GENERAL INFORMATION

SNAKE+®

Internally Threaded Screw Anchor

PRODUCT DESCRIPTION

The Snake+ anchor is an internally threaded, self-tapping screw anchor designed for performance in cracked and uncracked concrete. Suitable base materials include normal-weight concrete, lightweight concrete and concrete over steel deck. The Snake+ screw anchor is installed into a drilled hole with a power tool and a Snake+ setting tool. After installation a steel element is threaded into the anchor body.

GENERAL APPLICATIONS AND USES

Tension zone / cracked concrete

- Suspending conduit, cable trays and strut
 Interior low level corrosion environment
- Seismic attachments (SDC A F)
- Fire sprinklers and pipe supports
- Suspended lighting

FEATURE AND BENEFITS

- + Cracked concrete approved alternative to a dropin anchor
- + Designed for use in holes drilled with standard ANSI carbide drill bits
- + Anchor design allows for shallow embedment and mechanically interlocks with base material
- + Internally threaded anchor for easy adjustment and removability of threaded rod or bolt
- + Fast anchor installation with a powered impact wrench
- + Hammer not used for installation

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-2272 for concrete; code compliant with the 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC and 2012 IBC/IRC.
- Tested in accordance with ACI 355.2 and ICC-ES AC193 for use in concrete under the design provisions of ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 (Appendix D)
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (anchor Category 1)
- Evaluated and qualified by an accredited independent testing laboratory for reliability against brittle failure, e.g. hydrogen embrittlement
- Evaluated and qualified by an accredited independent testing laboratory for supplemental recognition in redundant fastening applications
- FM Global (Factory Mutual) 3/8" diameter, see FM Approval Guide Pipe hanger components for automatic sprinkler systems

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors and 05 05 09 - Post-Installed Concrete Anchors. Internally threaded anchors shall be Snake+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor Component	Specification
Anchor Body	Case hardened carbon steel
Plating	Zinc plating according to ASTM B633, SC1, Type III (Fe/Zn 5) Minimum plating requirements for Mild Service Condition

SECTION CONTENTS

General Information	1
Material Specifications	1
Installation Specifications	2
Installation Instructions	3
Strength Design Information	4
Design Strength Tables (SD)	6
Redundant Fastening	7
Performance Data (ASD)	9
Ordering Information	9

SNAKE+

INTERNAL THREAD VERSION

- Unified coarse thread (UNC)
- **ANCHOR MATERIALS**
- Zinc plated carbon steel body

ANCHOR SIZE RANGE (TYP.)

• 1/4", 3/8" and 1/2" diameters

SUITABLE BASE MATERIALS

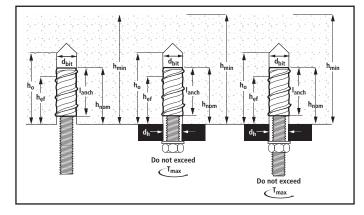
- Normal-weight concrete
- Lightweight concrete
- Concrete over steel deck

ANCHORS SNAKE+®

INSTALLATION SPECIFICATIONS

Installation Information for Snake+ Screw Anchor

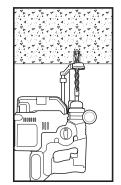
Anchor Property/	Notation	Units	Nominal Anchor Size / Threaded Coupler Diameter (inch)				
Setting Information	Notation	Units	1/4	3/8	1/2		
Nominal outside anchor diameter	da	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.750 (19.1)		
Internal thread diameter (UNC)	d	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)		
Minimum diameter of hole clearance in fixture for steel insert element (following anchor installation)	dh	in.	5/16	7/16	9/16		
Nominal drill bit diameter (ANSI)	dыt	in.	3/8	1/2	3/4		
Minimum hole depth	h₀	in. (mm)	2 (51)	2 (51)	2-1/2 (64)		
Overall anchor length	lanch	in. (mm)	1-1/4 (32)	1-1/4 (32)	1-11/16 (43)		
Minimum nominal embedment depth ²	hnom	in. (mm)	1-5/8 (41)	1-5/8 (41)	2-3/16 (55)		
Effective embedment	h _{ef}	in. (mm)	Not Applicable ³	1.10 (28)	1.54 (39)		
Max impact wrench power (torque)	T _{screw}	ftlb. (N-m)	120 (163)	345 (468)	345 (468)		
Max tightening torque of steel insert element (threaded rod or bolt)	T _{max}	ftlb. (N-m)	4 (6)	8 (11)	36 (49)		
Approximate internal thread depth	-	in.	11/32	23/32	15/16		
	Anchor	s Installed in Co	ncrete Construction ²	•			
Minimum member thickness ²	h _{min}	in. (mm)	Not Applicable ³	4 (102)	4 (102)		
Minimum edge distance ²	Cmin	in. (mm)	Not Applicable3	3 (76)	4 (102)		
Minimum spacing distance ²	Smin	in. (mm)	Not Applicable ³	3 (76)	4 (102)		
Anch	ors Installed in th	e Topside of Co	ncrete-Filled Steel Deck Ass	emblies ⁴	· · · · · ·		
Minimum member topping thickness	h _{min,deck}	in. (mm)	Not Applicable ³	3-1/4 (83)	-		
Minimum edge distance	Cmin,deck,top	in. (mm)	Not Applicable ³	3 (76)	-		
Minimum spacing distance	Smin,deck,top	in. (mm)	Not Applicable ³	3 (76)	-		

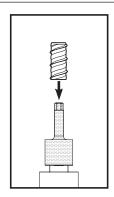

1. The information presented in this table is to be used in conjunction with the design criteria of 318 (-19 or -14) Chapter 17 or ACI 318-11 Appendix D, as applicable.

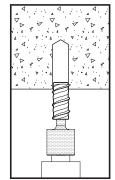
2. For installations through the soffit of steel deck into concrete, see installation detail. Anchors in the lower flute may be installed with a maximum 1-inch offset in either direction from center of the flute. In addition, anchors shall have an axial spacing along the flute equal to the greater of 3h for 1.5 times the flute width.

3. The 1/4-inch diameter anchor is limited to redundant fastening design only.

4. For 3/8-inch diameters installed in the topside of concrete-filled steel deck assemblies, steel installation detail.


Dimensional Sketch for Snake+ Screw Anchor Installed with Steel Insert Element

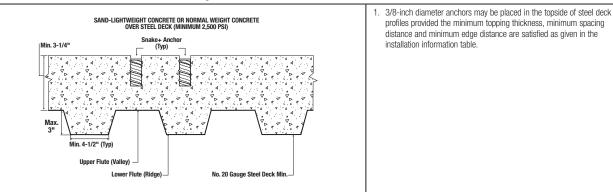

INSTALLATION INSTRUCTIONS


Step 1

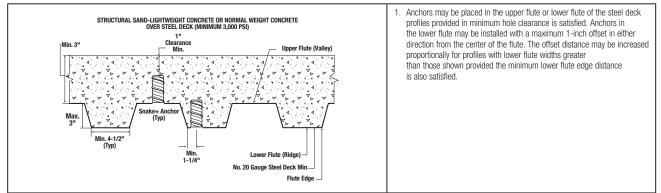
Using the proper drill bit size, drill a hole into the base material to the required depth (e.g. dust extractor, hollow bit). The tolerances of the carbide drill bit used should meet the requirements of ANSI Standard B212.15.

Step 2

Select a powered impact wrench that does not exceed the maximum torque, Tsrew, for the selected anchor diameter. Attach the Snake+ setting tool supplied by DEWALT to the impact wrench. Mount the anchor onto the setting tool.


.

Step 3 Drive the anchor into the hole until the shoulder of the Snake+ setting tool comes into contact with the surface of the base material. Do not spin the setting tool off the anchor to disengage.


Step 4

Insert threaded rod or a bolt into the Snake+, taking care not to exceed the maximum specified tightening torque of the steel insert element, T_{max} . Minimum thread engagement should be at least one anchor diameter.

Installation Detail for Snake+ Installed in the Soffit of Concrete over Steel Deck floor and Roof Assemblies

STRENGTH DESIGN INFORMATION

Tension Design Information for Snake+ Anc	hors ^{1,2}				CODE LISTED ICC-ES ESR-2272
Design Characteristic	Notation		nits	Nominal An	chor Diameter
-		0		3/8 inch	1/2 inch
Anchor category	1,2 or 3	-		1	1
Nominal embedment depth	h _{nom}	in. (mm)		1-5/8 (41)	2-3/16 (55)
	STEEL STR	ENGTH IN TENSI	ON ⁴		· · · ·
		ksi	ASTM A36		6.0 248)
Minimum specified yield strength of steel insert element	fy	(N/mm²)	ASTM A193,	105.0	
			Grade B7	(724)	1 i8.0
Minimum specified ultimate strength			ASTM A36	(4	100)
of steel insert element	uta	(N/mm²)	ASTM A193, Grade B7	125.0 (862)	-
ffective tensile stress area of steel insert element	Ase, N		n²	0.0775	0.1419
	7 SE, N	(m	1m²)	(50) 4.495	(92) 8,230
Steel strength in tension	N _{sa}	lb	ASTM A36	(20.0)	(37.0)
	1 VSd	(kN)	ASTM A193, Grade B7	9,685 (43.1)	-
Reduction factor for steel strength ³	φ	-		\ /	0.65
CO	NCRETE BREAKO	UT STRENGTH I	N TENSION [®]		
ffective embedment	h _{ef}		n. nm)	1.10 (28)	1.54 (39)
ffectiveness factor for uncracked concrete	Kucr	· · · · ·	-	24	30
iffectiveness factor for cracked concrete	Kcr	-		17	24
Modification factor for cracked and uncracked concrete ⁵	Ψc,N	- in.		3	1.0
ritical edge distance (uncracked concrete)	Cac	(mm)		(76)	(102)
ritical edge distance, topside of concrete-filled teel decks with minimum topping thickness ¹⁰	Cac,deck,top	in. (mm)		3 (76)	-
eduction factor for concrete breakout strength ³	ϕ	(**	-	(-)	n B = 0.65
	PULLOUT ST	RENGTH IN TENS	r		1
Characteristic pullout strength, ncracked concrete (2,500 psi) ⁶	Np,uncr		lb <n)< td=""><td>See note 7</td><td>See note 7</td></n)<>	See note 7	See note 7
Characteristic pullout strength,	N _{p,cr}	lb		See note 7	1,665
racked concrete (2,500 psi) ^e Reduction factor for pullout strength ³	φ	<u>`</u>	<n) -</n) 	0.65 (C	(7.4) ondition B)
5	1	ISION FOR SEISI	WIC APPLICATIONS	,	
Characteristic pullout strength, seismic (2,500 psi)6	Np,eq		lb <n)< td=""><td>See note 7</td><td>1,665 (7.4)</td></n)<>	See note 7	1,665 (7.4)
Reduction factor for pullout strength ³	φ	`	-	Condition	(7.4) n B = 0.65
PULLOUT STRENGTH IN TENSION FOR SO		GHT WEIGHT AN	D NORMAL-WEIGH		
Characteristic pullout strength, Incracked concrete over steel deck®	Np,deck,uncr		lb <n)< td=""><td>1,515 (6.7)</td><td>1,625 (7.2)</td></n)<>	1,515 (6.7)	1,625 (7.2)
Characteristic pullout strength,	No.deck.cr	`	lb	1,075	1,300
cracked concrete over steel deck ^{6,9}	INp,deck,cr	`	(N)	(4.8)	(5.8)
Characteristic pullout strength, racked concrete over steel deck, seismic ^{6,9}	N _{p,deck,eq}		lb ≺N)	1,075 (4.8)	1,300 (5.8)
eduction factor for pullout strength, concrete over steel deck ³	ϕ		-	Condition	n B = 0.65
 The data in this table is intended to be used with the design provisions combinations the additional requirements of ACI 318-19 17.10, ACI 3 Installation must comply with published instructions and details. All values of φ were determined from the load combinations of IBC Set Appendix C are used, the appropriate value of φ must be determined i Appendix C are used, the appropriate value of φ must be determined if Appendix C are used, the appropriate value of φ must be determined if Snake+ anchor Snake+ anchor is considered a brittle steel element in tension as defined used for design. For all design cases use <i>V_{EP}</i> = 1.0. The appropriate effectiveness fact. For all design cases use <i>V_{EP}</i> = 1.0. For concrete compressive strengi concrete over steel deck the value of 2,500 must be replaced with the accordance with the corresponding version of ACI 318. For anchors in pullout strength does not control design of ACI 318. For anchors in pullout values provided in not required. Values for N_{Apdex} are for sand-lightweight concrete (f[*]c,min = 3,000 ps breakout capacity in accordance with ACI 318-19 17.6.2, ACI 318-14 	18-14 17.2.3 or A(ction 1605.2, ACI 3 n accordance with 19 17.5.3, ACI 31 is a ductile steel el d by AACI 318 (-19 tor for cracked cor th greater than 2,5 value of 3,000. alculate pullout stra modification factor stalled in the soffit i) and additional lig 17.4.2 or ACI 318	Cl 318-11 D.3.3, a 318 (-19 and -14) 318 (-19 and -14) 8-131 D.4.4 8-14 17.3.3(c) or ement with minimu and -14) 2.3 or AC crete (k _{er}) and unc 00 psi, N _P = (pull- ength for indicated λ_{n} equal to 0.8 λ of sand-lightweigh htweight concrete (-11 D.5.2, as app	as applicable, must a Section 5.3 or ACI 3 For reinforcement th ACI 318-11 D.4.3(c) Im specified propertie D 318-11 D.1, as applicated concrete (Kum out strength from tab anchor size and em is applied to all valu t concrete-filled stee reduction factors ne licable, is not require	pply. 18-11 Section 9.2. If the load i hat meets ACI 318 (-19 and -1 , as applicable, for the appropri- as as listed in the table or an equ- plicable. Tabulated values for ste m) must be used. lee)*(specified concrete compression bedment. lees of $\sqrt{f^{T}c}$ affecting N _n and V _n . I deck and floor and roof assem- ed not be applied. In addition, e ed for anchors installed in the d	combinations ACI 318-11 4) Chapter 17 or ACI 318-11 tate ϕ factor. uivalent steel element. The sel strength in tension must be ssive strength/2,500) ⁶⁵ . For λ shall be determined in hblies, further reduction of the evaluation for the concrete eck soffit (flute).
 10. Anchors are permitted in the topside of concrete-filled steel deck asser Assemblies with Minimum Topping Thickness 1-800-4 DEWALT. 					

Internally Threaded Screw Anchor

SNAKE+®

				Nominal Anchor Diameter		
Design Characteristic	Notation		Units -	3/8 inch	1/2 inch	
Anchor category	1,2 or 3		-	1	1	
Nominal embedment depth	hnom		in. (mm)	1-5/8 (41)	2-3/16 (55)	
	STEEL ST	ENGTH IN SHE		(**)	()	
Steel strength in shear ^s	Vsa	lb	ASTM A36	770 (3.4)	1,995 (8.9)	
otori suongui in onodi		(kN)	ASTM A193, Grade B7	1,655 (7.4)	-	
Reduction factor for steel strength ³	ϕ		-	0	.60	
STEE	L STRENGTH IN SHI	AR FOR SEISN	IIC APPLICATIONS			
Steel strength in shear, seismic ^{7}	Vsa.eq	lb	ASTM A36	770 (3.4)	1,995 (8.9)	
olooi oloongan in onodi, oolonno	v 5d,64	(kN)	ASTM A193, Grade B7	1,655 (7.4)	-	
Reduction factor for steel strength ³	ϕ		-	Condition	n B = 0.60	
	CONCRETE BREAK	OUT STRENGTH	I IN SHEAR		2	
Nominal outside anchor diameter	da	(in. (mm)	0.500 (12.7)	0.750 (19.1)	
Load bearing length of anchor	le		-	1.10 (28)	1.54 (39)	
Reduction factor for concrete breakout strength ³	ϕ		-	Condition	n B = 0.70	
	PRYOUT ST	RENGTH IN SH	EAR			
Coefficient for pryout strength	Kcp		-	1.0	1.0	
Effective embedment	hef	(in. (mm)	1.10 (28)	1.54 (39)	
Reduction factor for pryout strength ³	ϕ		-	Condition	n B = 0.70	
STEEL STRENGTH IN SHEAR FOR SO	FFIT OF SAND-LIGH	r weight and	NORMAL-WEIGHT	CONCRETE OVER STEEL DEC	r	
Steel strength in shear, concrete over steel deck [®]	Vsa.deck	lb	ASTM A36	770 (3.4)	1,995 (8.9)	
Steel Strength III Sheal, Concrete Over Steel Ueck	V SA, OECK	(kN)	ASTM A193, Grade B7	1,655 (7.4)	-	
Steel strength in shear, concrete over steel deck, seismic ^s	Vale	lb	ASTM A36	770 (3)	1,995 (8.9)	
oreor arongur in anear, concrete over ateer ueon, selatille	Vsa,deck,eq	(kN)	ASTM A193, Grade B7	1,665 (7.4)	-	

1. The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-19 17.10, ACI 318-14 17.2.3 or ACI 318-11 D.3.3 shall apply.

2. Installation must comply with published instructions and details.

3. All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318 (-19 and -14) Section 5.3, or ACI 318-11 Section 9.2, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D, as applicable, requirements for Condition A, see ACI 318-19 17.5.3, ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for the appropriate ϕ factor.

4. It is assumed that the threaded rod or bolt used with the Snake+ anchor will be a ductile steel element as defined by ACI 318 (-19 and -14) 2.3 or ACI 318-11 D.1, as applicable.

5. Tabulated values for steel strength in shear must be used for design. These tabulated values are lower than calculated results using equation 17.7.1.2b in ACI 318-19 17.5.1.2b in ACI 318-14, D-29 in ACI 318-11, and ACI 318-14 17.5.1.2 or ACI 318-11 D.6.1.2, as applicable.

6. Anchors are permitted to be used in lightweight concrete provided the modification factor λ_a equal to 0.8 λ is applied to all values of $\sqrt{f'c}$ affecting Nn and Vn. λ shall be determined in accordance with the corresponding version of ACI 318. For anchors installed in the soffit of sand-lightweight concrete-filled steel deck and floor and roof assemblies, further reduction of the pullout values provided in not required.

7. Tabulated values for steel strength in shear are for seismic applications and based on test results in accordance with ACI 355.2 Section 9.6.

8. Tabulated values for Vsa, deck are for sand-lightweight concrete (f'c,min = 3,000 psi) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-19 17.7.2, ACI 318-14 17.5.2 or ACI 318-11 D.6.2, as applicable, and the pryout capacity in accordance with ACI 318-19 17.7.3, ACI 318-14 17.5.3 or ACI 318-11 D.6.3 are not required for anchors installed in the deck soffit (flute).

9. Shear loads for anchors installed through steel deck into concrete may be applied in any direction.

DESIGN STRENGTH TABLES (SD)

• TA '.'

ANCHORS & FASTENERS

Tension and Shear Design Strengths for Snake+ Anchors Installed in Cracked Concrete^{1,2,3,4,5,6,7}

		Steel	Minimum Concrete Compressive Strength, f'c (psi)									
Nominal Anchor	Nominal Embed.	Insert Element	2,5	00	3,0	00	4,0	00	6,0	00	8,0	00
Size (in.)	ize hnom (Threaded	(Threaded Rod or	$\begin{array}{c} \phi_{\rm Nn} \\ {\rm Tension} \\ {\rm (lbs.)} \end{array}$	ØVn Shear (Ibs.)	ϕ Nn Tension (Ibs.)	ØVn Shear (Ibs.)	ØNn Tension (Ibs.)	ØVn Shear (Ibs.)	ØNn Tension (Ibs.)	ØVn Shear (Ibs.)	ϕ Nn Tension (Ibs.)	ØVn Shear (Ibs.)
0.40	1 5/0	ASTM A36	635	500	700	500	805	500	985	500	1,140	500
3/8	1-5/8	ASTM A193 Grade B7	635	685	700	750	805	870	985	1,065	1,140	1,075
1/2	2-3/16	ASTM A36	1,080	1,295	1,185	1,295	1,370	1,295	1,675	1,295	1,935	1,295

🗖 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strengths for Snake+ Anchors Installed in Uncracked Concrete^{1,2,3,4,5,6}

		Steel	Minimum Concrete Compressive Strength, f'c (psi)									
Nominal Anchor	Nominal Embed.	Insert Element	2,500		3,0	3,000		4,000		00	8,000	
Size (in.)	h _{nom} (in.)	(Threaded Rod or Bolt)	ϕ Nn Tension (Ibs.)	ØVn Shear (Ibs.)	ØNn Tension (Ibs.)	ØVn Shear (Ibs.)	ØNn Tension (Ibs.)	ØVn Shear (Ibs.)	ϕ Nn Tension (Ibs.)	ØVn Shear (Ibs.)	$\begin{array}{c} \phi {\rm Nn} \\ {\rm Tension} \\ {\rm (lbs.)} \end{array}$	ØVn Shear (Ibs.)
0./0	1 5/0	ASTM A36	900	500	985	500	1,140	500	1,395	500	1,610	500
3/8	1-5/8	ASTM A193 Grade B7	900	970	985	1,060	1,140	1,075	1,395	1,075	1,610	1,075
1/2	2-3/16	ASTM A36	1,865	1,295	2,040	1,295	2,355	1,295	2,885	1,295	3,335	1,295
🗌 - Anchor Pu	llout/Pryout Stre	ngth Controls 🔲	- Concrete Bre	- Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 🔲 - Steel Strength Controls								

1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions:

- c_{a1} is greater than or equal to the critical edge distance, c_{ac} (table values based on $c_{a1} = c_{ac}$).

- C_{a2} is greater than or equal to 1.5 times C_{a1} .

2- Calculations were performed according to ACI 318-19 Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, hef, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.

3- Strength reduction factors (ø) were based on ACI 318-19 Section 5.3 for load combinations.

Condition B is assumed.

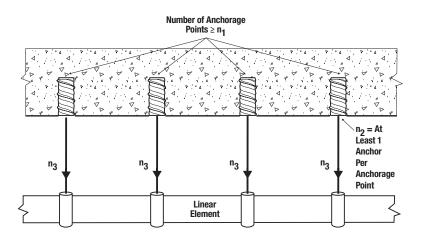
4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.

5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-19 Chapter 17.

6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-19 Chapter 17. For other design conditions including seismic considerations please see ACI 318-19 Chapter 17.

7- For seismic design in accordance with ACI 318, the tabulated tension design strengths for concrete breakout and pullout must be multiplied by a factor of 0.75.

nternally Threaded Screw Anchor


REDUNDANT FASTENING

Redundant Fastening Applications

For an anchoring system designed with redundancy, the load maintained by an anchor that experiences failure or excessive deflection can be transmitted to neighboring anchors without significant consequences to the fixture or remaining resistance of the anchoring system. In addition to the requirements for anchors, the fixture being attached shall be able to resist the forces acting on it assuming one of the fixing points is not carrying load. It is assumed that by adhering to the limits placed on n_1 , n_2 and n_3 below, redundancy will be satisfied.

Anchors qualified for redundant applications may be designed for use in normal weight and sand-lightweight cracked and uncracked concrete. Concrete compressive strength of 2,500 psi shall be used for design. No increase in anchor capacity is permitted for concrete compressive strengths greater than 2,500 psi. The anchor installation is limited to concrete with a compressive strength of 8,500 psi or less.

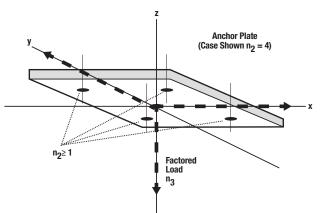
Redundant applications shall be limited to structures assigned to Seismic Design Categories A or B only. Redundant applications shall be limited to support of nonstructural elements.

Strength Design (Redundant Fastening):

For strength design, a redundant system is achieved by specifying and limiting the following variables

- $\label{eq:n1} n_1 = \text{the total number of anchorage points supporting the} \\ \text{linear element}$
- $n_2 =$ number of anchors per anchorage point
- n_3 = factored load at each anchorage point, lbs., using load combinations from IBC Section 1605.2.1 or ACI 318 (-19 and -14) Section 5.3 or ACI 318-11 Section 9.2.

Strength Design (SD)


Design values for use with strength design shall be established taking $\phi_{ra} \bullet F_{ra}$. See redundant fastening design information table for Snake+ design resistance.

Allowable Stress Design (Redundant Fastening):

Design values for use with allowable stress design shall be established taking R_{d} , ASD = $\phi_{ra} \bullet F_{ra}$

$$ASD = \frac{\phi_{ra} \bullet F_{ra}}{\swarrow}$$

Where α is the conversion factor calculated as the weighted average of the load factors from the controlling load combination. For example, the conversion factor, α is equal to 1.4 assuming all dead load.

- REV. D

TECHNICAL GUIDE - MECHANICAL ANCHORS ©2022 DEWALT

ECHANICAL ANCHORS

nternally Threaded Screw Anchor

KE+®

Installation Information for Snake+ Screw Anchor in Redundant Fastening Applications

Anchor Property/	Netstian	Unito	Nominal Anchor Size / Threaded Couplier Diameter (inch)				
Setting Information	Notation	Units	1/4	3/8	1/2		
Nominal drill bit diameter (ANSI)	d _{bit}	in.	3/8	1/2	3/4		
Nominal embedment depth	hnom	in. (mm)	1-5/8 (41)	1-5/8 (41)	2-3/16 (55)		
Effective embedment	h _{ef}	in. (mm)	1.10 (28)	1.10 (28)	1.54 (39)		
Minimum hole depth	h₀	in. (mm)	2 (51)	2 (51)	2-1/2 (64)		
Minimum concrete member thickness	h _{min}	in. (mm)	3 (76.2)	3 (76.2)	3 (76.2)		
Overall anchor legnth	lanch	in. (mm)	1-1/4 (32)	1-1/4 (32)	1-11/16 (43)		
Minimum edge distance, redundant fastening ¹	$C_{min} = C_{ac}$	in. (mm)	4 (102)	4 (102)	4 (102)		
Minimum spacing distance, redundant fastening ¹	Smin	in. (mm)	8 (203)	8 (203)	8 (203)		
Max impact wrench power (torque)	T _{screw}	ftlb. (N-m)	120 (163)	345 (468)	345 (468)		
Max tightening torque of steel insert element (threaded rod or bolt)	T _{max}	ftlb. (N-m)	4 (6)	8 (11)	36 (49)		
Approximate internal thread depth	-	in. (mm)	11/32	23/32	15/16		

Redundant Fastening Design Information for Snake+ Anchors^{1,2,3}

Netetion	Ilmite			Nominal A	nchor Size		
NULALIUII	UIIIts	1/	1/4"		3/8"		2"
1,2 or 3	-		1	1		1	
h _{nom}	in. (mm)	1-5/8 (41)				2-3/16 (55)	
HARACTERISTIC	STRENGTH (RES	SISTANCE) INST	ALLED IN CON				
							per of ge points
Fra	lb (kN)	n1 ≥ 4	n1 ≥ 3	n1 ≥ 4	n₁ ≥ 3	n1 ≥ 4	n1 ≥ 3
		550 (2.5)	360 (1.6)	675 (3.0)	450 (2.0)	675 (3.0)	450 (2.0)
$\phi_{ m ra}$	-			0.	65		
I (RESISTANCE)	FOR SAND-LIGH	TWEIGHT AND	NORMAL WEIG	HT CONCRETE O	VER STEEL DE	CK ^{4,6}	
							per of ge points
Fra,deck		n1 ≥ 4	$n_1 \geq 3$	$n_1 \geq 4$	n₁ ≥ 3	n1 ≥ 4	$n_1 \geq 3$
	(101)	550 (2.5)	360 (1.6)	675 (3.0)	450 (2.0)	675 (3.0)	450 (2.0)
$\phi_{ m ra}$	-	0.65					
	hnom HARACTERISTIC Fra \$\phi ra \$\phi ra Fra,deck	1,2 or 3 - hnom in. (mm) HARACTERISTIC STRENGTH (RES Fra Ib (kN) ϕ_{ra} - I (RESISTANCE) FOR SAND-LIGH Fra,deck Ib (kN)	Image: black line Image: black line Image: black line h_{nom} in. 11 h_{nom} in. 11 HARACTERISTIC STRENGTH (RESISTANCE) INST (4) HARACTERISTIC STRENGTH (RESISTANCE) INST Int ≥ 4 F_{ra} $b_{(kN)}$ $n_1 ≥ 4$ F_{ra} $ n_1 ≥ 4$ fra_{ceck} $for sand-Lightweight and interval F_{ra,deck} b_{(kN)} n_1 ≥ 4 F_{ra,deck} b_{(kN)} n_1 ≥ 4 $	$ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	Notation Units 1/4" 3/ 1,2 or 3 - 1 3/ 1,2 or 3 - 1 1.5/8 1.5/8 hnom in. (mm) 1.5/8 1.5/8 1.5/8 HARACTERISTIC STRENGTH (RESISTANCE) INSTALLED IN CONCRETE*5 1 4 HARACTERISTIC STRENGTH (RESISTANCE) INSTALLED IN CONCRETE*5 1 1 Fra Ib (kN) Number of n1 ≥ 4 N1 ≥ 3 N1 ≥ 4 fra Ib (kN) N1 ≥ 4 N1 ≥ 3 N1 ≥ 4 fra - - 0.0 0.0 ϕ_{ra} - - 0.0 0.0 ϕ_{ra} - 0.0 0.0 0.0 $fra,deck$ FOR SAND-LIGHTWEIGHT AND NORMAL WEIGHT CONCRETE O 0.0 Fra,deck Ib (kN) Number of (2.5) N1 ≥ 3 N1 ≥ 4 ft 2 4 N1 ≥ 3 N1 ≥ 4 0.1 ≥ 4 0.1 ≥ 4	$ \begin{array}{ c c c c c c } \hline \mbox{1/4"} & \mbox{3/8"} \\ \hline \mbox{1,2 or 3} & - & 1 & 1 \\ \hline \mbox{1,2 or 3} & & & & & & & & & & & & & \\ \hline \mbox{1,2 or 3} & & & & & & & & & & & & & & & & & & $	Notation Units 1/4" 3/8" 1/1 1,2 or 3 - 1 1 1/1 1/1 1,2 or 3 - 1 1 1 1/1 1/1 1,2 or 3 - 1 1 1 1/1

For SI: 1 inch = 25.4 mm, 1 lbf = 0.0044 kN.

DEWALI

ANCHORS & FASTENERS

1. The data in this table is intended to be used with the design provisions of Section 4.3 of this report; loads may be applied in tension, shear or any combination thereof.

2. Installation must comply with published instructions and this report.

3. All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318 (-19 and -14) Section 5.3 or ACI 318 (-11) Section 9.2, as applicable.

4. It is assumed that the threaded rod or bolt used with the Snake+ anchor has properties as listed in Tension Design Information table.

5. Anchors are permitted to be used in lightweight concrete provided the design strength ϕ_n F_n is multiplied by the modification factor λ_n . The modification factor λ_n is equal to 0.8 λ , λ shall be determined in accordance with the corresponding version of ACI 318. For anchors installed in the soffit of sand-lightweight concrete-filled steel deck and floor and roof assemblies, further reduction of the pullout values provided in not required.

6. For installations through the soffit of steel deck into concrete see the installation detail. Anchors in the lower flute may be installed with a maximum 1-inch offset in either direction from center of the flute. In addition, anchors shall have an axial spacing along the flute equal to the greater of 3her or 1.5 times the flute width.

<

ECHANICAL ANCHORS

PERFORMANCE DATA (ASD)

Ultimate Tension Load Capacities for Snake+ Anchors in Normal-Weight Concrete^{1,2,3,4}

			Minimum Concrete Compressive Strength								
Nominal Anchor	Minimum Embedment	f'c = 2,500 p	si (17.2 MPa)	f'c = 3,000 p	si (20.7 MPa)	f'c = 4,000 p	si (20.7 MPa)	f'c = 6,000 psi (41.4 MPa)			
Diameter in.	Depth in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)		
1/4	1-5/8 (41)	2,130 (9.5)	1,045 (4.6)	2,335 (10.4)	1,045 (4.6)	2,335 (10.4)	1,045 (4.6)	-	-		
3/8	1-5/8 (41)	2,165 (9.7)	1,045 (4.6)	2,370 (10.6)	1,045 (4.6)	2,735 (10.6)	1,045 (4.6)	3,190 (14.2)	1,045 (4.6)		
1/2	2-3/16 (55)	5,590 (24.9)	2,050 (9.1)	6,125 (27.3)	2,050 (9.1)	7,075 (27.3)	2,050 (9.1)	7,240 (32.0)	2,050 (9.1)		

1. Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

3. The tabulated load values are applicable to single anchors in uncracked concrete installed at critical spacing distance between anchors and at critical edge distance.

4. Ultimate shear capacity is controlled by steel strength of ASTM A36 element (or equivalent).

ORDERING INFORMATION

Carbon Steel Snake+ Screw Anchor

Cat. No.	Nominal Anchor Size	Internal Thread Size (UNC)	Anchor Outside Diameter	Std. Pack	Std. Ctn.				
6400SD-PWR	1/4"	1/4"-20	3/8"	100	1,000				
6401SD-PWR	3/8"	3/8"-16	1/2"	50	500				
6403SD-PWR	1/2"	1/2"-13	3/4"	50	300				
1. Each box comes v	1. Each box comes with one setting tool.								

Setting Tool for Snake+ Screw Anchor

Cat. No.	Nominal Anchor Size	Std. Pack
6402SD-PWR	1/4"	1
6407SD-PWR	3/8"	1
6404SD-PWR	1/2"	1

Impact Wrench Selection Guide

Anahon Califing Information	Nominal Anchor Diameter (Inch)								
Anchor Setting Information	1/4"		3/	8"	1/2"				
Max Impact Wrench Power	120	ft-lbs	345	ft-lbs	345 ft-lbs				
Suggested 20V Max Impact Wrench, Tool Setting / Speed and Cat. No.	Full Speed	Speed 1	Speed 1	Speed 2	Speed 1	Speed 2			
	DCF902	DCF921, DCF922, DCF923, DCF891, DCF892, DCF900	DCF911, DCF913, DCF900	DCF921, DCF922, DCF923, DCF891, DCF892	DCF911, DCF913, DCF900	DCF921, DCF922, DCF923, DCF891, DCF892			

DEWALT Impact Wrenches

Cat. No.	DCF901	DCF903	DCF911	DCF913	DCF921	DCF922	DCF923	DCF891	DCF892
Anvil Size	3/8"	1/2"	3/8"	1/2"	1/2"	3/8"	1/2"	1/2"	1/2"
Anvil Type	Hog Ring	Detent	Hog Ring	Hog Ring	Detent				
MAX Fastening Torque	Speed 1: 250 ft-lbs	Speed 1: 250 ft-lbs	Speed 1: 250 ft-lbs	Speed 1: 250 ft-lbs	Speed 1: 100 ft-lbs Speed 2: 300 ft-lbs	Speed 1: 100 ft-lbs Speed 2: 300 ft-lbs	Speed 1: 100 ft-lbs Speed 2: 300 ft-lbs	Speed 1: 100 ft-lbs. Speed 2: 300 ft-lbs. Speed 3: 600 ft-lbs	Speed 1: 100 ft-lbs. Speed 2: 300 ft-lbs. Speed 3: 600 ft-lbs

