Halsey Taylor, WaterSentry® VII

Lead, Chlorine, Taste & Odor, and Particulate Class I Reduction Filter Part No. 55897C For HWF172 - WaterSentry® VII

FOR COMMERCIAL USE ONLY PERFORMANCE DATA SHEET

The WaterSentry® VII filter is tested and certified by NSF International to NSF/ANSI 42 and 53 for the reduction of Chlorine, Taste and Odor, Particulate Class I, and Lead.

IMPORTANT NOTICE: Read this Performance Data Sheet and compare the capabilities of this unit with your actual water treatment needs. It is recommended that, before purchasing a water treatment unit, you have your water supply tested to determine your actual water treatment needs.

NOTICE: Do not use with water that is microbiologically unsafe or of unknown quality without adequate disinfection before or after the system.

CAUTION: Use on cold water line only. Do not allow installed filter to freeze.

RECOMMENDED USE CONDITIONS					
Capacity	1500 Gallons 1 Year Maximum	Maximum Pressure	105 PSI (7.4 Kg/cm²)		
Flow Rate	1.5 GPM	Mision of December 1	00 DOL (4.4 Ka (a aa2)		
Temperature	40-100° F (5-38° C)	Minimum Pressure	20 PSI (1.4 Kg/cm ²)		

NOTE: Performance will vary depending on local water conditions. While testing was performed under standard laboratory conditions actual performance may vary.

NOTE: This system and installation shall comply with applicable state and local regulations.

Instructions For Installing Replacement Filters IMPORTANT NOTE

To avoid danger of an electric shock hazard, disconnect power to your unit before installing or replacing the filter.

- 1. Turn off water supply; dispense water to relieve pressure
- 2. Turn used filter counterclockwise 1/4 turn to remove from filter head.
- 3. Remove cap from new filter and use to seal used filter.
- 4. Insert new filter into existing filter head and turn fully clockwise.
- 5. Turn on water supply and run a minimum of two gallons of water through the filter to purge air and fine carbon particles from filter. Also run water through glass filler (if provided).

er	
	Your Authorized Representative
	Buyer
	Seller

LIMITED WARRANTY

The Halsey Taylor_® WaterSentry[®] VII is warranted to be free from defects in material and workmanship for a period of one year from the date of installation. Warranty is limited to repair or replacement of defective component.

NSF/ANSI 42	NSF/ANSI 53
Chlorine Reduction Particulate Class I Reduction Taste and Odor Reduction	Lead Reduction

Performance Test Conditions				
Capacity	1500 Gallons (5678 I)			
Flow Rate	1.5 gpm (2.8 l/m)			
Pressure	60 psi (4.2 kg/cm²)			
Temperature	68-70°F (20-21°C)			

This system has been tested according to NSF/ANSI 42 and 53 for reduction of the substances listed below. The concentration of the indicated substances in water entering the system was reduced to a concentration less than or equal to the permissible limit for water leaving the system, as specified in NSF/ANSI 42 and 53.

Table 1 Lead Reduction

Contaminant	Average Influent	Effluent	Average % Reduction / Minimum % Reduction	Maximum Effluent	Influent Challenge Concentration	Max. Permissible Product Water Concentration
Lead (pH 6.5)	.150 mg/l		98.9% / 94.1%		.15 ± 10% mg/l	.010 mg/l
Lead (pH 8.5)	.142 mg/l	<0.0005 mg/l	>99.6% / >99.6%	<0.0005 mg/l	.15 ± 10% mg/l	.010 mg/l

Average concentrations are the arithmetic mean of all reported influent or effluent concentrations (The detection limit value shall be used for any non-detectable concentrations.) The percent reduction shall be calculated from the arithmetic mean of the influent and effluent concentrations.

Table 2 Aesthetic Chlorine Reduction

		Maximum Effluent	Units	Minimum % Reduction	Influent Challenge Concentration	Reduction Requirement
1.97 mg/l	.02 mg/l	.02 mg/l	mg/l	99.0	2.0 mg/l ±10%	≥50%

Table 3 Particulate Class I Reduction (Particle Size: 0.5 - 1 micron)

	Average Influent	_	Maximum Effluent	Units	Minimum % Reduction	Influent Challenge Concentration	Reduction Requirement
l	76,613	183	405	particles/ml	99.5	min. 10,000 particles/ml	≥85%

PRINTED IN U.S.A.