Welded Beam Attachment Fig. 66

Using Hanger Rod with Attachment in Inverted Position.

1¼" Rod Dia. and Smaller Only.

2" Rod Dia. and Larger are Fabricated.

13/4" Rod Dia. and Smaller are Formed using Bolt or Pin and Eye Rod.

Material Specifications

Size Range

$3 / 8^{\prime \prime}$ through $31 / 2$ "

Material

Carbon Steel

Finish

\square Plain
\square Hot-Dip Galvanized

Service

Recommended for attachment to bottom of beams, especially where loads are considerable and rod sizes are large.

Maximum Temperature

Plain $750^{\circ} \mathrm{F}$, Galvanized $450^{\circ} \mathrm{F}$

Approvals

Complies with Federal Specification
A-A-1192A (Type 22), WW-H-171-E (Type 22),
ANSI/MSS SP-69 and MSS SP-58 (Type 22).

Installation

If flexibility at the beam is desired, use with bolt and eye rod Fig. 278 or with weldless eye nut Fig. 290. If vertical adjustment is desired, use with threaded rod and nut and weld the attachment in an inverted position to the beam.

Features

- Will accommodate very heavy loads and rod sizes through $31 / 22^{2}$.
- Can be installed so as to provide for either flexibility or for vertical adjustment.
- Versatility affords economical stocking and erection.
- Beam size need not be considered.

Ordering

Specify rod size, figure number, name and finish. Sizes 1 " and smaller are typically supplied with a bolt and nut. Sizes $1 \frac{1}{4} 4^{\prime \prime}$ and larger are typically supplied with a pin and cotters.

An ASC Engineered Solution

PROJECT INFORMATION	APPROVAL STAMP
Project:	\square Approved
Address:	\square Approved as noted
Contractor:	\square Not approved
Engineer:	Remarks:
Submittal Date:	
Notes 1:	
Notes 2:	page 1
SS-01.15	SS-SUB-66-v0120220217

Welded Beam Attachment

Fig. 66

Dimensions (In) - Load (Lbs) - Weight (Lbs)

$\begin{gathered} \text { Rod Size } \\ \text { A } \end{gathered}$	Pin or Bolt Size	Max Load		Weight		Rod Take Out		B	H	R	S	T
		$650^{\circ} \mathrm{F}$	$750^{\circ} \mathrm{F}$	Without Bolt \& Nut	With Bolt \& Nut	E	E'					
In.	In.	Lbs.	Lbs.	Lbs.	Lbs.	In.						
3/8	$1 / 2 \times 21 / 2$	730	572		1.2	17/8			9/16			
1/2	$5 / 8 \times 21 / 2$	1,350	1,057	0.96	1.3			2	11/16	7/8	$11 / 4$	$1 / 4$
5/8	$3 / 4 \times 23 / 4$	2,160	1,692		1.6	$13 / 4$			13/16			
$3 / 4$	$7 / 8 \times 4$	3,230	2,530	1.9	2.8				15/16	11/8	17/8	
7/8	1×4	4,480	3,508	2.5	3.9	25/8			11/8	$11 / 4$	2	
1	$11 / 8 \times 5$	5,900	4,620	4.3	6.3	$2^{3 / 4}$	3	3	$11 / 4$	11/2		1/2
$11 / 4$	$13 / 8 \times 53 / 8$	9,500	7,440	8.1	10.2	27/8		4	11/2	2	21/2	5/8
$11 / 2$	$15 / 8 \times 6$	13,800	10,807	-	19.0	-	4		$13 / 4$	21/2	3	
$13 / 4$	$17 / 8 \times 67 / 8$	18,600	14,566	-	24.2	-			2	$2^{3 / 4}$	$3^{3 / 4}$	
2	$21 / 4 \times 67 / 8$	24,600	19,265	-	30.6	-			$2^{3 / 8}$	$31 / 4$		1/2
$2^{1 / 4}$	$21 / 2 \times 73 / 8$	32,300	25,295	-	36.8	-			25/8	$31 / 2$		
21/2	$23 / 4 \times 75 / 8$	39,800	31,169	-	39.7	-	53/4		27\%	$3^{3 / 4}$		
23/4	3×7	49,400	38,687	-	40.8	-			31/8		$33 / 4$	
3	$31 / 4 \times 7$	60,100	47,066	-	46.7	-	61/4		33/8			
$31 / 4$	$31 / 2 \times 73 / 4$	71,900	56,307	-	62.1	-	7		35/8			
$31 / 2$	$33 / 4 \times 73 / 4$	84,700	66,331	-	72.4	-	$71 / 2$	8	37/8			

