Iternally Threaded Expansion Anchor

MT

DRO

LOW-SE

GENERAL INFORMATION

DEWALT

ANCHORS & FASTENERS

HOLLOW-SET DROPIN[™]

Internally Threaded Expansion Anchor

PRODUCT DESCRIPTION

The Hollow-Set Dropin anchor is designed for anchoring in hollow base materials such as hollow concrete block and precast hollow core plank. It can also be used in solid base materials.

Concrete masonry blocks often have a maximum outer wall thickness of 1-1/2". During the drilling process, spalling on the back side of the wall often decreases the wall thickness, leaving only 1" or less for anchoring. The Hollow-Set Dropin is designed to perform in this environment, where most conventional style anchors will not function properly.

GENERAL APPLICATIONS AND USE

- Anchoring to Concrete Block
- Fastening to Precast Hollow Core Plank
- · Cable Trays and Strut Suspended Lighting

Suspending Conduit

Fire Sprinkler

- Pipe Supports
 - Removable Anchorage

FEATURE AND BENEFITS

- + Internally threaded anchor for easy bolt removability and service work
- + Unique expansion design allows for anchoring in thin-walled base materials
- + Versatile setting options allows for hollow or solid base materials

APPROVALS AND LISTINGS

- Tested in accordance with ASTM E488 in uncracked concrete
- Underwriters Laboratories (UL) File EX1289, see listing for sizes.

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 - Post-Installed Concrete Anchors. Anchors shall be Hollow-Set Dropin as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	1
Material Specifications	2
Installation Specifications	2
Performance Data	3
Design Criteria (Allowable Stress Design)	4
Ordering Information	6

HOLLOW-SET DROPIN

ANCHOR MATERIALS

• Zamac Alloy Anchor Body with: - Carbon Steel Cone or 304 Stainless Steel Cone

ROD/ANCHOR SIZE RANGE (TYP.)

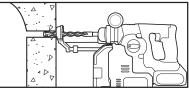
• 1/4" through 5/8" diameters

SUITABLE BASE MATERIALS

- Normal-Weight Concrete
- Precast Hollow Core Plank
- Hollow or Grout Filled Concrete Masonry (CMU)
- Brick Masonry

ECHANICAL ANCHOR

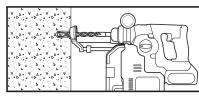
HOLLOW-SET DROPINTM Internally Threaded Expansion Anchor


MATERIAL SPECIFICATIONS

Anchor Component	Carbon Steel	Stainless Steel
Anchor Body	Zamac Alloy	Zamac Alloy
Cone	AISI C1008	304 Stainless Steel
Plating (Cone)	ASTM B633, SC1, Type III (Fe/Zn 5)	N/A

INSTALLATION SPECIFICATIONS

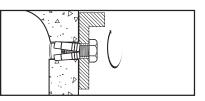
Dimension		Rod//	Anchor Diame	ter, d	
Dimension	1/4"	5/16"	3/8"	1/2"	5/8"
ANSI Drill Bit Size, dbit (in.)	3/8	5/8	5/8	3/4	1
Maximum Tightening Torque, T _{max} (ftlbs)	3-4	5-7	8-10	15-20	30-40
Thread Size (UNC)	1/4-20	5/16-18	3/8-16	1/2-13	5/8-11
Overall Anchor Length (in.)	7/8	1-5/16	1-5/16	1-3/4	2
Sleeve Length (in.)	5/8	15/16	15/16	1-1/4	1-1/2
Thread Length In Cone (in.)	3/8	5/8	5/8	3/4	1


Installation Instructions for Hollow Base Materials

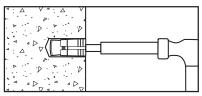
In hollow base materials, drill through into the cell or void. The tolerances of the drill bit used must meet the requirements of ANSI Standard B212.15.


Remove dust and debris from the hole during drilling (e.g. dust extractor, hollow bit) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.

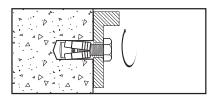
Installation Instructions for Solid Base Materials


Drill a hole into the base material to the required embedment depth. The tolerances of the drill bit used must meet the requirements of ANSI Standard B212.15.

Remove dust and debris from the hole during drilling (e.g. dust extractor, hollow bit) or following drilling (e.g. suction, forced air) to extract loose particles created by drilling.


Do not expand the anchor prior to installation. Insert cone end and tap anchor body flush to surface.

If Hollow-Set Tool is used, thread anchor onto tool prior to tapping into anchor hole.


Position fixture, insert bolt and tighten. The bolt should engage a minimum of 2/3 of the anchor threads.

The anchor can also be expanded using a Hollow-Set Tool. If using Hollow-Set Tool, when anchor body is flush with surface, turn tool clockwise to tighten. Release tool from set anchor by turning counterclockwise. Fixture can then be attached.

Insert the anchor into the hole. Position the setting tool in the anchor.

Using the Solid-Set Tool, set the anchor by driving the anchor body over the cone using several sharp hammer blows.

Be sure the anchor is at the required embedment depth, so that anchor body does not protrude above the surface of the base material. Position the fixture, insert bolt or threaded rod and tighten.

DEWALT	
ANCHORS & FASTENERS	

NCHORS

NICA

nternally Threaded Expansion Anchor

TM

DROPII

HOLLOW-SE1

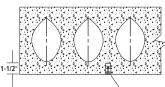
PERFORMANCE DATA

Ultimate and Allowable Load Capacities for Hollow-Set Dropin in Normal-Weight Concrete^{1,2,3,4,5}

Ded/	Minimum		Minimum Concrete Compressive Strength, f 'c										
Rod/ Anchor	Embed		2,00	0 psi			4,00	0 psi			6,00	0 psi	
Diameter d	Depth hv	Ten	sion	Sh	ear	Ten	sion	Shear		Ten	sion	Sh	ear
in. (mm)	in. (mm)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable lbs. (kN)
1/4	3/4	760	190	1,200	300	1,140	285	1,200	300	1,440	360	1,200	240
	(19)	(3.4)	(0.8)	(5.3)	(1.3)	(5.1)	(1.3)	(5.3)	(1.3)	(6.4)	(1.6)	(5.3)	(1.1)
(6.4)	7/8	880	220	1,440	360	1,145	285	1,440	360	1,635	410	1,440	290
	(22)	(3.9)	(1.0)	(6.4)	(1.6)	(5.1)	(1.3)	(6.4)	(1.6)	(7.3)	(1.8)	(6.4)	(1.3)
5/16	1	1,120	280	1,980	495	1,680	420	1,980	495	2,200	550	1,980	395
	(25)	(5.0)	(1.2)	(8.8)	(2.2)	(7.5)	(1.9)	(8.8)	(2.2)	(9.8)	(2.4)	(8.8)	(1.8)
(6.4)	1-1/2	2,205	550	2,740	685	2,775	695	2,740	685	3,860	965	2,740	550
	(38)	(9.8)	(2.4)	(12.2)	(3.0)	(12.3)	(3.1)	(12.2)	(3.0)	(17.2)	(4.3)	(12.2)	(2.4)
3/8	1	1,370	345	2,550	640	2,070	520	2,550	640	2,290	575	2,550	510
	(25)	(6.1)	(1.5)	(11.3)	(2.8)	(9.2)	(2.3)	(11.3)	(2.8)	(10.2)	(2.6)	(11.3)	(2.3)
(9.5)	1-1/2	2,445	610	3,145	785	2,800	700	3,145	785	4,070	1,020	3,145	630
	(38)	(10.9)	(2.7)	(14.0)	(3.5)	(12.5)	(3.1)	(14.0)	(3.5)	(18.1)	(4.5)	(14.0)	(2.8)
1/2	1-1/2	2,140	535	4,020	1,005	4,025	1,005	4,020	1,005	5,830	1,460	4,020	805
	(38)	(9.5)	(2.4)	(17.9)	(4.5)	(17.9)	(4.5)	(17.9)	(4.5)	(25.9)	(6.5)	(17.9)	(3.6)
(12.7)	2	3,780	945	4,020	1,005	5,375	1,345	4,020	1,005	7,565	1,890	4,020	805
	(51)	(16.8)	(4.2)	(17.9)	(4.5)	(23.9)	(6.0)	(17.9)	(4.5)	(33.7)	(8.4)	(17.9)	(3.6)
5/8	2-1/4	5,725	1,430	6,400	1,600	7,530	1,885	6,400	1,600	8,400	2,100	6,400	1,280
(15.9)	(57)	(25.5)	(6.4)	(28.5)	(7.1)	(33.5)	(8.4)	(28.5)	(7.1)	(37.4)	(9.3)	(28.5)	(5.7)

1. Tabulated load values are applicable to anchors with carbon and stainless steel cones in uncracked concrete.

2. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 20 or higher may be necessary depending on the application, such as life safety, overhead and in sustained tensile loading applications.


3. Linear interpolation may be used to determine allowable loads for anchors at intermediate embedment depths and compressive strengths.

4. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances. Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

5. The tabulated capacities are for the dropin anchors which must be checked against the steel strength of the corresponding threaded rod or bolt size and type, the lowest load level controls.

Ultimate and Allowable Load Capacities for Hollow-Set Dropin in Hollow Core Plank^{1,2,3,4}

Rod/ Anchor	Minimum Embedment		Minimum Concrete C f´c ≥ 5,000 p	ompressive Strength si (34.5 MPa)	1
Diameter	Depth	Ultima	te Load	Allowat	le Load
d	h√	Tension	Shear	Tension	Shear
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)
1/4	7/8	1,190	1,440	300	360
(6.4)	(22.2)	(5.4)	(6.5)	(1.4)	(1.6)
5/16	1	2,280	2,740	570	685
(7.9)	(25.4)	(10.3)	(12.3)	(2.6)	(3.1)
3/8	1	2,525	2,740	630	685
	(25.4)	(11.4)	(12.3)	(2.8)	(3.1)
(9.5)	1-1/2	3,620	3,145	905	785
	(38.1)	(16.3)	(14.2)	(4.1)	(3.5)
1/2	1-1/4	5,420	5,580	1,355	1,395
(12.7)	(31.8)	(24.4)	(25.1)	(6.1)	(6.3)
5/8	1-1/2	6,560	8,320	1,640	2,080
(15.9)	(38.1)	(29.2)	(37.4)	(7.3)	(9.4)

1. Tabulated load values are applicable to anchors with carbon and stainless steel cones in uncracked concrete. and set with sleeve flush to surface of the plank and with setting tool for solid base materials.

2. Allowable load capacities listed are calculated using and applied safety factor of 4.0. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as life safety, overhead and in sustained tensile loading applications.

3. Minimum spacing distance must not be less than eight anchor diameters (8d).

The tabulated capacities are for the dropin anchors which must be checked against the steel strength of the corresponding threaded rod or bolt size and type, the lowest load level controls.

Ultimate and Allowable Load Capacities for Hollow-Set Dropin in Hollow Concrete Masonry^{1,2,3,4,5,6,7}

	Minimum			f'm = 1,500 psi				
Rod/Anchor Diameter	Embedment	Min. Edge Distance	Min. End Distance	Ultima	te Load	Allowat	le Load	
d in.	Depth h∞ in.	in. (mm)	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	
1/4	7/8	3-3/4	3-3/4	530	785	105	155	
	(22.2)	(95)	(95)	(2.4)	(3.5)	(0.5)	(0.7)	
5/16	1	3-3/4	3-3/4	1,035	920	205	185	
	(25.4)	(95)	(95)	(4.6)	(4.1)	(0.9)	(0.8)	
3/8	1	3-3/4	3-3/4	1,225	1,175	245	235	
	(25.4)	(95)	(95)	(5.4)	(5.2)	(1.1)	(1.0)	
1/2	1-1/4*	3-3/4	3-3/4	1,520	1,240	305	250	
	(31.8)	(95)	(95)	(6.8)	(5.5)	(1.4)	(1.1)	
1/2	1-1/4*	11-1/4	11-1/4	1,520	1,825	305	365	
	(31.8)	(286)	(286)	(6.8)	(8.1)	(1.4)	(1.6)	
5/8	1-1/2*	11-1/4	11-1/4	1,790	1,870	360	375	
	(38.1)	(286)	(286)	(8.0)	(8.3)	(1.6)	(1.7)	

1. Tabulated load values are applicable to anchors with carbon and stainless steel cones.

2. Tabulated load values for anchors are installed in minimum 6" wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry cells may be grouted. Masonry compressive strength must be at specified minimum at the time of installation.

3. Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as life safety, and in sustained tensile loading applications.

4. Allowable shear load values may be increased by 100% (multiplied by 2.0) provided the applied shear loads are not loaded toward the wall edge and end.

5. The tabulated values are applicable for anchors installed into masonry wall faces or ends of block ends provided minimum edge and end distances are maintained.

6. The tabulated values are applicable to single anchors. Two anchors may be installed in the same cell provided the spacing distance between the anchors is a minimum of six diameters (6d) and the allowable loads are reduced by 50%.

7. Anchors were installed with sleeve flush to block surface and with setting tool for hollow base materials. Embedment is measured from the surface of the base material.

*Minimum face shell thickness must be minimum 1.25-inch-thick for 1/2-inch-diameter anchors and minimum 1.5-inch-thick for 5/8-inch diameter anchors.

Ultimate and Allowable Load Capacities for Hollow-Set Dropin in Solid Clay Brick Masonry^{1,2,3,4}

Rod/	Minimum	Minimum	Minimum	-	f′m ≥ 1,500 p	si (10.4 MPa)	
Anchor Diameter	Embed. Depth	Edge	End	Ultimat	te Load	Allowat	ole Load
d	h _v	Distance	Distance	Tension	Shear	Tension	Shear
in.	in.	in.	in.	Ibs.	Ibs.	Ibs.	Ibs.
(mm)	(mm)	(mm)	(mm)	(kN)	(kN)	(kN)	(kN)
1/4	7/8	6		880	1,640	175	330
(6.4)	(22.2)	(152.4)		(4.0)	(7.4)	(0.8)	(1.5)
5/16	1-1/4	8		1,460	2,230	290	445
(9.5)	(31.8)	(203.2)		(6.6)	(10.0)	(1.3)	(2.0)
3/8	1-1/4	8	8	1,860	2,980	370	595
(12.7)	(31.8)	(203.2)	(203.2)	(8.4)	(13.4)	(1.7)	(2.7)
1/2	1-1/2	10		3,240	4,230	650	845
(15.9)	(38.1)	(254.0)		(14.6)	(19.0)	(2.9)	(3.8)
5/8	2-1/4	12		4,680	6,420	935	1,605
(19.1)	(57.2)	(304.8)		(21.1)	(28.9)	(4.2)	(7.2)

1. Tabulated load values are for anchors with carbon or stainless steel cones.

Tabulated load values are for anchors installed in multiple wythe, minimum Grade SW, solid clay brick masonry walls conforming to ASTM C 62. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation (f'm ≥ 1,500 psi).

3. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as life safety, and in sustained tensile loading applications.

4. The tabulated values are for anchors installed at a minimum of 16 anchor diameters on center for 100 percent capacity. Spacing distances may be reduced to 8 anchor diameters on center provided the capacities are reduced by 50 percent. Linear interpolation may be used for intermediate spacing.

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

Where:

 $\left(\frac{\mathbf{N}\mathbf{u}}{\mathbf{N}\mathbf{n}}\right) + \left(\frac{\mathbf{V}\mathbf{u}}{\mathbf{V}\mathbf{n}}\right) \le 1$

 $N_n = Allowable$ Tension Load

Nu = Applied Service Tension Load

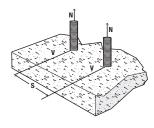
 $\begin{array}{l} V_u = \text{Applied Service Shear Load} \\ V_n = \text{Allowable Shear Load} \end{array}$

LOAD ADJUSTMENT FACTORS FOR SPACING AND EDGE DISTANCES

Anchor Installed in Normal-Weight Concrete

Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Spacing (s)	Tension and Shear	Scr = 3.0hv	FNs = Fvs = 1.0	$S_{min} = 1.5h_v$	F№s = Fvs =0.50
Edge Distance (a)	Tension	c _{cr} = 14d	Fnc = 1.0	$C_{min} = 8d$	Fnc = 0.80
Edge Distance (c)	Shear	c _{cr} = 14d	$F_{vc} = 1.0$	C _{min} = 8d	$F_{VC} = 0.50$

1. Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

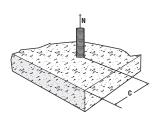

LOAD ADJUSTMENT FACTORS FOR NORMAL-WEIGHT CONCRETE

Spacing, Tension (F_{NS}) & Shear (F_{VS})

Di	a. (in.)	1/4	5/16	3/8	1/2	5/8
h	v (in.)	7/8	1-1/2	1-1/2	2	2-1/4
s	icr (in.)	2-5/8	4-1/2	4-1/2	6	6-3/4
S	min (in.)	1-3/8	2-1/4	2-1/4	3	3-3/8
	1-3/8	0.50	-	-	-	-
	2-1/4	0.86	0.50	0.50	-	-
<u>_</u>	2-5/8	1.00	0.58	0.58	-	-
(inches)	3	1.00	0.67	0.67	0.50	-
s (in	3-3/8	1.00	0.75	0.75	0.56	0.50
	4	1.00	0.89	0.89	0.67	0.59
Spacing,	4-1/2	1.00	1.00	1.00	0.75	0.67
S	5	1.00	1.00	1.00	0.83	0.74
	6	1.00	1.00	1.00	1.00	0.89
	6-3/4	1.00	1.00	1.00	1.00	1.00

Notes: For anchors loaded in tension and shear, the critical spacing (s_{er}) is equal to 3 embedment depths (3h_v) at which the anchor achieves 100% of load.

Minimum spacing (s_{min}) is equal to 1.5 embedment depths $(1.5h_{\text{v}})$ at which the anchor achieves 50% of load.

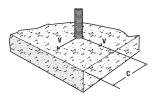


Edge Distance, Tension (F_{NC}**)**

Di	ia. (in.)	1/4	5/16	3/8	1/2	5/8
C	cr (in.)	3-1/2	4-3/8	5-1/4	7	8-3/4
C	min (in.)	2	2-1/2	3	4	5
	2	0.80	-	-	-	-
	2-1/2	0.87	0.80	-	-	-
	3	0.93	0.85	0.80	-	-
(inches)	3-1/2	1.00	0.91	0.84	-	-
	4	1.00	0.96	0.89	0.80	-
e, c	4-3/8	1.00	1.00	0.92	0.83	-
Distance, c	5	1.00	1.00	0.98	0.87	0.80
Dis	5-1/4	1.00	1.00	1.00	0.88	0.81
Edge	6	1.00	1.00	1.00	0.93	0.85
	7	1.00	1.00	1.00	1.00	0.91
	8	1.00	1.00	1.00	1.00	0.96
	8-3/4	1.00	1.00	1.00	1.00	1.00

Notes: For anchors loaded in tension, the critical edge distance (c_{cr}) is equal to 14 anchor diameters (14d) at which the anchor achieves 100% of load.

Minimum edge distance (c_{min}) is equal to 8 anchor diameters (8d) at which the anchor achieves 80% of load.



Edge Distance, Shear (Fvc)

Di	ia. (in.)	1/4	5/16	3/8	1/2	5/8
C	cr (in.)	3-1/2	4-3/8	5-1/4	7	8-3/4
C	min (in.)	2	2-1/2	3	4	5
	2	0.50	-	-	-	-
	2-1/2	0.67	0.50	-	-	-
	3	0.83	0.63	0.50	-	-
(inches)	3-1/2	1.00	0.77	0.61	-	-
(inc	4	1.00	0.90	0.72	0.50	-
e, c	4-3/8	1.00	1.00	0.81	0.56	-
Distance,	5	1.00	1.00	0.94	0.67	0.50
Dis	5-1/4	1.00	1.00	1.00	0.71	0.53
Edge	6	1.00	1.00	1.00	0.83	0.63
	7	1.00	1.00	1.00	1.00	0.77
	8	1.00	1.00	1.00	1.00	0.90
	8-3/4	1.00	1.00	1.00	1.00	1.00

Notes: For anchors loaded in shear, the critical edge distance (c_{cr}) is equal to 14 anchor diameters (14d) at which the anchor achieves 100% of load.

Minimum edge distance $(c_{\rm min})$ is equal to 8 anchor diameters (8d) at which the anchor achieves 50% of load.

TECHNICAL GUIDE - MECHANICAL ANCHORS © 2022 DEWALT - REV. C

ORDERING INFORMATION

Hollow-Set Dropin with Carbon Steel Cone

Cat. No.	Rod/Anchor Diameter	Outside Diameter	Overall Length	Pack Qty.	Carton Qty.
09320-PWR	1/4"	3/8"	7/8"	100	1,000
09330-PWR	5/16"	5/8"	1-5/16"	50	500
09340-PWR	3/8"	5/8"	1-5/16"	50	300
09350-PWR	1/2"	3/4"	1-3/4"	50	250
09360-PWR	5/8"	1"	2"	25	125

Hollow-Set Dropin with Stainless Steel Cone

Cat. No.	Rod/Anchor Diameter	Outside Diameter	Overall Length	Pack Qty.	Carton Qty.
09420-PWR	1/4"	3/8"	7/8"	100	1,000
09440-PWR	3/8"	5/8"	1-5/16"	100	500

Setting Tool for Solid Base Materials

Cat. No.	Size	Pack Qty.	Carton Qty.
09322-PWR	1/4"	1	1
09342-PWR	5/16" and 3/8"	1	1
09352-PWR	1/2"	1	1
09362-PWR	5/8"	1	1

Setting Tool for Hollow Base Materials*

Cat. No.	Size	Pack Qty.	Carton Qty.	
09323-PWR	1/4"	1	1	
09333-PWR	5/16"	1	1	
09343-PWR	3/8"	1	1	
09353-PWR	1/2"	1	1	
09363-PWR	5/8"	1	1	
* Hollow set tool for hollow block and clay brick masonry base materials.				

