CDS6 Altitude Control, every effort must be made to eliminate this problem. Filters, or relocating the reservoir sensing line may be required if deposits are found in the sensing chamber of the control.

REASSEMBLY OF UPPER SPRING ASSEMBLY

- 1. Reassembly is in general, the reverse of disassembly. NOTE: A light coating of Dow Corning 33 grease, or equivalent, should be
- applied to CDS6 Altitude Control stems (5), before reassembly.
- 2. When replacing adjusting nut (4) tighten the same number of turns as referred to in **note** in paragraph (1) of "Disassembly Of Upper Spring Section".

DISASSEMBLY OF LOWER PILOT VALVE SECTION

- 1. Disassemble control per steps 1 through 5 in "Disassembly of upper section", to work on lower (pilot) cover (17)
- 2. Remove lower stem (21) spring (19) and retaining ring (18) as an assembly, inspect stem for damage.
- 3. Remove Poppet guide (28) and o-ring (27) from lower cover (17).
- 4. Remove Poppet (22-1) and poppet spring (26) and inspect poppet and disc for damage.
- 5. Remove Strainer screen (25)
- Remove seat (24), Note: be sure not to nick or ding exposed sealing surface. To prevent binding and damage, use a wood dowel to evenly tap out the seat from TOP of lower cover (area from which lower stem was removed).
- 7. Inspect all parts for damage, wear and mineral deposits. If there has been discharge from vent hole, remove o-ring (20) from lower cover (17) and poppet guide (28). Inspect o-rings for wear or damage and o-ring groove for material build-up. Clean and/or replace as necessary. Inspect seat (24) and disc poppet assembly (22) for wear or damage. If poppet and/or disc are damaged they must be replaced as an assembly (item 22). Otherwise clean and polish surfaces of moving parts with 600 wet/dry sandpaper. Also clean strainer screen (25) of any deposits

REASSEMBLY OF LOWER PILOT VALVE SECTION

- 1. Reassembly is in general, the reversal of disassembly. **Note**: A light coating of Dow Corning 33 grease, or equivalent should be applied to all o-rings and moving part surfaces (20,21,22-1 23 and 27).
- Lay lower cover (17) on its top (do not damage serrated surface), insert the seat (24) with o-ring (23) in lower (pilot) cover with finger. Use a wood dowel to push the seat in fully with hand pressure ONLY. Note: damage to the seat can compromise the sealing ability of the control, and careful efforts must be applied on reassembly of this component.
- 3. Insert strainer (25).
- Install poppet guide, o-ring, spring and poppet assembly. (See Note #1 for greasing)

- 5. Thread and securely fasten poppet guide assembly into lower cover (recommended 200-250 in/lbs.)
- Turnover lower cover, and assemble as an assembly lower stem (21) retainer (18) and spring (19) into lower cover, being careful not damage o-ring (20).

COMPLETING ASSEMBLY

- Reassembly of twelve nuts (33) and bolts (32) should be torqued to 200-250 in/lbs. Note: assembly contains two longer bolts (item 32) for the support bracket. These two bolts are to be assembled with bracket (29) on the two larger support flats located on the lower cover located 90 degrees from common/supply ports.
- 3. Install CDS6 Altitude Control assembly on main valve.
- 4. Replace tube lines and fittings exactly as removed.

SERVICE SUGGESTIONS

UPPER (SPRING) SECTION

SYMPTOM	PROBABLE CAUSE	REMEDY
Vent leaks in	Diaphragm (14) damaged	Replace diaphragm
lower cover (17)	Diaphragm nut (12) loose	Tighten nut (12)
	O-ring (20) damaged	Replace O-ring (20)
Leakage past stem	O-ring (10) damaged	Replace O-ring
stem (5)		
Stem (5) move-	*Sand or silt in sensing	Remove foreign matter
ment restricted	chamber above	from sensing chamber
or erratic	diaphragm	
	Sensing line clogged	Clean line
	Sensing line valve closed	Open valve fully
	Sensing line sagging or	Straighten and
	bent collecting sediment	support sensing line
		to reservoir
	Sensing line has high	Straighten sensing line.
	point trapping air in	Must slope upward
	the line	from altitude control
		to the reservoir

*NOTE: if this problem occurs, a sand trap should be installed in the sensing line, or the line moved to a point on the reservoir where sand or silt cannot enter this line.

SERVICE SUGGESTIONS

LOWER (PILOT VALVE) SECTION

SYMPTOM	PROBABLE CAUSE	REMEDY
Vent in lower cover (17) leaks	O-ring (20) worn or damaged. See Upper Spring Section service suggestion	Replace O-ring (20)
Flow from supply port to	Clogged strainer screen (25)	Remove screen and clean
valve cover port restricted	Silt packed in seat (24) and lower stem (21)	Clear area of blockage
Continuous drain leak. Main	Seat (24) damaged	Inspect and replace
valve closed	Disc in poppet assembly (22) damaged	Inspect and replace poppet assembly (22)
	Foreign object between disc and seat (24)	Remove object
	O-ring (20) in poppet guide (28) damaged	Replace O-ring
Continuous	Main valve	Service main
drain leak.	diaphragm worn	valve. Replace
Main valve open	or stem nut loose	diaphragm or tighten stem nut
Main valve open	or stem nut loose	diaphragm or tighten stem nut

CLA-VAL P.O. Box 1325 • Newport Beach, CA 92659-0325 • Phone: 949-722-4800 • Fax: 949-548-5441 • E-mail: davel@da-val.com • Website da-val.com • Website da-val.com • N-CDS6 (R-5/05) N-CDS6 (R-5/05)

CDS6 Improvements

April 2 2003

Recently, our Engineering Department redesigned a few internal parts of the CDS6 Pilot Control used on 210 Series Altitude Valves. These new parts improve its sensitivity at high differential pressures and allow it to work with inlet supply pressures up to 300 psi (previous maximum recommended pressure was 150 psi). The new control is identified as CDS6A and new part numbers are assigned to distinguish it from the original CDS6. Adjustment ranges remain the same.

New parts inside the CDS6A are a) stem seals, b) disc and poppet assembly, c) lower stem, d) lower cover, e) poppet guide, and f) poppet spring. The CDS6A uses new low-friction seals on the lower stem and the disc and poppet assembly. Also, the new stem and poppet have a special lowfriction nickel-Teflon coating and are dimensionally interchangeable with CDS6 parts. The new lower cover and poppet guide have larger internal dimensions for the new seals and are not interchangeable with CDS6 parts. Also, the poppet spring has a heavier load and is not interchangeable. All other parts remain the same.

All bills of material for top assemblies using the CDS6 have been changed to the new control. It will take some time for us to change assembly drawings and deplete existing parts before we begin using the CDS6A. We plan to finalize the change during first quarter of 2003.

A new CDS6A repair kit is p/n 20349401C and will not work with existing CDS6 controls. The repair kit will include instructions and tools to install new stem seals. When servicing existing CDS6 controls the current repair kit p/n 20119301A should be used.

A modification kit consisting of all new parts and instructions is p/n 20354801G. Field modification is recommended only for installations where it is determined to be necessary.

Range (ft)	size	p/n	size	p/n
5 - 40	2 _" & larger	20354701K	2" & smaller	20354706E
30 - 80	2 _" & larger	20354702J	2" & smaller	20354707D
70 - 120	2 _" & larger	20354703H	2" & smaller	20354708C
110 - 160	2 _" & larger	20354704G	2" & smaller	20354709B
150 - 200	2 _" & larger	20354705F	2" & smaller	20354710J

NEW CDS6A PARTS ARE ABOVE NUMBERED ITEMS.

A) All other parts are the same as current CDS6 parts.

B) Two new low-friction U-Seals, Item 1, will not fit into O-ring grooves of CDS6 lower cover and poppet guide. The machined groove dimensions are different between the O-ring version and the new U-seal version parts. New Lower Cover, Item 5, and Poppet Guide, Item 7, have proper dimensions for U-Seal.

C) Lower Stem, Item 2, and Poppet, Item 3, are dimensionally interchangeable with CDS6 parts that are now obsolete. These new parts have a special low-friction coating which may enhance CDS6 performance.

D) Poppet Spring, Item 6, has a heavier load rating and is not interchangeable with CDS6 poppet spring. Sensitivity will be greater than a 12" differential, if used in CDS6 controls.

CF1-C1

CF1-C1 Float Control

is a float-actuated multiport pilot control which provides non-modulating, two-position, on-off operation. It is used primarily to operate remotely located Cla-Val valves requiring three-way or four-way pilot valve operation for level control. Control can be remotely located.

2 1

CF1 Series CF1 Series Float Controls

Initial Adjustment CF1 Series Float Controls

Check installation to be sure that liquid surface is not subject to wind or currents, if so, a stilling well should be installed around the float and rod assembly. A short section of 8" pipe (PVC) mounted vertically in the tank around the float and rod is suggested.

1. See parts sheet (other side of this sheet) for proper assembly of the float rod, float, and stop collars and for threading into the Link Assembly of the CF1-C1.

2. Balance the Float Rod Assembly. This compensates for the buoyancy of the float rod in the water. Temporarily remove float by removing float rod and float from the link assembly. Remove float from float rod, reinstall rod assembly (leave stop collars on float rod) back into link assembly.

Adjust counterweight on rod to balance the weight of the float rod assembly less the float. Loosen setscrew on counterweight and move weight in or out round rod remains horizontal without shifting. Tighten setscrew. Check by pushing up or down on float rod assembly and seeing that entire assembly returns to balanced position. Replace float between the stop collars. The counterweight size changes as float rod is lengthened. Consult factory for more information.

3. Set Float High Level Shut-Off. Move float rod to "up" position. Adjust the upper stop collar on the float rod assembly approximately three inches above the desire high water level. Move float rod to "down" position. Adjust the lower stop collar on the float rod assembly approximately three inches below the desired low water level. Tighten collar set screws.

4. If the closing level is too high, allowing tank to overflow, then the top stop collar on the float rod should be lowered. If the opening level is too low, then the bottom stop collar should be raised.

If the counterweight has been properly adjusted the float will move freely on the float rod, without causing the pilot arm to raise or lower, until the float actually contacts one of the stop collars.

5. For reference: with a new control and supply pressure less than 40 psi the maximum level differential available will be: 18 to 20 inches with PVC float and rod assembly and 48 to 50 inches with Stainless Steel or Brass float and rod assembly.

Installation Data

The float control is mounted above the high water level in the tank. The valve is installed in the line leading to the tank and is connected to the float control pilot by tubing. (Min. 3/8" tubing) When line pressure is used to operate the valve, tubing connections are made from the float control pilot to the valve cover, and also to the inlet side of the valve. An X43 "Y" Strainer or X46 Flow Clean Strainer must be installed in the inlet side of the valve. The control may be installed at any elevation above the valve, providing that the flowing line pressure in psi is equal to, or greater

than, the vertical distance in feet between the valve and the float control. An independent source of air or water may be used to operate the valve. The pressure from this independent source must constantly be equal to or greater than pressure at the valve inlet. The independent source is connected to the float control pilot in place of the supply line connected to the inlet side of the valve. If the Model 100-01 under the control of the CF1-C1 is 8" or larger, auxiliary Hytrols may be required. Consult factory for details.

NOTE:

A stilling well (Min. 8" I.D.) must be provided around the float if the liquid surface is subject to turbulence, ripples or wind.

Note: We recommend protecting Float Control tubing and valve from freezing temperatures.

CF1-C1 Float Control

Optional Stainless Steel Float

CLA-VAL P.O. Box 1325 • Newport Beach, CA 92659-0325 • Phone: 949-722-4800 • Fax: 949-548-5441 • E-mail: davel@da-val.com • Website da-val.com *Capylight Cla-Val 2006 Printed in USA Specifications subject to change without notice. N- CF1-C1 (R-8/05)

CFC2 Float Control

is a float-actuated multiport pilot control which provides non-modulating, two-position, on-off operation. It is used primarily to operate remotely located Cla-Val Main Valves requiring three-way or four-way pilot valve operation.

CFC2

Float Control For Closed Tanks

Accurate Liquid Level Control

- Fully Hydraulic Operation
- Simple Design, Easy Maintenance
- No Lubrication Necessary

Dimensions (In Inches)

• No Gears, No Mechanical Linkage Between Valve and Control

The Cla-Val Model CFC2 Float Control is a float-actuated multiport pilot control which provides non-modulating, two-position, on-off operation. It is used primarily to operate remotely located Cla-Val Valves requiring three-way or four-way pilot valve operation. Designed for use in closed tanks, this control operates on a minimum level change of approximately 1". Maximum level change of 51/2" is needed for full capacity.

Note: We recommend protecting the control tubing and valve from freezing temperatures.

Control Piping Connections	1/8" NPT	
Reservoir Connections	1" NPT	
Pressure Rating	0-300 psi	7.00
Temperature Rating	Water: to 180°F.	Supply
Materials stainless steel	In contact with operating fluid: Brass, stainless steel, monel, with Buna-N® Seals Float chamber: Cast Iron Pilot valve housing: Bronze Materials in contact with operating fluid: Brass, Stainless Steel, Monel with Buna-N® Seals Float ball: Stainless Steel Float arm: Brass Other material available: Cast steel or aluminum chamber and pilot valve housing. All	Port 1 Port 2 1/8" NPT (Typ. 4 Places) Port 2 1/8" NPT (Typ. 4 Places)
Lovel Differential	Approximately 1" minimum required to	
	change pilot valve operation. 55/16" required to develop full capacity.	
Operating Fluids	Clean liquids or gases compatible with specified materials.	
Shipping Weight	12 Lbs.	

Specifications

Installation Data

The float control is mounted at the high water level in the tank. The remote Cla-Val valve is installed in the line leading to the tank and is connected to the float control pilot by tubing. (Min. 3^{8} " for valves 6" and smaller, 3^{4} " or larger for valves 8" or larger.)

When line pressure is used to operate the valve, tubing connections are made from the float control pilot to the valve cover, and also to the inlet side of the valve. An X46 Flow Clean Strainer must be installed in the inlet side of the valve. The control may be installed at any elevation above the valve, providing that the flowing line pressure in psi is equal to, or greater than, the

Phone:

Fax:

E-CFC2 (R-5/05)

905-563-4963

905-563-4040

eCCPYF8GHT CLA-VAL2005 Printed in USA Specifications subject to change without notice

vertical distance in feet between the valve and the float control.

An independent source of air or water may be used to operate the valve. The pressure from this independent source must constantly be equal to or greater than pressure at the valve inlet. The independent source is connected to the float control pilot in place of the supply line connected to the inlet side of the valve. If the Model 100-01 under the control of the CFC2 is 8" or larger, auxiliary Hytrols may be required. Consult factory for details.

Note: We recommend protecting the control tubing and valve from freezing temperatures.

41-21-643-15-50

Phone: 41-21-643-15-55

www.cla-val.com

Fax:

-MODEL - CFC2 Float Chamber Control

Description	Material
Float Ball	Stainless Steel
*Gasket	Neoprene
Cap Screws	Steel Cad.
3/8-16 x 7/8	Plated
Body	Iron
Float Arm	
Pipe Nipple	Bronze/Stainless Steel
1/4"x1/2" npr	

-Model - CFC2

Pilot & Housing Assembly For Float Chamber Control

PILOT & HOUSING ASSEMBLY (BRONZE W/STAINLESS STEEL)			
ITEM	DESCRIPTION MATERIAL		
1	Machine Screw, Rd. Hd.,	Brass	
	6/32 x 1", 6 Required		
*2	Distributor for C426-1	S.S.	
	Distributor for C-2035	S.S.	
	Distributor for C-2149-1	S.S.	
*3	Gasket	Buna-N®	
*4	Disc Assembly	S.S.	
		S.S.	
*5	Spring	S.S.	
6	Pin, Lock	S.S.	
7	Stem Assembly	Brass - S.S.	
*8	"O" Ring	Buna-N®	
9	Washer	Brass	
10	Washer, Thrust	Brass	
11	Arm, Float	Brass	
12	Housing	Bronze	

* Repair Kit Parts

CLA-VAL P.O. Box 1325 • Newport Beach, CA 92659-0325 • Phone: 949-722-4800 • Fax: 949-548-5441 • E-mail: clavel@cla-val.com • Website cla-val.com • Website cla-val.com • Capyright Cla-Val 2006 Printedin USA Specifications subject to change without notice. PL-CFC2 (R-5/05)

Technical Bulletin

CFC2-A1-3 Float Chamber Control CONVERSION

(also CFC2-A2-3 Float Chamber Control)

This control is obsolete and is replaced by the CFC2-C1 Float Chamber Control. The differences between these controls are few. Refer to E-CFC2-C1 data sheet.

A. The pilot housing assembly is now installed on the float chamber so that the distributor is on the right of the vertical centerline of the control. The word "top" is cast into the pilot housing flange. There is an "O" ring seal between the pilot housing and the float chamber instead of earlier flat gasket.

B. The disc and distributor are the same as those of the CF1-C1 Float Pilot Control.

C. The CFC2-C1 has 4 ports. "Supply" is found on the housing. "Port 1", "Port 2" and "Drain" are located and marked on the Distributor. Port 2 is for special applications and will have a pipe plug in it. "Supply" port on the distributor is not used and has an Allen socket plug in it.

1. When service is required for the CFC2-A1-3 (or CFC2-A2-3) Control, then conversion to CFC2-C1 is recommended.

2. For converting to the current design control, use Repair Parts Kit for the CFC2-C1 control. Order Kit P/N 2674701E (in standard materials). Also, use this kit for maintenance or servicing the CFC2-C1 control after conversion. This kit includes new disc, distributor, 'O' rings, gasket, spring and screws. Spare Parts Kit P/N 9696630E had only 'O' ring, gasket and spring and is obsolete and no longer available.

3. The new CFC2-C1 pilot housing flange seal is redesigned from a flat gasket to a groove for an 'O' ring seal with the chamber. This 'O' ring is in repair parts kit. The flat gasket is still available, order part number C3580C, it is also in the kit.

4. Be sure to install parts so that the pilot housing is mounted with the distributor located to the right of the vertical centerline of the control. Pilot tubing and connections will have to be relocated when converting.

5. The repair kit comes with a 1/8" hex-head pipe plug to be installed in pilot port 2. This will give the ON-OFF operation from Port 1 the same as the previous CFC2-A1. By removing this plug from Port 2 and installing in Port 1, the operation of the control becomes that of the previous CFC2-A2. By not installing the plug, the operation becomes that of the previous CFC2-C1.

Also, there is a 1/8" Allen socket pipe plug to be installed in the "S" supply port on the distributor. Once installed THIS PLUG SHOULD NOT BE REMOVED. Supply pressure is to be connected to the supply port on the pilot housing of the control.

Pilot Identification

CFM2 Modulating Float Control

is a precision-lapped, rotary-disc, plate-type valve directly operated by the movement of a float ball. It is designed to control a Cla-Val Hytrol Main valve to maintain level in liquid storage tanks.

— MODEL — CFM2 Modulating Float Control

DESCRIPTION

The Type CFM2 Float Control is a precision-lapped, rotary-disc, platetype valve directly operated by the movement of a float ball. It is designed to control a Cla-Val Hytrol Main valve to maintain level in liquid storage tanks.

OPERATION

Any change in the level of the storage tank is detected instantly by the ball of the Float Control mounted inside the tank. The float ball is attached to a lever arm which transmits a turning motion to the valve disc as the float rises and falls.

In the closed position, the holes in the valve disc do not meet with the holes in the distributor, and completely prevent all flow through the Float Control. In the half-open or modulating position, the holes in the valve disc only partially coincide with the holes in the distributor, permitting a restricted flow through the Float Control. In the open position, the holes in the valve disc line up completely with the holes in the distributor permitting full flow through the Float Control.

INSTALLATION

The Float Control can be installed to be either fully closed or fully open when float is in the "up" position. Normal applications require the Control to be installed so that it is in the closed position when the float ball is raised.

DISASSEMBLY

Follow the sequence of item numbers assigned to the parts in the cross-sectional illustration for recommended order of disassembly. Mark parts so they may be reassembled in their proper position.

CLEANING

Wash all parts with cleaning solvent, Federal specification P-S-661, or approved equivalent. Dry with compressed air, or a clean, lint-free cloth. Protect parts from damage and dust until reassembled.

INSPECTION

Inspect all threads for damage or evidence of cross-threading. Check float ball for crushing and punctures. Check spring for visible distortion, cracks and breaks. Inspect distributor and valve disc for clogged holes.

REPAIR AND REPLACEMENT

Replace O-Ring packing and distributor gasket each time valve is overhauled. Replace float ball if at all crushed or punctured. Minor nicks and scratches may be polished out using a fine grade of emery or crocus cloth.

Replace all parts which are defective, and any which create the slightest doubt that they may not afford completely satisfactory operation. Use inspections outlined above as a guide.

Lapping of disc and distributor in the field is not recommended because of the difficulties involved in getting perfectly flat surfaces. If repair is need on either of these parts, replace the control with a spare, and return defective unit to Cla-Val for repair.

REASSEMBLY

Replace valve disc in the position previously marked to obtain proper flow pattern through holes.

TEST PROCEDURE

Attach a source of pressure (air or water) to "inlet" port and check for tight sealing when float is "up".

ITEM	DESCRIPTION	QTY	PART NO.
1	FLOAT	1	
2	ARM EXTENSION NIPPLE	1	
3	LOCK PIN	1	
4	SCREW -RD HD MACHINE	6	
5	DISTRIBUTOR	1	
6	GASKET	1	
	DISC ASSEMBLY	1	
7	DISC	1	
8	SKIRT	1	
9	SPRING	1	
	STEM ASSEMBLY	1	
10	DRIVER	1	
11	STEM	1	
12	THRUST WASHER	1	
13	O-RING PACKING	1	
14	FLOAT ARM	1	
15	HOUSING	1	

CLA-VAL P.O. Box 1325 • Newport Beach, CA 92859-0325 • Phone: 949-722-4800 • Fax: 949-548-5441 • E-mail: clavel@cla-val.com • Website cla-val.com • Websit

CFM2 **Modulating Float Control**

[†]Permanently Joined Assembly

Housing

CLA-VAL P.O. Box 1325 • Newport Beach, CA 92659-0325 • Phone: 949-722-4800 • Fax: 949-548-5441 • E-mail: daval@da-val.com • Website da-val.com • Website da-val.com

114

Pilot Identification

CSM-11 Solenoid Control with Manual Operator

is a direct-acting solenoid valve for use in four-way, three-way, and interceptor service. It is a continuous duty type which assures positive and dependable operation over the entire pressure range.

Cla-Val can refurbish into new condition when needed.

2 1

60-11/660-11

Solenoid Control with Manual Operator

- Positive Operation Through Full Pressure Range
- Both Manual and Electrical Operation
- Coil is Protected Against Foreign Matter by Sealtight Gasket Cover
- Moving Parts of Solenoid are Cushioned
- Modular Pilot Assembly Provides for Easy Replacement and Minimum Down Time

The Cla-Val CSM-11 is a direct-acting solenoid valve for use in four-way, three-way, and interceptor service. It is a continuous duty type which assures positive and dependable operation over the entire pressure range. The valve is positioned to direct pressure into pre-determined flow patterns by means of the solenoid and connecting linkage. The valve is a rotary disc, plate type, lapped for drip tight operation. The control is designed for manual as well as electric operation.

Operation

The Cla-Val Co. CSM-11 Solenoid Control meets varied service requirements depending upon the flow pattern used. Catalog number SUFFIXES are used to designate specific flow patterns. Other variations are available on special order.

Purchase Specifications

The control shall include a continuous duty direct acting solenoid, and shall be designed for both manual and electrical operation. The valve shall be integral, of a rotary disc, plate type, and shall be actuated by the solenoid through a linkage. The control shall be similar in all respects to the CSM-11 Solenoid Control as manufactured by Cla-Val., Newport Beach, California.

When Ordering, Please Specify

- 1. Catalog No. CSM-11
- 2. Include suffix of desired type of service Four-way or Interceptor
- 3. Voltage and Hertz

Power Consumption

Volts	Amperes		Volts	Ampe	eres	Coil	
(DC)	Holding	Pull In	(AC 60 Hz)	Holding	Inrush	Resistance (ohms)	
24	.603	24	24	2.88	25.4	0.5	
28	.629	15.6	120	.575	5.1	14.1	
32	.500	18.6	208	.330	2.93	40	
48	.293	10.8	240	.288 2.54		56	
115	.122	4.42	440	.156 1.38		174	
125	.119	4.44	480	.143 1.27		233	
250	.072	2.45					
			Volts	Amperes		Coil	
			(AC 50 Hz)	Holding	Inrush	(ohms)	
		110	.48	4.6	15.7		
		220	.24	2.3	66		
			240	.22	2.1	88	

Service Specifications

Solenoid Enclosure	General Purpose, NEMA Type 3
Size (Fluid Connection)	1/4" NPT Supply Port and 1/8" NPT
	Connector Ports
Operating Media	Water, air, gas (compatible with materials)
Coil Insulation	Class A (molded)
Operating Pressure	300 psi maximum working pressure
Temperature	Water to 150° maximum
Materials	Bronze, Stainless Steel and Monel*
(Fluid Contacts)	Aluminum Body—Stainless Steel
	Trim
*Other materials available	oneult factory

Other materials available - consult factory.

CLA-VAL PO Box 1325 Newport Beach CA 92659-0325

Phone: 949-722-4800 • Fax: 949-548-5441 CLA-VAL CANADA

CLA-VAL EUROPE

4687 Christie Drive Beamsville, Ontario Canada LOR 184 Phone: 905-563-4963 905-563-4040 Fax: #CCPY PEGNT CLA-VAL2005 Printed in USA Specifications subject to change without notice

Chemin dés Mesanges 1 CH-1632 Romanel/ Lausanne, Switzerland Phone: 41-21-643-15-55 41-21-643-15-50 Fax:

www.cla-val.com

CSM-11 Solenoid Control

TEM DESCRIPTION		ITEM	DESCRIPTION		
1	Mounting Bracket	7	Solenoid Assy.		
5	Mechanical Parts Assy.		(See table other side)		
5-2	Housing	8	Cover (A.C. only)		
5-3	Spring	9	Manual operator assy		
5-4	Guide	9-1	Housing, Manual Operator		
5-5	Side Housing	9-2	Plunger		
5-6	Cap Screw 1/4'	9-3	Pin, groove-3/8"		
5-7	Lever Arm	9-4	"O"- Ring		
5-8	Lever Screw	9-5	Spring, Manual Operator		
5-9	Stem assy. (Solenoid)	9-6	Gasket, Manual Operator		
5-10	Distributor Gasket	10	Machine Screw Fil. Hd.		
5-11	Machine Screw, RDH		(A.C. Only 10/32 x 5/8-4 req'd.)		
	(6/32 x 1 1/4 - 6 reg'd.)		(4 req'd.)		
5-12	Distributor (CSM11-A2-2)	11	Lockwasher		
5-13	Disc Assy.	12	Machine Screw Fil. Hd.		
5-14	Spring (Disc Assy.)		(D.C. Only) 10/32 x 7/16 (4 required)		
5-15	Thrust Washer	13	Lockwasher		
5-16	"O"- Ring	14	Coil only: (See table other side)		
5-17	Stem Assy. (Pilot)	15	Nameplate		
<u> </u>	Spacer Gacket (A C only)	16	Hex Nut, Jam 1-14 LINS		

When ordering parts, please specify:

- All Nameplate Data
 - a Description• Material
- Recommended Spare Parts

Item Number

118

Components Identification

CV-Speed control

is used to control opening or closing speed. The CV allows restricted flow in one direction and restricted flow in the opposite direction. To be cleaned up sample only.

2 1

INSTALLATION / OPERATION / MAINTENANCE

- MODEL -**Flow Control**

DESCRIPTION

The Cla-Val Model CV Flow Control is a simply-designed, spring-loaded check valve. Rate of flow is full flow in one direction and restricted in other direction. Flow is adjustable in the restricted direction. It is intended for use in conjunction with a pilot control system on a Cla-Val Automatic Control Valve.

OPERATION

The CV Flow Control permits full flow from port A to B, and restricted flow in the reverse direction. Flow from port A to B lifts the disc from seat, permitting full flow. Flow in the reverse direction seats the disc, causing fluid to pass through the clearance between the stem and the disc. This clearance can be increased, thereby increasing the restricted flow, by screwing the stem out, or counter-clockwise. Turning the stem in, or clockwise reduces the clearance between the stem and the disc, thereby reducing the restricted flow.'

INSTALLATION

Install the CV Flow Control as shown in the valve schematic All connections must be tight to prevent leakage.

DISASSEMBLY

Follow the sequence of the item numbers assigned to the parts in the cross sectional illustration for recommended order of disassembly.

Use a scriber, or similar sharp-pointed tool to remove O-ring from the stem.

INSPECTION

Inspect all threads for damage or evidence of crossthreading. Check mating surface of seat and valve disc for excessive scoring or embedded foreign particles. Check spring for visible distortion, cracks and breaks. Inspect all parts for damage, corrosion and cleanliness.

CLEANING

After disassembly and inspection, cleaning of the parts can begin. Water service usually will produce mineral or lime deposits on metal parts in contact with water. These deposits can be cleaned by dipping the parts in a 5-percent muramic acid solution just long enough for deposits to dissolve. This will remove most of the common types of deposits. Caution: use extreme care when handling acid. If the deposit is not removed by acid, then a fine grit (400) wet or dry sandpaper can be used with water. Rinse parts in water before handling. An appropriate solvent can clean parts used in fueling service. Dry with compressed air or a clean, lint-free cloth. Protect from damage and dust until reassembled.

REPAIR AND REPLACEMENT

Minor nicks and scratches may be polished out using a fine grade of emery or crocus cloth; replace parts if scratches cannot be removed.

Replace O-ring packing and gasket each time CV Flow Control is overhauled.

Replace all parts which are defective. Replace any parts which create the slightest doubt that they will not afford completely satisfactory operation. Use Inspection steps as a quide.

REASSEMBLY

Reassembly is the reverse of disassembly; no special tools are required.

TEST PROCEDURE

No testing of the flow Control is required prior to reassembly to the pilot control system on Cla-Val Main Valve.

CV 3/8" Flow Control

BLA-VAL P.O. Box 1325 • Newport Beach, CA 92659-0325 • Phone: 949-722-4800 • Fax: 949-548-5441 • E-mail: daval@da-val.com • Website da-val.com • Website da-val.com • Website da-val.com • Website da-val.com

Regulator Spring Color Coding Chart

Dwg#47117

	*THESE FIGURES ARE	ONLY APPROXIMA	TE. FINAL ADJUSTMEN	IS SHOULD BE MADE WI	TH A PRESSURE GAG	Е.
WIRE SIZE	Spring Number	COLOR	WIRE MATERIAL	CATALOG NUMBER	PSI RANGE	*PSI PER TURN
.080 DIA.	C0492D	BLUE	S.S.	CDB-7	0-7	.75
					1 9-6 5	.75
.018 DIA.	82575C		S.S.	CRD-10A	1.9-6.5	.49
	045045		0.0	CRD	2-30	3.0
.116 DIA.	81594E		5.5.	CRD-10A	2-30	2.4
	VEGEAL	CREEN		CRL-5A	5-25	4.0
.120 DIA.	V0004J	GREEN		CRD	10-40	4.0
				CDB-7	10-60	12.0
.162 DIA.	32447F	NATURAL	S.S.	CRL-5A	10-60	12.0
				CRL-13	10-60	12.0
				CDB-7	20-80	14.5
.162 DIA.	V5695B	YELLOW	MUSIC WIRE	CRL-5A	20-80	14.5
				CRL-13	20-80	14.5
				CDB-7	50-150	29.5
.207 DIA.	C1124B	CAD PLT	MUSIC WIRE	CRL-13	50-150	29.5
				CRL-5A	50-150	29.5
		050		CDB-7	65-180	44.0
.225 DIA.	V6515A	RED	MUSIC WIRE	CRL-13	65-180	44.0
				CRL-5A	65-180	44.0
	710040			CRL	0-75	8.5
.115 X .218	71884B	RED	CHR VAN		15-75	9.0
					15-75	7.2
119 V 225	719961	GDEEN			20-200	20.0
.110 A .225	710000	GREEN			30-300	27.0
				CBL	100-300	18.00
.225 X .295	1630201A	CAD PLT	CHR VAN	CBL-5A	100-300	18.00
				CRA-18	200-450	17.0
.440 X .219	48211H	CAD PLT	STEEL	CRD-22	200-450	17.0
		-	_	CRL-4A	100-450	17.0
.187	20561901H	BLACK	STEEL	CRD	20-105	12.0
WIRE SIZE	Spring Number	COLOR	WIRE MATERIAL	Catalog Number	PSI RANGE	*Feet Per Turn
	004000	DLUE	0.0	CRA	4.5-15	.82
.080 DIA.	C0492D	BLUE	5.5.	CRD-2	4.5-15	.82
	87719B	EPOXY	CHROME SILICON	CDS-5		
	1 SPRING	COATED			5-40	1.0
375 DIA	2 SPRING				30-80	2.0
.575 DIA.	3 SPRING				70-120	3.0
	4 SPRING				110-120	4.0
	5 SPRING				150-200	5.0
.072 DIA.	V5097A		302SS	CVC	1-17	.7
	2933502H	EPOXY	CHROME SILICON	CDS-6		
	1 SPRING	COATED			5-40	.75
	2 SPRING				30-80	1.50
.073 DIA.	3 SPRING				70-120	2.20
	4 SPRING				110-120	3.00
	5 SPRING				150-200	3.70

THE FOLLOWING CONTROL & SPRING P/N#'S WERE REMOVED, 32656B, 31554K, 44591G, V65695B, & V5695B.

ADDED CRL-13, CRL-5A, CRA, CRA-10A, CHANGED SPRING RANGES TO MATCH CURRENT CONTROLS.

*This drawing is the property of CLA-VAL and same and copies made thereof, if any, shall be returned to it upon demand. Delivery and disclosure hereof are made solely upon condition that the same shall not be used, copied ore reproduced, nor shall the subject here of be disclosed in any manner to anyone for any purpose, except as herein authorized, without prior approval of CLA-VAL. Whether or not the equipment or information shown hereon is patented or otherwise protected, full title and copyrights if any, in and to this drawing and/or information delivered or submitted are fully reserved by CLA-VAL

CLA-VAL P.O. Box 1325 • Newport Beach, CA 92659-0325 • Phone: 949-722-4600 • Fax: 949-548-5441 • E-mail: daval@da-val.com • Website da-val.com • Website da-val.com • Website da-val.com • Website da-val.com • PL-47117 AD (R-11/06) PL-47117 AD (R-11/06)

X42N-2 Strainer and Needle Valve Assembly

X43- Y-Strainer

is used to keep solids out of the pilot system. The standard is 40 mesh (Note other materials available)

Available in 1/4" - 3/4" female NPT Bronze body, brass plug, stainless steel screen Maximum Working Pressure 400 psi

X44A Strainer and Orifice Assembly

X46 Strainer

is designed to prevent passage of foreign particles larger than .015". It is especially effective against such contaminant as algae, mud, scale, wood pulp, moss, and root fibers.

X47A Ejector

X47A Ejector is a compact, precision fitting, incorporating a primary and a secondary jet, designed to create a low-pressure area at the suction port.

X52E Orifice Plate Assembly

X52E Orifice Plate Assembly is typically used with Cla-Val flow control valves. The orifice plate is an essential component used to generate a specific predictable pressure drop in the system.

X58C Restriction Assembly

is composed of a modified standard (45 degree flare) tube connector with a precision delrin orifice fitting installed.

X58C		
	I	
Schematio	c Symbol	

X101 Valve Position Indicator -

is very helpful in troubleshooting

X102 Flow Limiting Assemblies

regulates flow through Cla-Val Automatic Valves from full flow to shut-off. These adjustable assemblies control flow by limiting the amount of the valve opening. Limited to 6" & smaller.

Accessories Identification

X103 Spring Lift

X105LCW Limit Switch Assemblies

X105L Limit Switch Assembly is a rugged, dependable and positive acting switch assembly actuated by the opening or closing of a Cla-Val control valve on which it is mounted.

X105L2W Limit Switch Assemblies

X105L2 Limit Switch Assembly is a rugged, dependable and positive acting switch assembly actuated by the opening or closing of a Cla-Val control valve on which it is mounted.

Accessories Identification

X117C Valve Position Transmitter

is an accurate monitor of valve position. Through an industry standard 4-20 mA output, the X117C delivers the level of accuracy required for computer control valve systems (SCADA type).

X117D Valve Position Transmitter

is an accurate monitor of valve position. Through an industry standard 4-20 mA output, the X117D delivers the accuracy required for computer control valve systems (SCADA type).

X42N-2 **Strainer and Needle Valve Assembly**

When ordering parts, please specify:

- · All nameplate data
- Item Number
- Description

Size	Stock Number				
3/8" x 3/8"	68372C				

ITEM	DESCRIPTION	MATERIAL	PART NO.
1	Jam Nut —Hex	Sil Brz	
2	Bonnet	S.S.	
3	"O" Ring-Bonnet	Syn Rub	
4	Stem	S.S.	
5	"O" Ring-Stem	Syn Rub	
6	Plug-Pipe 1/4	Bre.	
7	Strainer Plug	303	
8	"O" Ring—Plug	NBR	
9	Screen	Monel	
10	Body	Rd Brs	
11	Plug-Pipe 1/8	Brass	
12	Plug—Pipe 3/8	Brass	

CLA-VAL P.O. Box 1325 • Newport Beach, CA 92659-0325 • Phone: 949-722-4800 • Fax: 949-548-5441 • E-mail: daval@da-val.com • Website da-val.com • Website da-val.com • Website da-val.com • Website da-val.com • PL- X42N-2 (R-505) PL- X42N-2 (R-5/05)

X43 Strainer

ITEM	DESCRIPTION	MATERIAL
1	Pipe Plug	Steel
2	Strainer Plug	Brass
3	Gasket	Copper
4	Screen	SST
5	Body	Brass

No parts available. Rreplacement assembly only.

Standard 60 mesh pilot system strainer for fluid service.

SIZE	STOCK NUMBER
3/8 x 3/8	33450J

X44A Strainer and Orifice Assembly

ITEM	DESCRIPTION	MATERIAL	QTY.
1	Body	Red Brs.	1
2	Plug, Top	Brass	1
3	"O" Ring, Plug Top	Syn. Rub.	1
4	Screen	Monel	1
5	Orifice Plug	Delrin	1
6	Plug, Pipe	Brass	1
7	Strainer Plug	S.S.	1
8	"O" Ring, Strainer Plug	Syn. Rub.	1

INSTALLATION / OPERATION / MAINTENANCE

Flow Clean Strainer

The Cla-Val Model X46 Strainer is designed to prevent passage of

foreign particles larger than .015". It is especially effective against such contaminant as algae, mud, scale, wood pulp, moss, and root

The X46 Flow Clean strainer operates on a velocity principle utilizing the circular "air foil" section to make it self cleaning. Impingement of particles is on the "leading edge" only. The low pressure area on the downstream side of the screen prevents foreign particles from clogging the screen. There is also a scouring action, due to eddy

 Self Scrubbing Cleaning Action Straight Type or Angle Type

fibers. There is a model for every Cla-Val. valve.

currents, which keeps most of the screen area clean.

- MODEL -X46

Dimensions (In Inches)

A (NPT) B (NPT) D Е F G I 1/8 1/8 1-3/4 3/4 1/2 1/2 1/4 1/4 1/4 2-1/4 1 3/4 3/4 3/8 3/8 3/8 2-1/2 1 7/8 7/8 1/2 3/8 1/2 2 - 1/21-1/4 1/2 7/8 3/4 1/2 1/2 3 1-1/4 1 1-1/8 3/4 3/8 3/4 3-3/8 2 1/2 1 7/8 3/4 3/4 4 2 1-1/2 1 7/8 3/8 4-1/4 2-3/4 1-3/8 7/8 1 1/2 1 1 4-1/2 2-3/4 1-1/4 1-3/4 7/8 1/2 1 4-1/4 2-3/4 1/2 1-3/8 7/8

X46A Straight Type A (In Inches)

INSTALLATION

The strainer is designed for use in conjunction with a Cla-Val Main Valve, but can be installed in any piping system where there is a moving fluid stream to keep it clean. When it is used with the Cla-Val Valve, it is threaded into the upstream body port provided for it on the side of the valve. It projects through the side of the Main Valve into the flow stream. All liquid shunted to the pilot control system and to the cover chamber of the Main Valve passes through the X46 Flow Clean Strainer.

INSPECTION

Inspect internal and external threads for damage or evidence of cross-threading. Check inner and outer screens for clogging, embedded foreign particles, breaks, cracks, corrosion, fatigue, and other signs of damage.

DISASSEMBLY

Do not attempt to remove the screens from the strainer housing.

CLEANING

Male

Pipe

After inspection, cleaning of the X46 can begin. Water service usually will produce mineral or lime deposits on metal parts in contact with water. These deposits can be cleaned by dipping X46 in a 5-percent muriatic acid solution just long enough for deposit to dissolve. This will remove most of the common types of deposits. Caution: use extreme care when handling acid. If the deposit is not removed by acid, then a fine grit (400) wet or dry sandpaper can be used with water. Rinse parts in water before handling. An appropriate solvent can cle

REPLACEMENT

If there is any sign of damage, or if there is the slightest doubt that X46 Flow Clean Strainer may not afford completely satisfactory operation replace it. Use Inspection steps as a guide. Neither inner screen, outer screen, nor housing is furnished as a replacement part. Replace Model X46 Flow Clean Strainer as a complete unit.

When ordering replacement Flow-Clean Strainers, it is important to determine pipe size of the tapped hole into which the strainer will be inserted (refer to column A or F), and the size of the external connection (refer to column B or G).

Rinse parts in water before handling. An appropriate solvent can clean parts
used in fueling service. Dry with compressed air or a clean, lint-free cloth.
Protect from damage and dust until reassembled.
REPLACEMENT
If there is any sign of damage, or if there is the slightest doubt that the Model
X46 Flow Clean Strainer may not afford completely satisfactory operation

CLA-VAL P.O. Box1325 • Newport Beach, CA 92659-0325 • Phone: 949-722-4600 • Fax: 949-548-5441 • E-mail: daval@da-val.com • Website da-val.com • Website da-v

131

INSTALLATION / OPERATION / MAINTENANCE

- MODEL - X47A

Ejector

CLA VAL

DESCRIPTION

The Cla-Val Model X47A Ejector is a compact, precision fitting, incorporating a primary and a secondary jet, designed to create a low-pressure area at the suction port.

OPERATION

The X47A Ejector is designed for use in a pilot control system on a Cla-Val Main Valve. Pressure is applied to the inlet port (A). As the fluid passes through the center portion of the X47A Ejector, the high velocity entrains particles of fluid from suction port (B), which results in a reduced pressure at this port.

In actual operation, the pressure port (A) is connected to the upstream side of the Main Valve; the discharge port (C) is connected to the Pilot Control; and the suction port (B) is connected to the cover chamber of the Main Valve.

Fluid line pressure enters at the inlet port (A). When the Pilot Control is closed, no flow occurs through the X47A Ejector, and full line pressure is directed into the Main Valve cover chamber, closing the Main Valve tight. As the Pilot Control opens, and flow through the X47A Ejector begins, pressure at the suction port (B) decreases until the Main Valve is permitted to open. Further changes in the flow rate resulting from opening and closing of the Pilot Control produce corresponding changes in the flow through the Main Valve.

DISASSEMBLY

Do not attempt to remove primary or secondary jets from X47A Ejector housing.

INSPECTION

Inspect port threads for damage or evidence of cross-threading. Check primary and secondary jets for clogging or embedded foreign particles. Check for breaks, cracks, fatigue, and other signs of damage.

CLEANING

After inspection, cleaning of the X47A can begin. Water service usually will produce mineral or lime deposits on metal parts in contact with water. These deposits can be cleaned by dipping the X47A in a 5-percent muriatic acid solution just long enough for deposits to dissolve. This will remove most of the common types of deposits **Caution: use extreme care when handling acid.** If the deposit is not removed by acid, then a fine grit (400) or dry sandpaper can be used with water. Rinse parts in water before handling. An appropriate solvent can clean parts used in fueling service. Dry with compressed air or a clean, lint-free cloth. Protect from damage and dust until reassembled.

REPLACEMENT

If there is any sign of damage, or if there is the slightest doubt that the X47A Ejector may not afford completely satisfactory operation, replace it. Use Inspection steps as a guide. Neither the primary jet, secondary jet, or bare housing is furnished as a replacement part. Replace X47A Ejector as a complete unit.

PILOT CONTROL CLOBED

BLA-VAL P.O. Box 1325 • Newport Beach, CA 92659-0325 • Phone: 949-722-4800 • Fax: 949-546-5441 • E-mail: davel@da-val.com • Website da-val.com *Capyright Cla-Vel 2006 Printed in USA Specifications subject to drange without notice. N-X47A (R-1/06)

Orifice Plate Assembly

-MODEL-X52E

- Wafer Design
- Fits ANSI 125, 150, 250, 300
- **Optional Materials Available**
- Easy to use size Selection Chart •

The Cla-Val Model X52E Orifice Plate Assembly is typically used with Cla-Val flow control valves. The orifice plate is an essential component used to generate a specific, predictable pressure drop in the system. The X52E uses a wafer design holder which offers a compact lightweight assembly that is easy to install. The X52E has a Chamfered "Inlet" side so even after installation, correct orientation can be easily verified.

The orifice plate portion of the assembly is made of 302 stainless steel with other materials options also available. The plate is machined to a recommended "square edge". The plate holder portion of the assembly is Ductile Iron standard. Fusion-bonded epoxy coating is an option. The holder may be made of other materials.

Selecting an orifice plate bore size is made by using charts provided.

We recommend installation of this assembly with the sensing port to the side of the pipeline to prevent air pockets and obstructions in the sensing line. Installation adjacent to a butterfly valve is not recommended as the orifice plate assembly may interfere with the opening of this type of valve.

NOMINAL PIPE SIZE (inches)		1½	2	2½	3	4	6	8	10	12	14	16
Diameter of Flange		3.63	4.25	5.00	5.75	7.00	9.75	12.00	14.12	16.50	19.00	21.12
Diameter of Raised Face		2.88	3.63	4.13	5.00	6.19	8.50	10.63	12.75	15.00	16.25	18.50
"A" Dim	from CL to top of boss	2.31	2.62	3.00	3.38	4.00	5.38	6.50	7.62	8.75	10.00	11.06
Diameter of Bolt Circle (B.C.D.)		3.88	4.75	5.50	6.00	7.50	9.50	11.75	14.25	17.00	18.75	21.25
150 Lb.	Number of Bolts	4	4	4	4	8	8	8	12	12	12	16
	Radius of Bolt Holes	.31	.38	.38	.38	.38	.44	.44	.50	.50	.56	.56
300 Lb.	Diameter of Bolt Circle	4.50	5.00	5.50	6.63	7.88	10.63	13.00	15.25	17.75	20.25	22.50
	Number of Bolts	4	8	8	8	8	12	12	16	16	20	20

Sizing An Orifice Plate Bore

1. In determining a bore size, the nominal flow rate (or range of flow) and the pipe size in which the orifice plate assembly will be installed must be known.

2. Sizing a bore for:

A constant flow rate:

Select the sizing chart that matches pipe size and locate the flow rate under the nominal column which is closest to required flow; select the corresponding bore size dimension.

Example:

A 6" pipe with a desired constant flow of 700 gpm. Using the 6" chart, the closest flow in the nominal column is 670 gpm which has a corresponding bore size of 3.80".

6" Valve/Pipe Size				
Bore		Flow - gpm		
Size	Min	Max	Nominal	
4.60	490	1960	1100	
4.40	435	1740	980	
4.20	380	1520	850	
4.00	330	1320	750	
3.80	300	1200	670	
3.60	265	1060	590	
3.40	230	920	520	
3.20	200	800	450	
3.00	175	700	395	
2.80	150	600	340	
2.60	130	520	295	
2.40	110	440	245	

A flow range:

Select the sizing chart that matches pipe size and locate required flow range between the minimum and maximum limits of an orifice bore. Frequently the flow range will fit between more than one bore size. To resolve this, decide the flow rate that system will be operated at most frequently. Locate the flow which is closest to this under the nominal flow column, and select the corresponding bore size dimension.

Example:

A 6" pipe with a flow range of 300-1000 gpm. Using the 6" chart, more than one bore size can accommodate this range. The most frequent flow rate will be 500 gpm. Using the nominal flow column, the closest flow is 520 gpm which has a corresponding bore size of 3.40"

6" Valve/Pipe Size

Bore	Flow – gpm		
Size	Min	Max	Nominal
4.60	490	1960	1100
4.40	435	1740	980
4.20	380	1520	850
4.00	330	1320	750
3.80	300	1200	670
3.60	265	1060	590
3.40	230	920	520
3.20	200	800	450
3.00	175	700	395
2.80	150	600	340
2.60	130	520	295
2.40	110	440	245

Orifice Plate Bore Chart

2"* Valve/Pipe Size				
Bore	Flow — gpm			
Size	Min	Max	Nominal	
1.55	55	220	125	
1.50	50	200	115	
1.40	42	168	95	
1.20	29	116	65	
1.00	19	76	45	
.80	12	50	28	

*For 1 1/2" bore information please consult the factory

Bore		Flow — gpm		
Size	Min	Max	Nominal	
1.87	80	330	180	
1.60	55	220	120	
1.40	40	160	88	
1.20	28	115	62	
1.00	19	80	43	
80	12	50	28	

2¹/₄" Valve/Pipe Size

Bore Flow – gpm Size Min Max Nominal 2.29 120 480 270 2 20 105 420 240

2.29	120	480	270
2.20	105	420	240
2.00	84	336	190
1.80	65	260	145
1.60	50	200	115
1.40	38	152	86
1.20	28	112	62
1.00	19	76	43

4" Valve/Pipe Size

Bore	Flow — gpm			
Size	Min	Max	Nominal	
3.00	205	820	450	
2.80	170	680	390	
2.60	140	560	310	
2.40	115	460	260	
2.20	96	384	215	
2.00	78	312	175	
1.80	63	252	140	
1.60	49	196	110	
1.40	38	152	84	
1.20	28	112	62	

Flow - gpm Bore Size Min Max Nominal 4.60 4.40 4.20 4.00 3.80 3.60 3.40 3.20 3.00 2.80 2.60 2.40

6" Valve/Pipe Size

8" Valve/Pipe Size

Bore	Flow — gpm		
Size	Min	Max	Nominal
6.00	830	3320	1850
5.80	760	3040	1700
5.60	680	2720	1550
5.40	620	2480	1400
5.20	570	2280	1275
5.00	515	2060	1150
4.80	470	1880	1050
4.60	425	1700	950
4.40	385	1540	860
4.20	345	1380	780
4.00	310	1240	700

10" Valve/Pipe Size

Bore	Flow — gpm		
Size	Min	Мах	Nominal
7.50	1300	5200	2900
7.00	1075	4300	2400
6.50	880	3520	1950
6.00	730	2920	1650
5.50	600	2400	1350
5.00	490	1960	1100
4.50	390	1560	870
4.00	310	1240	690
3.50	235	940	525
3.00	175	700	385

12" Valve/Pipe Size

Bore	Flow — gpm		
Size	Min	Max	Nominal
9.00	1850	7400	4200
8.50	1575	6300	3500
8.00	1350	5400	3000
7.50	1150	4600	2600
7.00	980	3920	2200
6.50	840	3360	1875
6.00	700	2800	1575
5.50	580	2320	1300
5.00	480	1920	1075
4.50	385	1540	870

14" Valve/Pipe Size

Bore	Flow — gpm		
Size	Min	Max	Nominal
10.00	2350	9400	5200
9.50	2025	8100	4500
9.00	1750	7000	3900
8.50	1500	6000	3400
8.00	1300	5200	2900
7.50	1150	4600	2500
7.00	960	3840	2150
6.50	820	3280	1850
6.00	700	2800	1550
5.50	585	2340	1300
5.00	480	1920	1075
4.50	385	1540	860

18" Valve/Pipe Size

Bore	Flow — gpm		
Size	Min	Max	Nominal
13.00	5200	15500	9000
12.00	4100	12300	7100
11.50	3700	11000	6400
11.00	3300	9850	5700
10.50	2950	8800	5100
10.00	2600	7850	4550
9.50	2350	6200	3600
9.00	2100	6200	3600
8.50	1850	5500	3200
8.00	1650	4850	2800
7.50	1400	4250	2450
7.00	1250	3650	2100

24" Valve/Pipe Size

Bore	Flow — gpm		
Size	Min	Max	Nominal
17.00	8500	25500	15000
16.00	7500	21500	12500
15.00	6100	18400	10500
14.50	5700	17000	9800
14.00	5200	15600	9000
13.50	4800	14400	8300
13.00	4400	13200	7600
12.50	4000	12100	7000
12.00	3700	11100	6400
11.50	3400	10100	5800
11.00	3100	9200	5300
10.50	2800	8300	4800
10.00	2500	7500	4400

16" Valve/Pipe Size

		-			
Bore	Flow — gpm				
Size	Min	Max	Nominal		
11.50	3100	12400	7000		
11.00	2700	10800	6100		
10.50	2400	9600	5400		
10.00	2100	8400	4700		
9.50	1850	7400	4200		
9.00	1650	6600	3650		
8.50	1450	5800	3250		
8.00	1250	5000	2850		
7.50	1100	4400	2450		
7.00	950	3800	2150		
6.50	810	3240	1800		
6.00	700	2800	1550		
5.50	575	2300	1300		

20" Valve/Pipe Size

Bore	Flow — gpm				
Size	Min	Max	Nominal		
14.00	6000	18000	10500		
13.50	5300	16000	9500		
13.00	4800	14500	8500		
12.50	4300	12900	7500		
12.00	3900	11700	6700		
11.50	3400	10500	6100		
11.00	3200	9500	5500		
10.50	2900	8600	5000		
10.00	2600	7700	4500		
9.50	2300	6100	3600		
9.00	2000	6100	3600		
8.50	1800	5400	3200		

36" Valve/Pipe Size

Bore	Flow — gpm				
Size	Min	Max	Nominal		
26.00	20000	60000	35000		
24.00	16000	48500	28000		
22.00	13000	39000	22500		
21.00	12000	35000	20500		
20.00	10500	31000	18000		
19.00	9500	28000	16000		
18.00	8500	24500	14500		
17.00	7500	22000	12500		
16.00	6500	19300	11000		
15.00	5600	16900	9800		
14.00	4900	14600	8500		
13.00	4200	12600	7300		

CLA-VAL

PO Box 1325 Newport Beach CA 92659-0325 Phone: 949-722-4800 • Fax: 949-548-5441

CLA-VAL EUROPE

4687 Christie Drive Beamsville, Ontario Canada LOR 184 Phone: 905-563-4963 Fax: 905-563-4960 «COPYRGHT CLA-WL3006 Presd in USA Spectration asject to change introduced

CLA-VAL CANADA

Chemin dés Mesanges 1 CH-1032 Romanel/ Lausanne, Switzerland Phone: 41-21-613-15-55 Fax: 41-21-613-15-50 **Represented By:**

www.da-val.com 136

X-52 Series Orifice Assemblies

The X52 Series Orifice Assembly consists of a calibrated, precision-machined orifice plate and flange holder. It is typically supplied with 40 Series valves. Flange holder material is same as main valve body. The 1/8" thick orifice plate (X55A) is made of 303 Stainless Steel with 316 Stainless Steel optional. Small screws hold the orifice plate into the holder (at approximately half the thickness of holder) on X52B and X52D-1 assemblies. The orifice plate is staked in place (at inlet side) on X52A-1 and X52E assemblies. The X52 is assembled prior to epoxy coating when an epoxy coated main valve is specified (orifice bore is masked). Pressure class (125/150 or 250/300) must be specified for proper fit in pipeline. X52E is a wafer style redesign of the X52A-1 and is suitable for 150 and 300 class flanges.

Cat. No.	Dwg.	Sensing Holes	Thickness	Comments
X52E	201278	One 1/4" NPT for downstream sensing	1"	NEW wafer style assembly. Replaces X52A-1(after Jan 2001). Suitable for 150 and 300 class flanges. Used with CDHS-18 pilot Intended for downstream of valve.
X52A-1	81225	One 1/4" NPT for downstream sensing	1"	Current assembly. Replaced old 2 sensing hole assembly when we changed pilot from CDHS-2 to CDHS-18. (circa mid 1970's) Intended for downstream of valve.
X52B	41241	Two 1/8" NPT for sensing DP	3/4"	Obsolete. For AF valves and available in aluminum or steel only. Used with CDHS-2 pilot. Intended for upstream of valve.
X52D-1	43831	-Two 1/8" NPT for sensing DP -One 1/2" NPT for pilot supply	1 1/2"	Current assembly. Used with CDHS-2 pilot. Intended for upstream of valve.

X55A is catalog number for orifice plate used in X52 assemblies. Typically used for replacement in existing holders or for installation in customer supplied flange holder.

X55B is catalog number for paddle type orifice plate installed between two pipe flanges. Paddle handle is stamped with bore size. For flow control applications, two pipeline tap connections for pilot valve sensing must be customer supplied. When used for cavitation control it is typically mounted downstream of control valve. Pressure class (125/150 or 250/300) must be specified for proper fit in pipeline.

- MODEL - X58C

Restriction Assembly

Description

The Cla-Val Model X58C Restriction Assembly is composed of a modified standard (45 degree flare) tube connector with a precision delrin orifice fitting installed. Flow direction is from tube to pipe connections. Orifice size color code is stained onto brass tube connector wrench flats. The X58C is installed as a part of pilot control systems on Cla-Val Valves.

Note: No replacement parts available - to be sold as complete assembly only.

When ordering please specify: Valve size, Stock Number

CLA-VAL X58C Pilot System Orifice Restriction Fittings

Size TxNPT	Orifice	Mat'l	Part Number
3/8" x 3/8"	.094 (3/32)	BP	68565B (std)
3/8" x 3/8"	.094 (3/32)	BS	9932901D
3/8" x 3/8"	.094 (3/32)	TP	9787003E (SWS)
3/8" x 3/8"	.094 (3/32)	TS	9787015J
3/8" x 3/8"	.062 (1/16)	BP	46946A
3/8" x 3/8"	.062 (1/16)	BS	64672K
3/8" x 3/8"	.062 (1/16)	TP	9787001J

SUITABLE FOR 3" AND SMALLER VALVES (BLUE)

SUITABLE FOR 4" AND LARGER VALVES (RED)

Size TxNPT	Orifice	Mat'l	Part Number
3/8" x 3/8"	.125 (1/8)	BP	64673H (std)
3/8" x 3/8"	.125 (1/8)	BS	4883405F
3/8" x 3/8"	.125 (1/8)	TP	9787002G (SWS)
3/8" x 3/8"	.125 (1/8)	TS	9787016G
3/8" x 3/8"	.188 (3/16)	BP	43302K

Made from Tube Connector (Male Tube x Male NPT)

Material CODE

1st letter = fitting, 2nd letter = orifice insert

B = Brass

P = Delrin Plastic

S = 303 Stainless Steel

T = 316 Stainless Steel Parker fitting

NOTE:

High Differential Pressure (100+dpsi) over time can cause Delrin orifice to extrude or copper tubing to erode. Usually recommend upgrade to Stainless Steel.

X-101

CLA-VAL

Valve Position Indicator

	COMPLETE X101- BRONZE				
	SIZE	STOCK NO.			
	1 1/4 - 1 1/2	C2812A			
	2	C8972G			
	2 1/2	C2607E			
	3	C2609A			
	4	9710001A			
	6	9710002J			
	8	C8581F			
	10	C9187A			
	12	31420D			
	14	30256C			
	16	30251D			
ITEM	DESCRIPTION	MATERIAL			
1	Vent Valve	Brass			
2	Housing	Brass			
3	*Gasket (2 Required)	Buna-N®			
4	*Sight Tube	Pyrex			
5	Adapter	Brass			
6	Busing	Brass			
7	Stem	Brass			
8	Stem Adapter	Brass			
When ordering parts.					

please specify:

- All Nameplate data
- Item Number
- Description
- Material
- Part Number

-MODEL- X102

Flow Limiting Assembly & Pilot System Components

- **Automatic Operation**
- **Corrosion Resistant** •
- **No Lubrication**
- Easy Adjustment
- **Easy Maintenance**

The Cla-Val Model X102 Flow Limiting Assemblies regulate flow through Cla-Val Automatic Valves from full flow to shut-off. These adjustable assemblies control flow by limiting the amount of the valve opening.

The X102A and X102D maintain a pressure seal during adjustment by means of an internal "O" Ring.

The X102B is pressure sealed by means of an external resilient washer, compressed when the Jam Nut is tightened, afteradjustment.

Specifications

Pressure Ratings:

Valves 1/2" through 3"	150 psi maximum
Valves 4" and 6"	100 psi maximum
Valves 8"	
Valves 10"	
laterials:	
Body (all models)	Brass
Stem X102A	202 Stainlass Staal
X102B	Brass
X102B X102D	Brass

When Ordering, Please Specify

When ordering please specify the following information:

- 1. Flow Limiting Assembly Catalog Number
- 2. Valve Catalog Number
- 3. Valve Size

CLA-VAL P.O. Box 1325 • Newport Beach, CA 92659-0325 • Phone: 949-722-4600 • Fax: 949-546-5441 • E-mail: claval@cla-val.com • Website cla-val.com *Capyright Cla-Val 2006 Printed in USA Specifications subject to change without notice. E-X102 (R-5/05)

- MODEL - X103 Spring Lift

DESCRIPTION

The Spring Lift Assembly is externally mounted on the Clayton valve cover, and houses an extension stem and a compression spring. The upper nd of the extension stem is threaded to provide spring tension adjustment, the lower end is attached to the valve stem.

OPERATION

The Spring Lift Assembly is designed to assure a wide open valve position. This is a normal position when there is no pressure in the main valve cover chamber, under static and during certain flowing conditions. An independent source of operating pressure generally will be required when low line pressure exists.

ADJUSTMENT

<u>CAUTION</u>– The Spring Lift Assembly will pull the valve open should the Independent Operating Pressure Fail. Consult factory for complete details.

Normally, the tension on the spring should be great enough to hold the valve wide open when the system is not in use. This adjustment can be made before the valve is installed. If the valve is installed. If the valve is in the system, remove all pressure before proceeding. (Refer to P-X103 sectional view).

1. Remove cap 1 and nipple 2.

2. Lift the spring lift stem 6 manually. If any upward travel is evident, increase spring tension until no upward travel is felt. If no upward travel is felt it can be assumed the adjustment has been made. However, to insure that too much tension has not been applied previously, decrease the spring tension until an upward travel can be felt when pulling on the spring stem; then carefully increase the spring tension until the upward travel has been removed.

To increase spring tension:

- 1. Loosen jam nut 3.
- 2. Turn lower adjusting nut clockwise until proper tension is obtained.
- 3. Tighten jam nut 3.
- 4. Replace nipple 2 and cap 1.

To decrease jam nut 3.

- 1. Loosen jam nut 3.
- 2. Turn lower adjusting nut counter-clockwise until proper spring tension is obtained.
- 3. Tighten jam nut 3.
- 4. Replace nipple 2 and cap 1.

X103 Spring Lift

CLA-VAL

<u>CAUTION</u>— The Spring Lift Assembly will pull the valve open should the Independent Operating Pressure Fail. Consult factory for complete details.

PARTS LIST

DIMENSIONS

ITEM NO.	DESCRIPTION	Valve Size - Inches	Dimension A
1	Pipe Cap	1/2 - 3/4 - 1	3.75
2	Nipple	1 1/2	3.31
3	Nut	2-21/2	3.75
4	Spring Guide	3	6.13
5	Spring	4	7.25
6	Stem	6	9.13
7	Body	8	10.00
8	Pipe Bushing	10	17.50
9	Gasket	12	26.50
10	Cap Screw	14	24.00
		16	19.50

X105L X105L2 - MODEL·

Limit Switch Assemblies

Switch only

- **UL Listed Switches** •
- **Positive Action**
- **Rugged and Dependable**
- Weather Proof or Explosion Proof
- Easv To Adjust

The Cla-Val Model X105L/X105L2 Limit Switch Assembly is a rugged, dependable and positive acting switch assembly actuated by the opening or closing of a Cla-Val control valve on which it is mounted. The single pole, double throw micro switch can be connected either to open or to close an electrical circuit when actuated. By loosening the allen screw on the actuating collar and raising or lowering the collar on the stem, the X105L is easily adjusted to signal that the valve has fully reached the desired position (open or closed).

Installation

Single Pole Double Throw Switch

T

Normally

Open

∠Common Lug

Normally

Closed

Circut Diagram of Single Pole

Double Throw

Switch

Switches shown in

unactivated position.

1. Remove plug in top of valve cover.

2. Screw actuating stem into main valve stem.

3. Slip adapter down over stem and screw into place on valve cover

4. Attach micro switch housing and bracket to adapter with jam nut.

5. Bring electrical supply circuit into unit through the 1/2" tapping in micro switch housing.

6. Adjust switch collars. (Set collar to trip switch after valve is positioned fully open or fully closed)

Actuating Collar Adjustment Minimum Settina

When adjusting actuating collar for proper switch action, a clearance of at least 1/16" (1/8" for 24" valve) must be provided between the collar and the bushing gland nut when valve is in the fully closed position.

Typical Application

Used for any electrical operation which can be performed by either opening or closing a switch; such as alarm systems, process control, pump control, motor starting or stopping, etc. Readily attached to most Cla-Val Valves.

Dimensions (In Inches)

2.44

1

1.69

1

2.94

11/4

2.94

11/2

S	n	e	ci	ifi	С	ati	io	ns
	μ	U						113

Dim "B"

C (NPT)

1/4

1/2

1/2

Specificatio	אנג (אוג אוג אוג אוג אוג אוג אוג אוג אוג אוג	When Or	When Ordering, Please Specify			
Materials:	Aluminum switch housing Steel bracket and brass adapter Stainless steel stem	 Valve Siz∉ Catalog N) Jumber from Tab	6. le Below 7.	Amperes and Voltage, A Actuating Position (Valv	C or DC
Electrical:	1/2" Conduit connection	3. All Valve № 4. Select Sir	Name Plate Data	ole Switch		
Switch Type:	SPDT UL, File No. E12252, CSA Certified, File No. LR57325	5. Explosion	Proof or Weathe	e Gwitch	closure	
	NEMA 1,3,4, and13		CATALOG NO.	ACTUATION POSITION	SWITCH ENCLOSURE	
Switch Rating:	UL/CSA rating: L96 15 amp. 125, 250, or 480 volts AC 1/2 amp. 125 volts DC		X105LCW	Valve Closed	Weather Proof	
	1/4 amp. 250 volts DC		X105LCX	Valve Closed	Explosion Proof	
Switch Options:	DPDT switches available on request UL/CSA Rating: L59, 10 amps		X105LOW	Valve Open	Weather Proof	1
	Explosion proof micro switches are NEMA 1.7, and 9		X105LOX	Valve Open	Explosion Proof	
	UL Listed, File No. E14274 and CSA		X105L2W	Dual	Weather Proof	
	Certified, File No. LR57324: Class I, Group C and D and Class II, Group		X105L2X	Dual	Explosion Proof	
	F F and G					

3/4

3/4

CLA-VAL

PO Box 1325 Newport Beach CA 92659-0325 Phone: 949-722-4800 • Fax: 949-548-5441

CLA-VAL CANADA

4687 Christie Drive Beamsville, Ontario Canada LOR 184 Phone: 905-563-4963 Fax: 905-563-4040 #CCPY RIGHT CLA-VAL 2005 Printed in USA Specifications subject to change without notice.

CLA-VAL EUROPE Chemin dés Mesanges 1 CH-1032 Romanel/ Lausanne, Switzerland Phone: 41-21-643-15-55

Fax: 41-21-643-15-50 www.cla-val.com

145

2.94

2

2.94

2

2.94

2

2.94

2

CATALOG NO.	ACTUATION POSITION	SWITCH ENCLOSURE
X105LCW	Valve	Weather Proof
	Closed	
X105LCX	Valve	Explosion Proof
	Closed	
X105LOW	Valve	Weather Proof
	Open	
X105LOX	Valve	Explosion Proof
	Open	
X105L2W	Dual	Weather Proof
X105L2X	Dual	Explosion Proof

Represented By:

2

X105L

Limit Switch Assembly

CLA-VAL P.O. Box 1325 • Newport Beach, CA 92659-0325 • Phone: 949-722-4600 • Fax: 949-548-5441 • E-mail: daval@da-val.com • Website da-val.com • Website da-PL- X105L (R-5/05)

X105L Series Adjustment Procedure

Applies to ALL X105L, X101C, X117C and X117D Series Assemblies

Bleed Air Procedure

When bleeding air out of valve cover chamber, loosen small bleed screw on Adapter (it is found on one of the large wrench flats) enough to allow air to slowly bleed from the valve cover. Do not take screw out. When a steady flow of water occurs retighten screw.

If X105L does not have bleed screw (before 1998) then use the following procedure. First, lower valve pressure below 60 psi. Loosen gland-bushing enough to allow air to slowly bleed through the threads. Do not unscrew gland-bushing too far, this will dislodge the sealing O-ring. When the gland-bushing is retightened, it can easily damage the O-ring. When a steady flow of water occurs, slowly retighten gland-bushing by hand only till no water comes out. With wrench, tighten only one-half turn or until snug. Do NOT over tighten. If water continues to leak, then the O-ring is damaged and needs to be replaced (Part number 00951E).

INITIAL ADJUSTMENT

For X105LCW, X105LCX, X117DLCW and X117DLCX Assemblies:

1. Valve must be in fully CLOSED position.

2. Adjust "roller arm" so that the wheel is close to but not touching the vertical valve actuating stem. The arm should be angled downward towards the stem.

3. Place collar on stem above wheel. Move collar down until it pushes roller away from actuating stem enough to activate switch. You should be able to hear the "click" of the switch when this occurs. Without moving collar, tighten its screw to fasten it in this position on the actuating stem. The collar should trip the switch just before the valve is fully closed.

4. A minimum gap is required of 1/16" (1/8" for 24" valves) between the collar and the glandbushing when the valve is in the closed position. The disc in the diaphragm assembly compresses when the main valve is pressurized in the closed position. This causes the actuating collar to move closer to the gland-bushing. If sufficient spacing is not provided, the force generated causes the swivel to break and the roll pin to shear off. When this occurs, the actuating stem should be replaced.

- MODEL - X117C

DESCRIPTION

The Model X117C Valve Position Transmitter is designed to provide analog signal (4 - 20 mA, 2 wire) output of valve position for Cla-Val Main Valves. A stem extension is fitted to the main valve stem with the position transmitter mechanically linked to it. The valve stem is mechanically linked to the electronics for an output signal that is in direct proportion to valve position. Optional limit switches (2 SPDT or 2 DPDT) are provided on the Model X117CLS for signaling when valve has reached fully open or closed position. Provisions are made for bleeding air from valve cover through a small bleed screw and washer located on one wrench flat of adapter.

INSTALLATION

Normally, the X117C is supplied mounted on the Cla-Val main valve. If X117C has not been installed at factory, then install stem, adapter, mounting bracket and transmitter (in order) as shown on drawing 16767. Necessary field setting of the X117C requires some adjustment to the position of the transmitter relative to the stem and the spool, so you may need to loosen transmitter on the bracket. Refer to Drawing No. 16767.

OPERATION

The signal from the position sensing linkage mechanism is converted to a two-wire 4 to 20 mA current output appearing at the output terminals. The voltage compliance range is 12.5 to 40 Volts DC. Initial resistance will range from 975 ohms at transmitter full over travel (Valve open) to 500 ohms at transmitter free position (Valve closed)

Wiring

Orient transmitter and bracket to conduit. Loosen jam nut holding transmitter and bracket to adapter for connecting transmitter to field wiring conduit. Tighten jam nut after connection is made. After unthreading housing from transmitter connect wires to OUTPUT screw terminals. DO NOT USE HOUSING AS WIRING PULLBOX.

Use good field wiring practices for low voltage DC analog instrumentation wiring (suggest 18-gage multistrand wire minimum). Avoid potential ground loops. See drawing for typical wiring connections. Calibration of transmitter should be done with a temporary hookup of test equipment before final wiring connections are made. The enclosure is NEMA rated 1, 3, 4, 4X, 6, 6P, 7, 9, and 13. Appropriate measures should be taken to avoid internal condensation.

CALIBRATION

1. When properly adjusted, the transmitter arm TOTAL arc of travel, as valve moves from full closed to full open will be approximately 60 to 70 degrees. Thus, the transmitter-actuating arm will be horizontal when the valve is halfway open (approximately 30 degrees up and 30 degrees down). At valve closed position the transmitter will have a 4 mA output and at fully open position the transmitter will have a 20 mA output.

- 2. You will need the following tools to calibrate and align the X117C:A.) A small flat blade screwdriver to fit the span and null
 - potentionmeters.

B.) A ruler for measuring location of transmitter arm and valve actuating stem and spool.

Valve Position Transmitter

C.) A 4-20 mA calibration/tester or multiamp-tester/meter or some means of measuring the 4-20 mA transmitter output,

- D.) A small (9/64 inch) hexagon key wrench to fit the transmitter adjustable roller arm,
- E.) A small (3/32 inch) hexagon key wrench to fit the spool setscrew,
- F.) Hand tools to tighten X117C assembly after calibration is complete.

<u>IMPORTANT CAUTION</u>: The transmitter does not have over travel stops. Use care to insure that rotary travel does not exceed 80 degrees from "center" (free) position in either direction during start up and operation. Damage to the transmitter could occur.

3. Make preliminary mechanical settings (Refer to Drawing No. 16767). Be sure that the valve is in the fully closed position. See Technical Manual for main valve for information on this. Be sure that line isolation or block valves are closed. Be sure that the Function Switch in the transmitter is in the "CW" position.

4. Adjust bracket and transmitter to preliminary centerline distance "C" for valve size. See Table. This is distance between valve actuating stem centerline (actuates vertically up and down) and transmitter actuating arm pivot centerline (rotates vertically up and down). Install spool on actuating stem.

5. Position the actuating arm. With valve in closed position, loosen setscrews on spool and actuating arm. First, completely loosen actuating arm adjusting screw to allow the knurled shaft of the transmitter to return to "center" (free) position. Then, adjust actuating arm in or out on the knurled shaft so that the actuating arm roller is making good contact with the lower lip of the spool and does not contact the center of the spool. The actuating arm should be about 30 degrees down from pivot horizontal centerline.

After loosening the setscrew, move the spool by hand (up and down) to check that the roller and spool are in alignment throughout entire valve stroke. The actuating arm should not be moved more than 30 degrees up or down from horizontal centerline of knurled shaft. The centerline of the roller should not be past the lower lip or rim of the spool at any valve position. You may have to adjust the length of the actuating arm when doing this.

You will feel the spring restoring force of the transmitter as you do this step. This restoring force allows the roller to maintain contact with the lower lip of the spool throughout the entire valve stroke. The spool must now be adjusted into place by moving the spool slightly (approximately 1/4") upward to engage this spring force. Tighten spool setscrew when the actuating arm is angled about 30 degrees downward.

6. Remove transmitter cover and temporarily connect calibration wiring equipment (milliamp meter and power supply or portable instrumentation calibrator/tester to transmitter screw terminals.).

Refer to calibration equipment and adjust potentiometer marked "NULL" until the meter reads 4 mA. A clockwise turn increases output. Use care in adjusting the potentiometer by not pressing in on the adjusting stem while turning the screwdriver. This will affect the reading.

ALTERNATE METHOD: Loosen setscrew on spool and adjust until its centerline is lined up with centerline of transmitter actuating arm pivot centerline (actuating stem and actuating arm should be at 90 degrees to each other). Mark top and bottom of spool location on stem at this 'halfway' position. Determine valve stroke by multiplying .281 times the valve seat diameter. Measure half the valve stroke down from bottom of the spool and mark the stem. Move the spool down until the bottom of the spool is aligned with the new mark on the stem. Tighten the spool setscrew. Loosen the screw that holds roller arm in place and move roller arm end into spool. Adjust location of transmitter on bracket so that roller is in place inside spool and slightly touching the bottom lip or rim of spool. The transmitter spring restoring force helps locate the roller on the lower lip of the spool throughout the entire valve stroke. The roller arm should be at an angle of between 30 and 40 degrees below the horizontal centerline of the pivot arm.

7. For the most accurate calibration it is necessary to open valve fully. **CAUTION**: This will either allow a high flow rate through the valve, or the downstream pressure will quickly increase to the inlet pressure. In some cases, this can be very harmful. Where this is the case, and there are no block valves in the system to protect the downstream piping, it should be realized that steps should be taken to remedy this situation before proceeding further. Normally, block valves are to be used to protect downstream piping while the valve is in the open position. Close downstream block valve. Vent cover chamber to atmosphere. Slightly open inlet block valve. Allow valve to open while fluid is vented from cover chamber. When flow stops valve is in the fully open position. Note: continuous leakage from cover chamber could mean additional troubleshooting of the main valve or pilot system must be done.

8. With valve in fully open position, inspect position of spool and roller arm. Actuating arm roller should be making good contact with the lower lip or rim of the spool and the centerline of the roller should not be past the lower lip or rim of the spool (see Step 5). Adjust if necessary.

Refer to calibration equipment (see Step 6) and adjust potentiometer marked "SPAN" until the meter reads 20 mA. A clockwise turn increases output. Use care in adjusting the potentiometer by not pressing in on the adjusting stem while turning the screwdriver. This can affect the reading.

ALTERNATE METHOD: If it is not possible to cycle valve position without damage, then with valve remaining in the "valve closed" position loosen the spool piece setscrew and slide spool upward to the original "halfway" marks on the stem. Adjust the "SPAN" potentiometer until the meter reads 12 mA. Slide the spool piece down until the meter reads 4 mA and tighten setscrew on spool. This method is less accurate than fully cycling valve but will work.

9. There is some interplay between: 1.) The "span" and "null" settings, 2.) The 4 to 20 mA signal and, 3.) The actual valve open and closed positions. Repeat steps above. Cycle valve from open to closed positions and check settings as necessary to achieve desired valve position signal accuracy.

10. Remove all calibration equipment and attach permanent wiring. Recheck wiring and output signals at remote location. See **Wiring** section. Reinstall housing on transmitter. Recheck and tighten all fasteners. Bleed air from main valve cover through small bleed screw and washer located on one wrench flat of adapter.

ADJUSTING OPTIONAL LIMIT SWITCHES

These switches are supplied with X117CLS models and are factory set to operate at valve closed position.

1. Lift cam follower arm.

2. Move cam wheel axially to disengage teeth on wheel from teeth on shaft disc.

3. Turn cam wheel to desired position. Turning in direction

of shaft rotation advances operate point. Pretravel **decreases** and over travel thereby **increases**. Each notch on the cam wheel represents an operating point change of 7 degrees 20 seconds arc. The symbols on the cam wheel simplify changing rotation from clock wise to counterclockwise to center neutral, or vice versa.

The switch operates on clockwise **and** counterclockwise rotation, the pointer on the cam follower lines up with symbol [Λ] or symbol [/I] on the cam wheel. Maximum pretravel of 15 degrees occurs when symbol [/I] lines up. Maximum pretravel of 80 degrees occurs when symbol [Λ] lines up. Operation is in the direction of the inclined surface of the symbol when [Λ] or [/I] lines up with the pointer on the cam follower.

4. When cam wheel has been rotated to desired location, release cam wheel to engage with mating shaft disc.

5. Release cam follower arm.

MAINTENANCE

The X117C and X117CLS are constructed of durable materials which normally requiring no lubrication or periodic maintenance. The two 'O' rings (2) (p/n 00951E) in the adapter (5) that seal against the stainless steel actuating stem (1) will need replacement if signs of leakage at the stem occur.

For replacement circuit board use p/n 3080206A. When installing a new circuit board be sure that the small black and white plastic bearing piece connecting the X117C main shaft to the circuit board mounted potentiometer shaft remains in the transmitter housing. It is not part of the replacement circuit board.

Figure 2. Rear View with Cover Removed

Right position:CW (viewed from front).

Left position:CCW Output increases with counter-clockwise rotation of shaft (viewed from front).

Typical Wiring Connections:

Potentiometer

Output Terminals

REFERENCE:

Valve Size (inch)		"C" Dim. (inch)
100 Series	600 Series	
1 1/4 & 1 1/2		.60
2		.75
2 1/2		.88
3	4	1.00
4	6	1.13
6	8	1.50
8	10	1.88
10	12	2.00
12	16	2.87
14		3.00
16	20 & 24	3.25

SPECIFICATIONS:

Voltage compliance range: 12.5 to 40 VDC Maximum load resistance:

RL Max. = $\frac{V \text{ Supply - }}{12.5}$

20 mA

Current signal output: 4-20mA Span: Adjustable from 15° to 90° of angular rotation Null: 4 mA position may be set at any angular position RI 2 is current monitoring instrumentation load

2 2 2

- MODEL - X117D Valve Position Transmitter

DESCRIPTION

The Cla-Val Model X117D Valve Position Transmitter is designed to provide analog signal (4 - 20 mA, 2 wire) output of valve position for Cla-Val Main Valves. A stem extension is fitted to the main valve stem with the position transmitter mechanically linked to it. The valve stem is mechanically linked to the electronics for an output signal that is in direct proportion to valve position. Provisions are made for bleeding air from valve cover through a small bleed screw and washer located on adapter.

INSTALLATION

Normally, the X117D is supplied mounted on the Cla-Val main valve. If X 117D has not been installed at factory, then install stem, adapter, mounting bracket with transmitter (in that order) as shown on drawing No. 200000.

OPERATION

The signal from the position sensing linkage mechanism is converted to a two-wire 4 to 20 mA current output appearing at the output terminals. The excitation voltage ranges from 12 to 35 Volts DC. The minimum supply voltage is a function of total loop resistance. It may be calculated using the formula:

 $V(min) = (0.02 \times Load Resistance) + 12 VDC$

WIRING

Loosen jam nut holding transmitter and bracket to adapter when connecting transmitter to field wiring. Tighten jam nut after connections and adjustments are made.

Use good field wiring practices for low voltage DC analog instrumentation wiring (suggest minimum of 18-gauge multistrand wire). Avoid potential ground loops. Calibration of transmitter should be done with a temporary hookup of test equipment before final wiring connections are made.

Units with NEMA 6, IP-68 enclosures have permanently attached 8' shielded cable leads. Use Red wire for positive and Black wire for negative.

Units before Feb. 2000 have NEMA 6 enclosure with MS3102E-14S-6PAmphenol plug and socket for attaching leads. Use "A" contact for positive and "B" contact for negative.

For best noise immunity, use twisted pair shielded cable to connect field wiring to the transmitter. The shield of the cable should be open at the transducer and grounded at the other end. Units with permanently attached cable are supplied with shield open inside transmitter.

CALIBRATION

1. When properly adjusted, the transmitter will have the valve closed position within 0% to 30% of total transmitter range and the valve open position within 80% to 100% of total transmitter range. At valve closed position the transmitter will have a 4 mA output and at fully open position the transmitter will have a 20 mA output.

<u>IMPORTANT CAUTION</u>: The transmitter wire rope mechanism is spring loaded to retract and can be damaged by a sudden release

of the wire rope. Use care to insure that it is returned to the transmitter very slowly during start up and operation. This damage may not be covered by warranty.

 You will need the following tools to calibrate and align the X117D: A.) A small flat blade screwdriver (.105 Max. width x .023" max. thickness) with non-metallic handle to fit the span and null potentiometer

B.) A 4-20 mA calibration/tester or multiamp-tester/meter or some means of measuring the 4-20 mA transmitter output C.) Hand tools to adjust and tighten X117D assembly during calibration

3. Preliminary mechanical settings. (Refer to Drawing No. 200000) Be sure that the valve is in the fully **closed** position. See Technical Manual for the main valve for information on this. Check that line isolation or block valves are closed.

Adjust Nut Coupler (9) up or down on stem until gap between wire rope end and transmitter housing is according to table (below). The Hex Coupler (10) is used to tighten nut coupler to stem. A minimum gap is required, see Reference Table. (Refer to Drawing No. 200000)

Long threaded end of Hex Coupler (10) has two hex nuts (11) for adjusting position of end of wire rope directly over the opening in the top of the transmitter. Use one hex nut on each side of the wire rope end. Wire rope should go vertically up and down without noticeable angle from vertical.

4. Temporarily connect calibration equipment (milliamp meter and power supply or portable instrumentation tester) to transmitter wiring. Calculate total loop resistance to determine minimum load resistor. See <u>OPERATION</u> section. Remove two calibration cover screws found on housing end.

Refer to calibration equipment and adjust transmitter potentiometer marked "NULL" until the meter reads 4 mA. A clockwise turn increases output. Use care in adjusting the potentiometer while turning the screwdriver.

5. For the most accurate calibration it is necessary to open valve fully. CAUTION: This will either allow a high flow rate through the valve, or the downstream pressure will guickly increase to the inlet pressure. In some cases, this can be very harmful. Where this is the case, and there are no block valves in the system to protect the downstream piping, it should be realized that steps should be taken to remedy this situation before proceeding further. Normally, block valves are to be used to protect downstream piping while the valve is in the open position. Close downstream block valve. Vent cover chamber to atmosphere. Slightly open inlet block valve. Allow valve to open while fluid is vented from cover chamber. When flow stops valve is in the fully open position. Note: continuous leakage from cover chamber could mean additional troubleshooting of the main valve or pilot system must be done.

6. With valve in fully open position, inspect position of wire rope and nut coupler. (See Step 3). Adjust if necessary.

Refer to calibration equipment (see Step 4) and adjust potentiometer marked "SPAN" until the meter reads 20 mA. A clockwise turn increases output. Use care in adjusting the potentiometer while turning the screwdriver.

7. There is some interplay between:

- 1.) the "span" and "null" settings,
- 2.) the 4 to 20 mA signal and,
- 3.) the actual valve open and closed positions.

Repeat steps 4-6 above. Cycle valve from open to closed positions and check settings as necessary to achieve desired valve position signal accuracy.

Remove all calibration equipment and attach permanent 8. wiring. Recheck wiring and output signals at remote location. See Wiring section. Reinstall two cover screws on housing. Recheck and tighten all fasteners. Bleed air from main valve cover through small bleed screw and washer located on one wrench flat of adapter.

MAINTENANCE

The X117D is constructed of durable materials which normally requiring no lubrication or periodic maintenance. The two 'O' rings (2) (p/n 00951E) in the adapter (5) that seal against the stainless steel actuating stem (1) will need replacement if signs of leakage at the stem occur.

Coupler gap is set with valve in fully closed position. This establishes the minimum mechanical position for 4 mA output.

ADJUSTMENT: Zero and span adjustments allow setting the 4 mA position (valve closed) within 0% to 30% of total transmitter range and setting the 20 mA position (valve fully open) within 80% to 100% of total transmitter range.

				"GAP"	
X117D	Valve Size (inch)		Valve Stem	Coupler	Transmitter Total
Part Number	100-01	100-20	Travel (inch)	GAP (inch)	Range
20000019F	1 1/4		0.400	3/16"	1"
20000019F	1 1/2		0.490	3/16"	1"
20000020A	2	3	0.590	1/8"	1"
20000020A	2 1/2		0.714	1/16"	1"
20000021A	3		0.835	1/16"	1"
20000001A	4	6	1.109	9/16"	2"
2000002A	6	8	1.584	3/16"	2"
20000003A	8	10	2.242	7/16"	3"
20000004A	10	12	2.711	1/8"	3"
20000005A	12	16	3.343	5/16"	4"
2000006A	14	N/A	3.920	9/16"	5"
20000007K	16	20 & 24	4.584	3/16"	5"
2000008J	24	N/A	6.504	2 1/4"	10"
	1				

N-X117D (R-5/05)

