BETHLEHEM STRUCTURAL SHAPES

1911

AISC E&R Library

ARCH A685

.B47

1911

5342

131

CATALOGUE

OF

BETHLEHEM STRUCTURAL SHAPES

MANUFACTURED BY

BETHLEHEM STEEL COMPANY

SOUTH BETHLEHEM, PA.

PREPARED UNDER DIRECTION OF GEORGE H. BLAKELEY, MEM. AM. SOC. C. E. MEM. AM. SOC. M. E.

GENERAL OFFICES,
At the Works, South Bethlehem, Pa.

BRANCH SALES OFFICES:

BOSTON, 141 Milk Street.

NEW YORK, 111 Broadway.

PHILADELPHIA, Morris Building.

PITTSBURGH, First National Bank Building.

CLEVELAND, 1266 Outario Street.

CHICAGO, Peoples Gas Building.

SAN FRÂNCISCO, Crocker Building.

LONDON, 25 Victoria Street, S. W.

NOTICE.

This edition of the catalogue supersedes previous issues. It differs from the 1909 edition in some unimportant changes only, and in the addition of further information relating to the use and application of the Bethlehem Sections.

Information has been added regarding Compound Columns, built of Bethlehem H Sections with cover plates, as such may be of service where columns of larger sectional area than at present rolled are needed for very heavy loads.

While the catalogue shows the 8-inch and 9-inch I Beams, Sections B8 and B9, our patrons are advised that these small beams are not rolled at present, nor until further notice. Otherwise all the sections shown in the catalogue are produced.

BETHLEHEM STEEL COMPANY.

January, 1911.

PREFACE.

BEFORE placing the Grey Mills at Bethlehem in operation, the sections proposed to be rolled were designed and published in advance for the information of engineers and architects regarding the radical improvement in structural shapes, which the enterprise of the Bethlehem Steel Company purposed to offer in this country.

For more than a year the mills have now been in most successful operation, and the proposed sections, which were an unprecedented innovation, have since been used in hundreds of structures by the leading engineers and architects of this country. The experience thus acquired with actual demand has suggested some slight modifications of the sections, increasing their adaptability for the varied uses to which they have been applied.

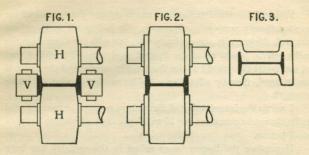
Wide flanges so greatly increase the lateral strength of beams, adapting them to many purposes for which the previous Standard beams of the country could not be used, that it was found to be an improvement to further increase the width of the flanges of the Bethlehem I beam sections. Due to the greater effective depth of section thus secured, the thickness of the webs has been slightly increased in proportion, in most instances without adding to the weight of the sections.

A uniform bevel of 9 per cent. has now been adopted for the flanges of all beam and girder sections as a metallurgical improvement, and also for reasons of mechanical convenience of production.

Considerable reduction has been made in the number of column sections rolled, though still affording the same range of sizes, from minimum to maximum, as previously. Experience with the actual demands of construction has demonstrated that the range of sizes given in the present catalog is amply sufficient for every purpose; and, as they are produced with fewer roll changes, they consequently can be furnished more promptly.

South Bethlehem, Pa. May 1, 1909.

BETHLEHEM STRUCTURAL SHAPES.


Bethlehem structural shapes have proven to be a radical improvement and advance in the field of structural steel, reducing the cost and extending the use of steel in construction. They have achieved a remarkable success, and are highly regarded and strongly endorsed by leading engineers and architects.

Bethlehem structural shapes are wide flange I beam sections rolled by the Grey Universal Beam Mill. Similar beams, 10 to 30 inches deep, with flanges 10 to 12 inches wide, have been rolled by the Grey Mill in Germany since 1902 and are used extensively in Europe, England, Canada, and elsewhere. The larger and improved Grey Mills at Bethlehem, placed in successful operation early in 1908, rendered such sections available with their numerous advantages for the first time in this country.

In regard to shape and strength, Bethlehem Sections afford great advantages unobtainable with old style Standard beams. They can be used for every purpose instead of ordinary beams, or even instead of riveted sections, with economy in weight or saving in cost of fabrication, and in most cases with a saving both in weight and in cost of fabrication.

Instead of the horizontal grooved rolls of the old style mill, the Grey Mill has both horizontal and vertical rolls, forming the web and flanges of a beam by coincident rolling operations. Wider flanges are thus obtained than can be made by former methods of rolling. The method of rolling is shown by Fig. 1, on the next page. The horizontal rolls, H, and the vertical rolls, V, are brought proportionately closer together at each successive passage of the beam through the rolls. Fig. 2 represents a supplementary mill through which the beam passes, the purpose of which is to edge the flanges only, no other work being done in this secondary mill.

For large beams the ingot is cast approximately of an I beam shape, as shown by Fig. 3, in which the outer line represents the cross-section of the ingot in relation to the finished beam, both being drawn to scale. By successive reductions the ingot is rolled into a beam of proportionate dimensions.

Shapes produced by the Grey Mill have thus a uniform work of reduction in the rolling on all parts of the section, which is not the case in beams rolled by the ordinary mill. The web is the only part of the shape actually rolled in the ordinary beam mill, the flanges being produced by crowding and dragging the metal through the flange grooves. Especially larger sizes of beams rolled by the old method show great variations in strength of the metal in the web and flanges, indicating a condition of internal stress due to the very unequal deformation in the rolling. Shapes of all sizes rolled by the Grey Mill, due to their scientific method of production, have practically a uniform quality of metal throughout the section and consequently an absence of internal stress. Such sections are safer and more reliable than beams rolled in the old way, especially when subject to impact or vibration.

In the following table this uniformity of quality is illustrated by results taken at random from numerous tests of Bethlehem sections:

Location of Test Piece.	Ultimate Strength, Lbs. per Sq. In.	Elastic Limit, Lbs. per Sq. In.	Elongation in 8 Inches.	Reduction of Area,	
30" I Beam: Web, Flange, Root,	66,550 63,190 64,480	39,960 37,200 38,880	25.6 % 26.2 " 26.3 "	50.6% 51.5 " 49.8 "	
14" H Column: Web, Flange, Root,	63,670 61,740 63,520	39,590 38,180 37,900	32.5% 31.2" 28.2"	55.2% 59.9 " 54.6 "	

Webs of Standard beams are much thicker than required for a scientifically proportioned section. It is impossible to reduce the web thickness in the ordinary mill, but with the Grey Mill the webs can be produced of the desired thickness. By adding part of the metal thus saved to the flanges, the strength of the beam is maintained, thereby affording a lighter section having the same strength.

Prior to the introduction of Bethlehem sections, American steel mills charged consumers for 10 to 15 per cent. of useless metal in steel beams.

Heretofore the largest beam rolled in this country has been 24 inches deep, weighing 100 lbs. per foot, and having a section modulus of 198. Whenever greater strength was required, a riveted girder was necessary. Bethlehem beams range to a maximum size of 30 inches deep, weighing 200 lbs. per foot, and having a section modulus of 610, or more than three times the strength of the largest beam previously rolled. The opportunity for using rolled beams instead of built-up riveted girders is, therefore, greatly increased.

Bethlehem rolled beam and girder sections can be advantageously used as girders for buildings, crane runways, short span bridges, track stringers, and for many other purposes where the more expensive type of riveted girder has heretofore been necessary. These rolled beams and rolled girders afford a saving in weight of metal and also a large economy in cost of fabrication, as they do not require the punching, assembling, and riveting necessary for building a riveted girder. The rolled beams can be obtained promptly as contrasted with the delay always experienced in procuring riveted girders.

Wide flanges give increased lateral stiffness, which commends the use of such beams in many cases, where the narrow flanges and lack of sufficient lateral rigidity prevent the use of ordinary Standard beams. Wide flanges also afford ample bearing surface and rigidity for girders for bridge floors, in which respects Standard beams are notably deficient.

Bethlehem structural shapes are designed to meet the requirements of American structural practice. Three separate types of shapes are furnished, viz.: Bethlehem I Beams, Girder Beams, and H Column sections.

Bethlehem I Beams from 8 inches to 24 inches in depth, inclusive, have the same strength, or section modulus and coefficient of strength, as Standard beams of the same depth. Bethlehem beams, due to the scientific proportion of the sections, weigh generally 10 per cent. less than Standard beams of the same depth and strength. For example, a Bethlehem 15-inch I Beam, weighing 54 lbs. per foot, has a coefficient of strength of 867,000. The corresponding Standard section is a 15-inch I beam weighing 60 lbs. per foot, having a coefficient of strength of 866,100. Therefore, for equal strength, the Bethlehem beam weighs 6 lbs. per foot less than the Standard beam, or a saving of 10 per cent. in weight.

Similar comparisons with other sizes of the Standard beams previously rolled by the mills of this country will show that the Bethlehem I beams afford an equal carrying capacity, but with practically 10 per cent. less weight of metal.

The table of "Comparison of Bethlehem I Beams with Standard I Beams," on page 41, shows the relation between the two types of beams for all sizes.

BETHLEHEM GIRDER BEAMS.

Bethlehem Girder Beams from 8 inches to 24 inches in depth, inclusive, have a strength, or section modulus and coefficient of strength, equal to that of two minimum weight Standard I beams of the same depth. The girder beam, however, weighs generally 12½ per cent. less than the combined weight of the two Standard beams, not considering the saving in weight of separators needed for assembling the Standard beams into a girder. For example, a Bethlehem 15-inch girder beam, weighing 73 lbs. per foot, has a coefficient of strength of 1,256,000. Two Standard 15-inch I beams, each weighing 42 lbs. per foot, have a total coefficient of strength of 1,256,600. Thus, for equal depth and coefficient of strength, the girder beam weighs 11 lbs. per foot less than the two Standard beams. This is a saving of 13 per cent. in weight, not including separators, which would add at least 21 lbs. per foot more to the weight of the assembled girder. In this case a total saving of 16 per cent. in weight is afforded by the Bethlehem

girder beam, besides the saving in the cost of assembling the Standard beams into a girder.

The table of "Comparison of Bethlehem Girder Beams with Girders of Standard Beams," on page 40, shows the relation between the two types of beams.

The tables on pages 40 and 41 furnish a key for the comparison of Bethlehem I beams and girder beams with Standard beams. A framing plan for Standard beam shapes may be easily revised for the use of Bethlehem beam sections. In general, no rearrangement of the plan will be necessary and no recalculation will be required, except to select the proper Bethlehem sections which are equivalent in strength to the Standard beams and girders.

BETHLEHEM ROLLED H COLUMNS.

All column shapes having the same section number are made by the same rolls. Thus, the 14-inch H columns, comprising all the weights and variations in size of sections shown on page 44, are from the same rolls, furnishing a series of rolled columns of similar shape. Columns can thus be selected of the proper areas to suit variations of load, affording a wide range of sizes from the same rolling and insuring prompt delivery.

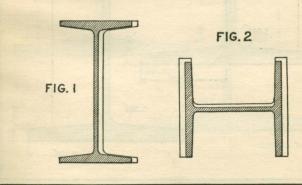
To provide for splices and connections is the only fabrication required for these rolled columns. In the case of columns with thick metal the holes require drilling, which can be done economically with a multiple drill. The saving in cost of fabricating the rolled column as compared with a built-up riveted column is a great advantage in favor of the solid rolled shape. Sections can be spliced to make a practically continuous column, and connections are easily made in the most approved manner of the best structural practice. All surfaces of the column are accessible for painting.

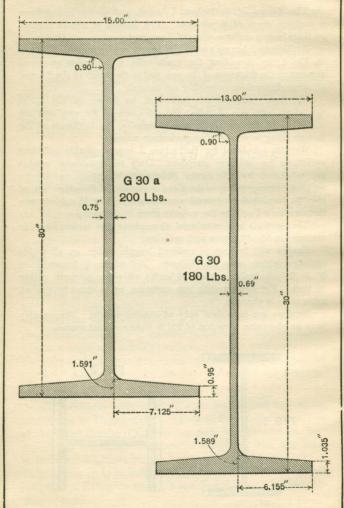
All Bethlehem sections are of open hearth steel exclusively, conforming to Manufacturers' Standard specifications, and also to American Railway Engineering and Maintenance of Way Association specifications. Material complying with any other standard specifications may be furnished by special arrangement. Large ingots, up to 10 tons in weight, are used, so that the work of reduction in rolling the shapes is sufficient to develop proper ductility of metal.

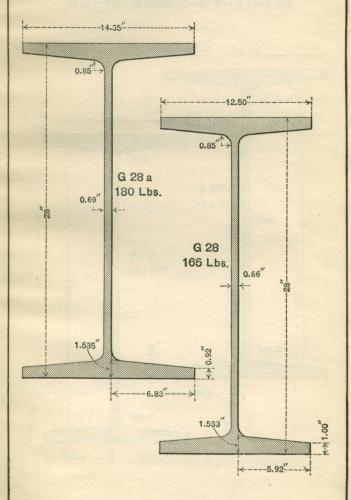
EXPLANATORY NOTES.

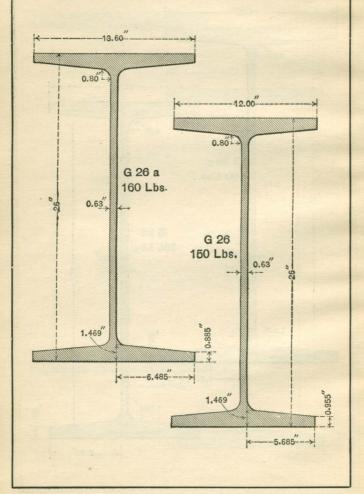
The flanges of Bethlehem I beams and girder beams have a uniform slope of 9 per cent. The flanges of the H column sections have a uniform slope of 2 per cent.

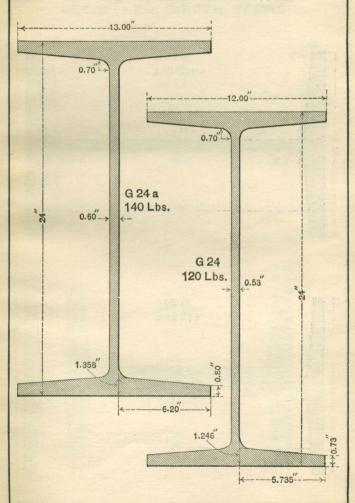
Bethlehem I beams and girder beams are increased, as shown in Fig. 1, by spreading the main rolls, which adds an equal amount to the thickness of the web and to the width of the flanges, all other dimensions remaining unchanged.

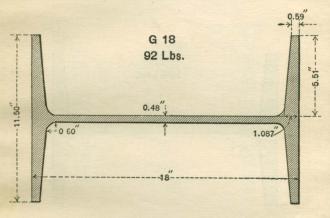

H column sections are increased, as shown in Fig. 2, by spreading both sets of rolls; the thickness of the web and the width of the flanges are increased equally, the thickness of the flanges being increased a proportionate amount.


Weights tabulated for Bethlehem I beams provide sufficient variations for ordinary purposes. Only the minimum weights are tabulated for the girder beams, Intermediate or heavier weights, corresponding to the usual variations of Standard beams, may be furnished by special arrangement. The H column sections are rolled only to the weights given in the tables.

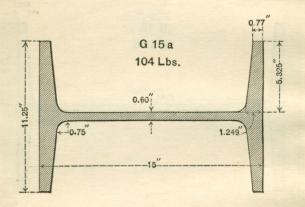

The sections are numbered throughout the tables for convenience in identification and ordering.

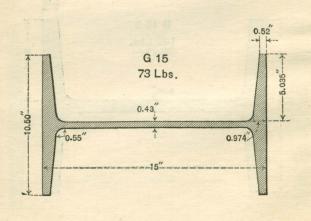

Shapes will be cut to ordered length within an allowable variation either way, as follows: Bethlehem I beams from 8" to 24", inclusive, within 3% inch; all other sections, within ½ inch. For cutting with less variation, or to exact length, an extra price is charged.

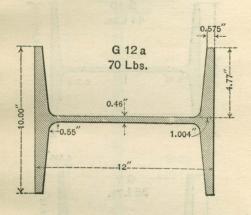

Sections are furnished only at catalog weight. Shapes may have an allowable variation of 2½% from nominal section.

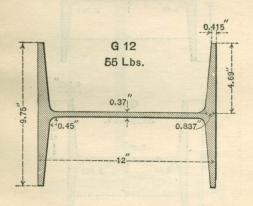


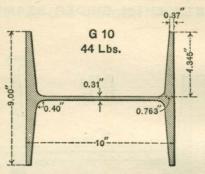


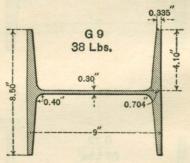


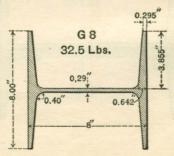


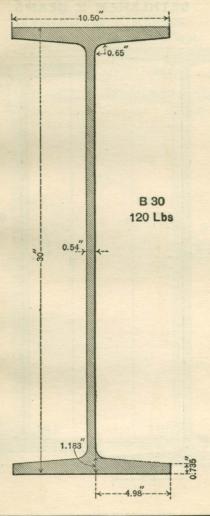


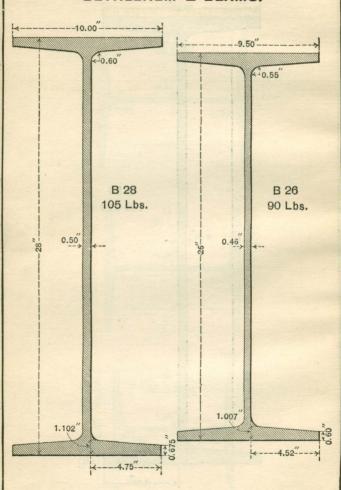


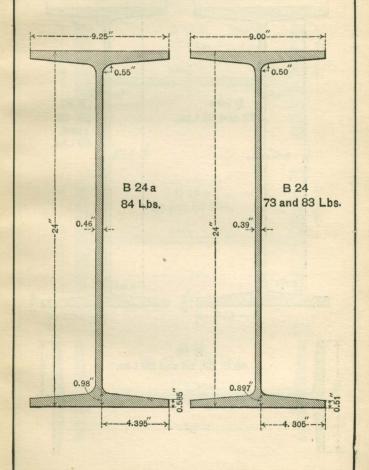


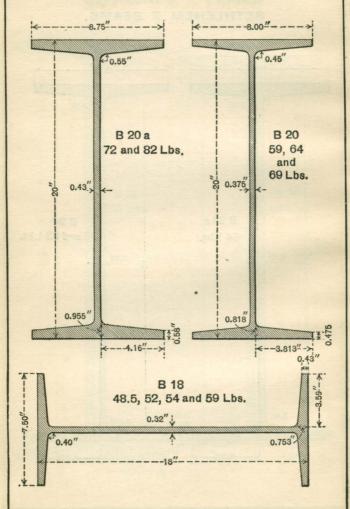


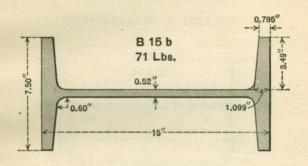


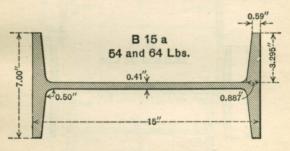


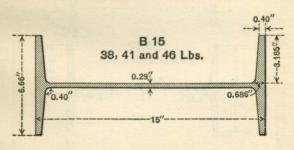


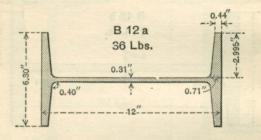


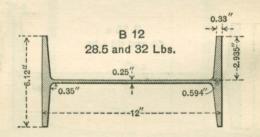


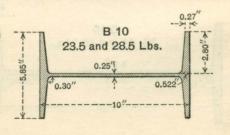

BETHLEHEM I BEAMS.

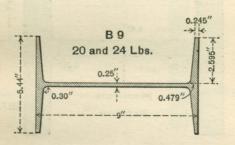


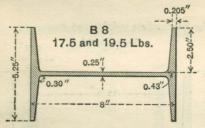


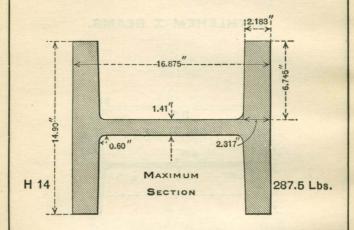


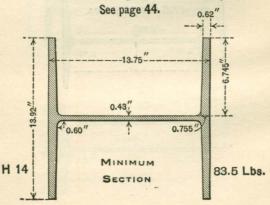


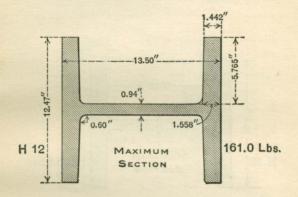


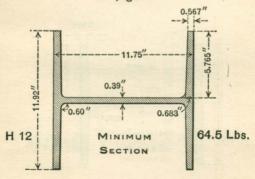


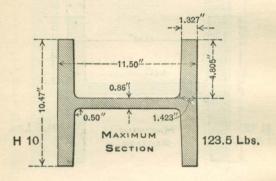


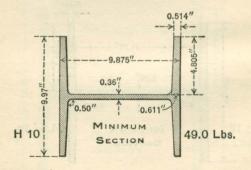


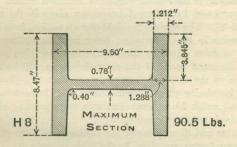


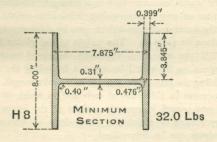





For intermediate weights and dimensions,




For intermediate weights and dimensions, See page 46.



For intermediate weights and dimensions, See page 48.

For intermediate weights and dimensions, See page 50.

DIMENSIONS AND PROPERTIES OF BETHLEHEM I BEAMS AND GIRDER BEAMS.

Weights and dimensions of all the sizes of Bethlehem I beams usually rolled are given in the table on page 33. Sufficient variations of weights are provided in general for all ordinary purposes of construction. Intermediate or heavier weights may be furnished by special arrangement, but only in variations corresponding to the regular weights of Standard beams.

Properties of Bethlehem I beams are given in the table on pages 36-37. The minimum weight of each section, from 8 inches to 24 inches in deptn, inclusive, has a coefficient of strength or section modulus equal to that of the corresponding minimum weight Standard beam of the same depth, as will be seen by reference to the table of comparison on page 41. Because of their scientifically proportioned profile, the Bethlehem beams in general weigh 10 per cent. less than corresponding old style, or Standard, beams of equal strength.

Weights and dimensions of the minimum sections of Bethlehem girder beams are given in the table on page 32. Heavier weights may be furnished by special arrangement, but only in increments corresponding to the regular weights of Standard beams.

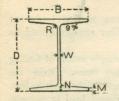
Properties of Bethlehem girder beams are given in the table on pages 34-35. From 8 inches to 24 inches in depth, inclusive, these girder beams have a coefficient of strength or section modulus equal to that of two corresponding minimum weight Standard beams of the same depth, as will be seen by reference to the table of comparison on page 40. The weight of the girder beam is in general 12½ per cent. less than the combined weight of the two corresponding Standar I beams, not including the separators for assembling the latter into a girder of equal strength.

The increase in thickness of web and in width of flanges is given for one pound increase in weight of the beam or girder section, by means of which the dimensions of intermediate or heavier weights can be determined.

Coefficients of strength are given for maximum fiber stresses of 16,000 lbs. and for 12,500 lbs. per square inch. If the loads are quiescent or nearly so, as in buildings, the coefficients for 16,000 lbs, are generally used; but when moving loads are to be supported, coefficients for smaller fiber stresses should be used.

These coefficients of strength afford a simple means of finding the safe uniformly distributed load for any beam. Divide the coefficient, given for the beam, by the length of the span in feet. The quotient is the safe uniformly distributed load in pounds, including the weight of the beam.

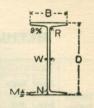
To select a beam to support a given load on a given span, find the coefficient of strength required and refer to the tables for a beam having a coefficient of that value. The coefficient required is found by multiplying the uniformly distributed load in pounds by the span in feet.


If the load is concentrated at the center of the span, the safe load is one-half the safe uniformly distributed load for the same span. To select a beam for supporting a load concentrated at the center of the span, multiply the given load by 2 and consider the result as a uniform load.

If the load is not uniformly distributed or not concentrated at the center of span, the bending moment must be employed. The moment of resistance of the beam, in foot-lbs., must be equal to the bending moment of the loading in foot-lbs. Moments of resistance, in foot-lbs., for Bethlehem beams and girder beams are given on pages 38–39.

In selecting the proper beam required to support a given leading, the section modulus may also be used. The section modulus required is found by dividing the bending moment of the loading, in inch-lbs., by the allowable fiber stress in lbs. per square inch.

The maximum fiber stress, in lbs. per square inch, in a beam supporting a given loading is found by dividing the bending moment produced by the loading, in inch-lbs., by the section modulus of the beam.


In the case of very short spans, or of heavy concentrated loads, the crippling strength of the web may limit the safe allowable load on a beam, or determine the selection of a beam for supporting a given loading. The tables give the maximum safe shear on the webs, calculated by the customary formula for that purpose, as explained on pages 66-67.

WEIGHTS AND DIMENSIONS OF

		DIMENSIONS, IN INCHES.							
Section Number.	Weight per Foot, Pounds.	Depth.	Flange Width,	Web Thick- ness.	At Edge.	hickness. At Root.	Radius of Fillet.		
G30 a	200.0	30	15.00	.750	0.950	1.591	.90		
G30	180.0	30	13.00	.690	1.035	1.589	.90		
G28 a	180.0	28	14.35	.690	0.920	1.535	.85		
G28	165.0	28	12.50	.660	1.000	1.533	.85		
G26 a	160.0	26	13.60	.630	0.885	1.469	.80		
G26	150.0	26	12.00	.630	0.955	1.469	.80		
G24 a	140.0	24	13.00	.600	0.800	1.358	.70		
G24	120.0	24	12.00	.530	0.730	1.246	.70		
G20 a	140.0	20	12.50	.640	0.930	1.464	.75		
G20	112.0	20	12.00	.550	0.695	1.210	.65		
G18	92.0	18	11.50	.480	0.590	1.087	.60		
G15 b	140.0	15	11.75	.800	1.090	1.583	.95		
G15 a	104.0	15	11.25	.600	0.770	1.249	.75		
G15	73.0	15	10.50	.430	0.520	0.974	.55		
G12 a	70.0	12	10.00	.460	0.575	1.004	.55		
G12	55.0	12	9.75	.370	0.415	0.837	.45		
G10	44.0	10	9.00	.310	0.370	0.763	.40		
G9	38.0	9	8.50	.300	0.335	0.704	.40		
G8	32.5	8	8.00	.290	0.295	0.642	.40		

WEIGHTS AND DIMENSIONS OF BETHLEHEM I BEAMS.

	Weight	DIMENSIONS, IN INCHES.						
Section Number.	per Foot,	Depth.	Flange Width.	Web Thickness.	Flange '	Radius of		
Number.	Pounds.	D	B B	W	At Edge.	At Root.	Fillet.	
B30	120.0	30	10.500	.540	.735	1.183	.65	
B28	105.0	28	10.000	.500	.675	1.102	.60	
B26	90.0	26	9.500	.460	.600	1.007	.55	
B24 a	84.0	24	9.250	.460	.585	.980	.55	
B24	83.0 73.0	24 24	9.130 9.000	.520 .390	.510 .510	.897 .897	.50 .50	
B20 a	82.0 72.0	20 20	8.890 8.750	.570 .430	.580	.955 .955	.55 .55	
B20	69.0 64.0 59.0	20 20 20	8.145 8.075 8.000	.520 .450 .375	.475 .475 .475	.818 .818 .818	.45 .45 .45	
B18	59.0 54.0 52.0	18 18 18	7.675 7.590 7.555	.495 .410 .375	.430 .430 .430	.753 .753 .753	.40 .40 .40	
B15 b	48.5 71.0	18 15	7.500	.320	.430	.753 1.099	.40	
B15 a	64.0 54.0	15 15	7.195 7.000	.605 .410	.590 .590	.887 .887	.50 .50	
B15	46.0 41.0 38.0	15 15 15	6.810 6.710 6.660	.440 .340 .290	.400 .400 .400	.686 .686	.40 .40 .40	
B12 a	36.0	12	6.300	.310	.440	.710	.40	
B12	32.0 28.5	12 12	6.205 6.120	.335 .250	.330	.594 .594	.35	
B10	28.5 23.5	10 10	5.990 5.850	.390 .250	.270 .270	.522 .522	.30	
В9	24.0 20.0	9 9	5.555 5.440	.365 .250	.245	.479 .479	.30	
В8	19.5 17.5	8 8	5.325 5.250	.325 .250	.205 .205	.430 .430	.30	

PROPERTIES OF

Section Number.	Depth of Beam, Inches.	Weight per Foot, Pounds.	Area of Section, Square Inches.	Thick- ness of Web, Inches.	Width of Flange, Inches.	Increase of Web and Flange for each Pound Increase of Weight, Inches.		Radius of Gyration.	
G30 a	30	200.0	58.71	.750	15.00	.010	9150.6	12.48	610.0
G30	30	180.0	53.00	.690	13.00	.010	8194.5	12.43	546.3
G28 a	28	180.0	52.86	.690	14.35	.011	7264.7	11.72	518.9
G28	28	165.0	48.47	.660	12.50	.011	6562.7	11.64	468.8
G26 a	26	160.0	46.91	.630	13.60	.011	5620.8	10.95	432.4
G26	26	150.0	43.94	.630	12.00	.011	5153.9	10.83	396.5
G24 a	24	140.0	41.16	.600	13.00	.012	4201.4	10.10	350.1
G24	24	120.0	35.38	.530	12.00	.012	3607.3	10.10	300.6
G20 a	20	140.0	41.19	.640	12.50	.015	2934.7	8.44	293.5
G20	20	112.0	32.81	.550	12.00	.015	2342.1	8.45	234.2
G18	18	92.0	27.12	.480	11.50	.016	1591.4	7.66	176.8
G15 b	15	140.0	41.27	.800	11.75	.020	1592.7	6.21	212.4
G15 a	15	104.0	30.50	.600	11.25	.020	1220.1	6.32	162.7
G15	15	73.0	21.49	.430	10.50	.020	883.4	6.41	117.8
G12 a	12	70.0	20.58	.460	10.00	.025	538.8	5.12	89.8
G12	12	55.0	16.18	.370	9.75	.025	432.0	5.17	72.0
G10	10	44.0	12.95	.310	9.00	.030	244.2	4.34	48.8
G9	9	38.0	11.22	.300	8.50	.033	170.9	3.90	38.0
G8	8	32.5	9.54	.290	8.00	.037	114.4	3.46	28.6

 $\begin{array}{ll} W{=}Safe\ load\ in\ pounds,\ uniformly\ distributed,\ including\ weight\ of\ beam.} \\ L{=}Span,\ in\ feet. & M{=}Moment\ of\ forces,\ in\ foot\ pounds.} \end{array}$

PROPERTIES OF

COEFFICIENT OF STRENGTH			Maximum Safe Shear	NEUTRAL CIDENT V TER LINE				
For FiberStress of 16,000 Lbs. per Sq. In. for Buildings.	Add for each Lb. Increase in Weight of Beam.	For Fiber Stress of 12,500 Lbs. per Sq. In. for Moving Loads.	Add for each Lb. Increase in		Moment of Inertia.	Radius of Gyration.	Section Number.	
6,507,100	15690	5,083,700	12270	189,300	630.2	3.28	G30 a	
5,827,200	15690	4,552,500	12270	165,200	433.3	2.86	G30	
5,535,000	14640	4,324,200	11450	161,500	533.3	3.18	G28 a	
5,000,100	14640	3,906,400	11450	150,300	371.9	2.77	G28	
4,611,900	13600	3,603,100	10630	135,900	435.7	3.05	G26 a	
4,228,800	13600	3,303,800	10630	135,900	314.6	2.68	G26	
3,734,600	12550	2,917,600	9820	121,700	346.9	2.90	G24 a.	
3,206,500	12550	2,505,100	9820	98,500	249.4	2.66	G24	
3,130,300	10460	2,445,600	8180	124,200	348.9	2.91	G20 a	
2,498,300	10460	1,951,800	8180	98,500	239.3	2.70	G20	
1,886,100	9410	1,473,500	7360	76,100	182.6	2.59	G18	
2,265,200	7840	1,769,700	6140	134,200	331.0	2.83	G15 b	
1,735,300	7840	1,355,700	6140	94,300	213.0	2.64	G15 a	
1,256,600	7840	981,600	6140	59,200	123.2	2.39	·G15	
957,800	6280	748,300	4910	57,200	114.7	2.36	G12 a	
768,000	6280	600,000	4910	42,300	81.1	2.24	G12	
521,000	5230	407,000	4090	29,800	57.3	2.10	G10	
405,000	4710	316,400	3680	26,700	44.1	1.98	G9	
305,100	4180	238,300	3270	23,600	32.9	1.86	G8	

C and C'-Coefficients given in the tables.

 $W = \frac{\operatorname{Cor} C'}{L}; \quad M = \frac{\operatorname{Cor} C'}{8}; \quad \operatorname{Cor} C' = WL = 8M - \frac{2}{3} \, f \, S.$

PROPERTIES OF

BETHLEHEM I BEAMS.

						Increase	NEUTRAL A	TIS DER DE	IDICIII A D
	Depth	Weight	Area	Thick-	Width	of Web		EB AT CENT	
Section	of	per	of Section.	ness	of	Flange for	Moment	Dadina	
Number.	Beam,	Foot,	Square	Web.	Flange,	each Lb. Increase	of	Radius	Section
	Inches.	Pounds.	Inches.	Inches.	Inches.	of Weight,	Inertia.	Gyration.	Modulus.
						Inches.	1	r	S
B30	30	120.0	35.30	.540	10.500	.010	5239.6	12.18	349.3
B28	28	105.0	30.88	.500	10.000	.011	4014.1	11.40	286.7
B26	26	90.0	26.49	.460	9.500	.011	2977.2	10.60	229.0
B24 a	24	84.0	24.80	.460	9.250	.012	2381.9	9.80	198.5
B24	24	83.0	24.59	.520	9.130		2240.9	9.55	186.7
D24	24	73.0	21.47	.390	9.000		2091.0	9.87	174.3
B20 a	20	82.0	24.17	.570	8.890		1559.8	8.03	156.0
	20	72.0	21.37	.430	8.750		1466.5	8.28	146.7
B20	20 20	69.0 64.0	20.26 18.86	.520	8.145 8.075		1268.9 1222.1	7.91	126.9 122.2
D20	20	59.0	17.36	.375	8.000		1172.2	8.22	117.2
	18	59.0	17.40	.495	7.675		883.3	7.12	98.1
B18	18	54.0	15.87	.410	7.590		842.0	7.28	93.6
D10	18	52.0	15.24	.375	7.555		825.0	7.36	91.7
Dest	18	48.5	14.25	.320	7.500		798.3	7.48	88.7
B15 b	15	71.0	20.95	.520	7.500		796.2	6.16	106.2
B15 a	15	64.0	18.81	.605	7.195		664.9	5.95	88.6
	15	54.0	15.88	.410	7.000		610.0	6.20	81.3
B15	15 15	46.0	13.52 12.02	.440	6.810 6.710		484.8 456.7	5.99	64.6 60.9
210	15	38.0	11.27	.290	6.660		442.6	6.27	59.0
B12 a	12	36.0	10.61	.310	6.300	.025	269.2	5.04	44.9
B12	12	32.0	9.44	.335	6.205	.025	228.5	4.92	38.1
1312	12	28.5	8.42	.250	6.120	.025	216.2	5.07	36.0
B10	10	28.5	8.34	.390	5.990		134.6	4.02	26.9
2.0	10	23.5	6.94	.250	5.850		122.9	4.21	24.6
В9	9	24.0	7.04	.365	5.555		92.1	3.62	20.5
	9	20.0	6.01	.250	5.440	1000000	85.1	3.76	18.9
B8	8	19.5 17.5	5.78 5.18	.325	5.325 5.250		60.6 57.4	3.24 3.33	15.1 14.3
	0	11.0	0.10	.200	0.200	160.	01.4	0.00	14.5

W=Safe load in pounds, uniformly distributed, including weight of beam.
 L=Span, in feet. M=Moment of forces, in foot pounds.

PROPERTIES OF

BETHLEHEM I BEAMS.

For Fiber Stress of 16,000 Lbs, per Square Inch for Buildings,	Add for each Lb. Increase in Weight of Beam.	OF STRENGTH. For Fiber Stress of 12,500 Lbs. per Square Inch for Moving Loads.	Add for each Lb. Increase in Weight of Beam.	Maximum Safe Shear on Web, in Pounds.	CIDENT W	AXIS COIN- VITH CEN- OF WEB. Radius of Gyration.	Section Number.
3,726,000	15690	2,910,900	12270	103,800	165.0	2.16	B30
3,058,400	14640	2,389,300	11450	89,000	131.5	2.06	B28
2,442,800	13600	1,908,500	10630	75,300	101.2	1.95	B26
2,117,300	12550	1,654,100	9820	75,100	91.1	1.92	B24 a
1,991,900	12550	1,556,200	9820	93,100	78.0	1.78	B24
1,858,700	12550	1,452,100	9820	54,000	74.4	1.86	
1,663,800	10460	1,299,800	8180	102,400	79.9	1.82	B20 a
1,564,300	10460	1,222,100	8180	64,900	75.9	1.88	
1,353,500	10460	1,057,400	8180	88,200	51.2	1.59	B20
1,303,600	10460	1,018,500	8180	69,400	49.8	1.62	
1,250,300	10460	976,800	8180	50,000	48.3	1.66	
1,046,900	9410	817,900	7360	78,000	39.1	1.50	B18
997,900	9410	779,600	7360	57,500	37.7	1.54	
977,700	9410	763,900	7360	49,200	37.1	1.56	
946,100	9410	739,100	7360	36,700	36.2	1.59	
1,132,400	7840	884,700	6140	77,900	61.3	1.71	B15 b
945,600	7840	738,700	6140	93,900	41.9	1.49	B15 a
867,600	7840	677,800	6140	54,800	38.3	1.55	
689,500	7840	538,600	6140	60,000	25.2	1.36	B15
649,400	7840	507,400	6140	39,900	24.0	1.41	
629,500	7840	491,800	6140	30,100	23.4	1.44	
478,600	6280	373,900	4910	32,200	21.3	1.42	B12 a
406,200	6280	317,300	4910	35,800	16.0	1.30	B12
384,400	6280	300,300	4910	22,200	15.3	1.35	
287,100	5230	224,300	4090	39.800	12.1	1.21	B10
262,200	5230	204,800	4090	21,000	11.2	1.27	
218,300	4710	170,600	3680	33,900	8.8	1.12	В9
201,800	4710	157,600	3680	20,100	8.2	1.17	
161,600	4180	126,200	3270	26,900	6.7	1.08	В8
153,000	4180	119,600	3270	18,900	6.4	1.11	

and C'-Coefficients given in the table.

 $W = \frac{\text{Cor}C'}{L}$; $M = \frac{\text{Cor}C'}{8}$; $CorC' = WL = 8M = \frac{2}{3}$ fS.

MOMENTS OF RESISTANCE OF

BETHLEHEM GIRDER BEAMS, IN FOOT POUNDS.

NEUTRAL AXIS PERPENDICULAR TO WEB AT CENTER.

-	Depth	Weight	MOMENTS OF	P RESISTANCE, IN F	OOT POUNDS.
Section Number.	of Beam, Inches.	Poot, Pounds.	For Fiber Stress of 16,000 Lbs. per Square Inch.	For Fiber Stress of 12,500 Lbs. per Square Inch.	For Fiber Stress of 10,000 Lbs. per Square Inch.
G30 a	30	200	813,390	635,460	508,370
G30	30	180	728,400	569,070	455,250
G28 -	28	180	691,880	540,530	432,420
G28	28	165	625,020	488,290	390,640
G26 a	26	160	576,490	450,380	360,310
G26	26	150	528,600	412,970	330,380
G24 a	24	140	466,820	364,710	291,760
G24	24	120	400,820	313,140	250,510
G20 a	20	140	391,280	305,700	244,560
G20	20	112	312,290	243,970	195,180
G18	18	92	235,760	184,190	147,350
G15 b	15	140	283,150	221,210	176,970
G15 a	15	104	216,910	169,460	135,570
G15	15	73	157,080	122,700	98,170
G12 a	12	70	119,730	93,540	74,830
G12	12	55	96,000	75,000	60,000
G10	10	44	65,130	50,880	40,700
G9	9	38	50,630	39,550	31,640
G8	8	32.5	38,140	29,790	23,830

W = Total uniformly distributed load, in pounds, including weight of beam.
 P = Load, in pounds, at center of span.
 L = Span in feet. M = Bending Moment of forces, in foot pounds.

MOMENTS OF RESISTANCE OF

BETHLEHEM I BEAMS, IN FOOT POUNDS.

NEUTRAL AXIS PERPENDICULAR TO WEB AT CENTER

	Depth	Weight	MOMENTS OF	F RESISTANCE, IN F	OOT POUNDS.
Section Number.	of Beam, Inches.	per Foot, Pounds.	For Fiber Stress of 16,000 Lbs. per Square Inch.	For Fiber Stress of 12,500 Lbs. per Square Inch.	For Fiber Stress of 10,000 Lbs. per Square Inch.
B30	30	120.0	465,740	363,860	291,090
B28	28	105.0	382,300	298,670	238,930
B26	26	90.0	305,350	238,560	190,850
B24 a	24	84.0	264,660	206,760	165,410
B24	24 24	83.0 73.0	248,980 232,340	194,520 181,510	155,620 145,210
B20 a	20 20	82.0 72.0	207,980 195,540	162,480 152,760	129,980 122,210
B20	20 20 20	69.0 64.0 59.0	169,190 162,950 156,290	132,170 127,310	105,740 101,850
B18	18 18 18	59.0 54.0 52.0	130,860 124,740 122,220	122,100 102,230 97,450 95,480	97,680 81,790 77,960 76,390
B15 b	18 15	48.5 71.0	118,260 141,540	92,390	73,910
B15 a	15 15 15	64.0 54.0	118,200 108,450	110,580 92,340 84,730	88,470 73,870 67,780
B15	15 15 15	46.0 41.0 38.0	86,180 81,180 78,680	67,330 63,420 61,470	53,860 50,740 49,180
B12 a	12	36.0	59,830	46,740	37,390
B12	12 12	32.0 28.5	50,770 48,050	39,670 37,540	31,730 30,030
B10	10 10	28.5 23.5	35,880 32,770	28,030 25,600	22,430 20,480
В9	9	24.0 20.0	27,290 25,220	21,320 19,700	17,060 15,760
В8	8 8	19.5 17.5	20,200 19,130	15,780 14,950	12,620 11,960

R, R' and R" = Moments of Resistance given in the tables.

M = R, R' or R'': $R, R' \text{ or } R'' = \frac{1}{8} W L$: $R, R' \text{ or } R'' = \frac{1}{4} P L + \frac{1}{8} W L$.

COMPARISON OF

BETHLEHEM GIRDER BEAMS

WITH GIRDERS OF STANDARD BEAMS.

BETH	LEHEM GI	RDER BEAR	MS.	1	EQUIVALEN OF STANDA	T GIRDER RD BEAMS.	S	Economy
Section Number.	Depth of Beam, Inches,	Weight per Foot, Pounds.	Section Modulus.	Number of Beams.	Depth of Beams, Inches.	Weight of each Beam, Lbs. per Foot.	Section Modulus of two Beams.	Bethlehem Beams, Pounds per Foot.
G30 a	30	200.0	610.0	280				
G30	30	180.0	546.3	AME .				
G28 a	28	180.0	518.9	132				
G28	28	165.0	468.8	262	232			1
G26 a	26	160.0	432.4	TIME	F 12 25			
G26	26	150.0	396.5	2	24	100	396.8	50
G24 a	24	140.0	350.1	2	24	80	348.0	20
G24	24	120.0	300.6	2	20	85	301.8	50
G20 a	20	140.0	293.5	2	20	80	293.4	20
G20	20	112.0	234.2	2	20	65	234.0	18
G18	18	92.0	176.8	2	18	55	176.8	18
G15 b	15	140.0	212.4	2	15	80	212.2	20
G15 a	15	104.0	162.7	2	15	60	162.4	16
G15	15	73.0	117.8	2	15	42	117.8	11
G12 a	12	70.0	89.8	2	12	40	89.6	10
G12	12	55.0	72.0	2	12	31.5	72.0	8
G10	10	44.0	48.8	2	10	25	48.8	6
G9	9	38.0	38.0	2	9	21	37.8	4
G8	8	32.5	28.6	2	8	18	28.4	3.5

The difference in weights does not include separators for assembling the standard beams into girders. The weights of such separators vary from about 1.5 lbs. per foot for 8" beams to about 5.5 lbs. per foot for 24" beams. The actual economy in weight of the Bethlehem Girder Beams is increased to the same extent.

COMPARISON OF

BETHLEHEM I BEAMS

WITH STANDARD I BEAMS.

	BETHLEHEI	I BEAMS.		EQUIVA	LENT STANDAR	RD BEAMS.	Economy	
Section Number.	Depth of Beam, Inches.	Weight per Foot, Pounds.	Section Modulus.	Depth of Beam, Inches.	Weight per Foot, Pounds.	Section Modulus.	of Bethlehem Beams, Pounds per Foot.	
B30	30	120.0	349.3					
B28	28	105.0	286.7				N 300	
B26	26	90.0	229.0	1				
B24 a	24	84.0	198.5	24	100	198.4	16.0	
B24	24 24	83.0 73.0	186.7 174.3	24 24	90 80	186.6 174.0	7.0 7.0	
B20 a	20 20	82.0 72.0	156.0 146.7	20 20	90 80	155.8 146.7	8.0 8.0	
B20	20 20 20	69.0 64.0 59.0	126.9 122.2 117.2	20 20 20	75 70 65	126.9 122.0 117.0	6.0 6.0 6.0	
B18 .	18 18 18 18	59.0 54.0 52.0 48.5	98.1 93.6 91.7 88.7	18 18	65 60 55	97.9 93.5 88.4	6.0 6.0	
B15 b	15	71.0	106.2	15	80	106.1	9.0	
B15 a	15 15	64.0 54.0	88.6 81.3	15 15	70 60	88.5 81.2	6.0 6.0	
B15	15 15 15	46.0 41.0 38.0	64.6 60.9 59.0	15 15 15	50 45 42	64.5 60.8 58.9	4.0 4.0 4.0	
B12 a	12	36.0	44.9	12	40	44.8	4.0	
B12	12 12	32.0 28.5	38.1 36.0	12 12	35 31.5	38.0 36.0	3.0 3.0	
B10	10 10	28.5 23.5	26.9 24.6	10 10	30 25	26.8 24.4	1.5 1.5	
В9	9 9	24.0 20.0	20.5 18.9	9 9	25 21	20.4 18.9	1.0 1.0	
В8	8 8	19.5 17.5	15.1 14.3	8 8	20.5 18	15.1 14.2	1.0 0.5	

SPACING OF

BETHLEHEM I BEAMS AND

GIRDER BEAMS,

CENTER TO CENTER, TO PRODUCE EQUAL RADII OF GYRATION ABOUT BOTH AXES XX AND YY.

	I	BEAMS.		GIRDER BEAMS.				
Section Number.	Depth of Beam, Inches.	Weight per Foot of each Beam, Lbs.	Spacing on Centers, in Inches.	Section Number.	Depth of Beam, Inches.	Weight per Foot of each Beam, Lbs.	Spacing on Centers, in Inches.	
B30	30	120.0	23.98	G30 a	30	200.0	24.09	
B28	28	105.0	22.43	G30	30	180.0	24.20	
B26	26	90.0	20.84	G28 a	28	180.0	22.57	
B24 a	24 24	84.0 83.0	19.22 18.76	G28	28	165.0	22.60	
B24	24	73.0	19.38	G26 a	26	160.0	21.03	
B20 a	20	82.0	15.65	G26	26	150.0	20.99	
49	20 20	72.0 69.0	16.13 15.51	G24 a	24	140.0	19.35	
B20	20	64.0	15.77	G24	24	120.0	19.48	
	20	59.0	16.09	G20 a	20	140.0	15.85	
7	18 18	59.0 54.0	13.93 14.24	G20	20	112.0	16.01	
B18	18	52.0	14.38	G18	18	92.0	14.41	
B15 b	18 15	48.5 71.0	14.62 11.85	G15 b	15	140.0	*11.06	
	15	64.0	11.51	G15 a	15	104.0	11.49	
B15 a	15	54.0	12.00	G15	15	73.0	11.89	
B15	15 15	46.0 41.0	11.66 12.00	G12 a	12	70.0	*9.08	
Die	15	38.0	12.20	G12	12	55.0	*9.31	
B12 a	12	36.0	9.67	G10	10	44.0	*7.60	
B12	12 12	32.0 28.5	9.49 9.77	G9	9	38.0	*6.72	
	10	28.5	7.67	G8	8	32.5	*5.85	
B10	10	23.5	8.03				-1	
В9	9	24.0 20.0	6.88 7.16			that the value on the distance		

8

8

B8

19.5

17.5

6.11

6.28

given is less than the distance center

to center of beams when placed close

together with flanges in contact.

DIMENSIONS AND PROPERTIES OF BETHLEHEM ROLLED H COLUMNS.

The tables on pages 44-53, inclusive, give the dimensions, weights, areas, and structural properties of the H column sections for all the variations in size which are rolled.

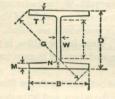
The dimension, T, given in the tables, is the nominal average thickness of the flange, and is stated in even fractions of an inch for convenience.

The clear distance between the flange fillets is denoted by the dimension, L, given in the tables, and is the depth of the flat surface of the web available for connections.

All columns having the same section number are from the same rolls. Thus, all the sizes of 14-inch H columns tabulated on page 44 are produced by the same rolls, the variation in dimensions of the series of sections being formed by the proportionate separation of the horizontal and vertical rolls.

In selecting columns, it is advisable wherever possible to secure the desired range of size, from minimum to maximum, by confining the selection to columns having the same section number, as all the columns can then be secured from the same rolling.

The moment of inertia, section modulus, and radius of gyration are given around both axes for all columns. The section modulus around the axis XX may be used to determine the transverse strength, in case it is desired to use the column sections as beams. The coefficient of strength for such purpose may be obtained in the following manner:

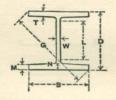

 $C = \frac{2}{3} fS$,

where f = allowed fiber stress in lbs. per square inch, and S = the section modulus.

The section modulus is also of use where columns are subject to bending due to eccentric loading. The use of the radius of gyration is explained on page 70, in connection with the tables of strength of columns.

Typical connections and splices for H columns are shown on page 97, from which the simplicity of detail and the small amount of fabrication required for these columns are apparent.

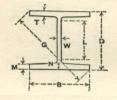
BETHLEHEM ROLLED STEEL 14" H COLUMNS.


	Weight	of DIMENSIONS, IN INCHES.							
Section Number.	Section, Lbs. per Foot.	D	Nominal.	В	w	M	N	G	L
	83.5 91.0	$13\frac{3}{4}$ $13\frac{7}{8}$	11 16 3 4	13.92 13.96	.43 .47	.620 .683	.755 .817	19 5 19 3 19 4	
	99.0 106.5 114.5 122.5 130.5 138.0 146.0 154.0 162.0	$\begin{array}{c} 14 \\ 14 \frac{1}{8} \\ 14 \frac{1}{4} \\ 14 \frac{1}{3} \\ 14 \frac{1}{2} \\ 14 \frac{1}{2} \\ 14 \frac{1}{8} \\ 15 \end{array}$	$\begin{array}{c} \frac{13}{16} \\ \frac{78}{16} \\ \frac{15}{16} \\ 1\\ \frac{1}{16} \\ 1$	14.00 14.04 14.08 14.12 14.16 14.19 14.23 14.27 14.31	.51 .55 .59 .63 .67 .70 .74 .78 .82	.745 .808 .870 .933 .995 1.058 1.120 1.183 1.245	.880 .942 1.005 1.067 1.130 1.192 1.255 1.317 1.380	$\begin{array}{c} 19\frac{13}{16} \\ 19\frac{16}{16} \\ 20\frac{1}{16} \\ 20\frac{1}{16} \\ 20\frac{1}{4} \\ 20\frac{3}{8} \\ 20\frac{1}{2} \\ 20\frac{3}{4} \end{array}$	11.06"
H14	170.5 178.5 186.5 195.0 203.5 211.0 219.5 227.5	$\begin{array}{c} 15\frac{1}{8} \\ 15\frac{1}{4} \\ 15\frac{3}{8} \\ 15\frac{1}{2} \\ 15\frac{3}{8} \\ 15\frac{3}{4} \\ 15\frac{3}{8} \\ 16 \end{array}$	$\begin{array}{c} 1\frac{3}{8} \\ 1\frac{7}{16} \\ 1\frac{1}{2} \\ 1\frac{1}{16} \\ 1\frac{1}{5} \\ 1\frac{1}{16} \\ 1\frac{1}{3} \\ 1\frac{1}{16} \\ 1\frac{3}{16} \\ \end{array}$	14.35 14.39 14.43 14.47 14.51 14.54 14.58 14.62	.86 .90 .94 .98 1.02 1.05 1.09 1.13	1.308 1.370 1.433 1.495 1.558 1.620 1.683 1.745	1.442 1.505 1.567 1.630 1.692 1.755 1.817 1.880	$\begin{array}{c} 20\frac{7}{8} \\ 21 \\ 21\frac{1}{8} \\ 21\frac{1}{4} \\ 21\frac{3}{8} \\ 21\frac{7}{16} \\ 21\frac{9}{116} \\ 21\frac{1}{16} \end{array}$	L is constant ==
	236.0 244.5 253.0 261.5 270.0 278.5 287.5	$16\frac{1}{8}$ $16\frac{1}{4}$ $16\frac{3}{8}$ $16\frac{1}{2}$ $16\frac{5}{8}$ $16\frac{3}{4}$ $16\frac{3}{8}$	$\begin{array}{c} 1\frac{7}{8} \\ 1\frac{1}{16} \\ 2 \\ 2\frac{1}{16} \\ 2\frac{1}{8} \\ 2\frac{3}{16} \\ 2\frac{1}{4} \end{array}$	14.66 14.70 14.74 14.78 14.82 14.86 14.90	1.17 1.21 1.25 1.29 1.33 1.37 1.41	1.808 1.870 1.933 1.995 2.058 2.120 2.183	1.942 2.005 2.067 2.130 2.192 2.255 2.317	$\begin{array}{c} 21\frac{13}{16} \\ 21\frac{15}{16} \\ 22\frac{1}{16} \\ 22\frac{3}{16} \\ 22\frac{5}{16} \\ 22\frac{7}{16} \\ 22\frac{7}{16} \\ 22\frac{9}{16} \end{array}$	

BETHLEHEM ROLLED STEEL 14" H COLUMNS.

Weight	Area	A	KIS XX.	-	A	XIS YY.		
of Section, Lbs. per Foot.	Section, Square Inches.	Moment of Inertia.	Section Modulus.	Radius of Gyration, Inches.	Moment of Inertia.	Section Modulus.	Radius of Gyration, Inches.	Section Number.
83.5 91.0	24.46 26.76	884.9 976.8	128.7 140.8	6.01 6.04	294.5 325.4	42.3 46.6	3.47 3.49	
99.0 106.5	29.06 31.38	1070.6 1166.6	153.0 165.2 177.5	6.07	356.9 387.8	51.0 55.2	3.50 3.52	
114.5 122.5 130.5	33.70 36.04 38.38	1264.5 1364.6 1466.7	189.9 202.3	6.13 6.16 6.18	420.3 453.4 486.9	59.7 64.2 68.8	3.53 3.55 3.56	
138.0 146.0 154.0	40.59 42.95 45.33	1568.4 1674.7 1783.3	214.5 227.1 239.8	6.21 6.24 6.27	519.7 554.4 589.5	73.3 77.9 82.6	3.58 3.59 3.61	
162.0 170.5	47.71 50.11	1894.0	252.5 265.4	6.30	626.1 662.3	87.5 92.3	3.62	
178.5 186.5 195.0	52.51 54.92 57.35	2122.3 2239.8 2359.7	278.3 291.4 304.5	6.36 6.39 6.41	699.0 736.3 774.2	97.2 102.1 107.0	3.65 3.66 3.68	H14
203.5 211.0	59.78 62.07	2481.9 2603.3	317.7 330.6	6.44 6.48	812.6 849.8	112.0 116.9	3.69 3.70	
219.5 227.5	64.52 66.98	2730.2 2859.6	344.0 357.5	6.51 6.53	889.3 929.4	122.0 127.1	3.71 3.72	
236.0 244.5 253.0	69.45 71.94 74.43	2991.5 3125.8 3262.7	371.0 384.7 398.5	6.56 6.59 6.62	970.0 1011.3 1053.2	132.3 137.6 142.9	3.74 3.75 3.76	
261.5 270.0 278.5	76.93 79.44 81.97	3402.1 3544.1 3688.8	412.4 426.4 440.5	6.65 6.68 6.71	1095.6 1138.7 1182.4	148.3 153.7 159.1	3.77 3.79 3.80	
287.5	84.50	3836.1	454.7	6.74	1226.7	164.7	3.81	

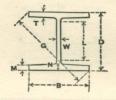
BETHLEHEM ROLLED STEEL 12" H COLUMNS.


	Weight	YY BU	18 1	DIMENS	SIONS	, IN IN	CHES.	and the	Spine .
Section Number.	Section, Lbs. per Foot.	D	Nominal.	В	W	M	N	G	L
	64.5	113	<u>5</u>	11.92	.39	.567	.683	163	
	71.5	117	116	11.96	.43	.630	.745	167	
	78.0	12	34	12.00	.47	.692	.808	17	
	84.5	121	13	12.04	.51	.755	.870	171	
	91.5	121	7 8	12.08	.55	.817	.933	171	
	98.5	$12\frac{3}{8}$	$\frac{15}{16}$	12.12	.59	.880	.995	$17\frac{3}{8}$	= 9.21"
	105.0	$12\frac{1}{2}$	1	12.16	.63	.942	1.058	1776	6
H12	112.0	$12\frac{5}{8}$	116	12.20	.67	1.005	1.120	17 9 1 6	constant
	118.5	$12\frac{3}{4}$	11/8	12.23	.70	1.067	1.183	$17\frac{1}{16}$	onst
	125.5	$12\frac{7}{8}$	136	12.27	.74	1.130	1.245	1713	is co
	132.5	13	11/4	12.31	.78	1.192	1.308	$17\frac{15}{16}$	-
	139.5	131	$1\frac{5}{16}$	12.35	.82	1.255	1.370	18	130
	146.5	131	138	12.39	.86	1.317	1.433	181	
	153.5	$13\frac{3}{8}$	17	12.43	.90	1.380	1.495	181	
	161.0	131	11/2	12.47	.94	1.442	1.558	183	

BETHLEHEM ROLLED STEEL 12" H COLUMNS.

Weight	Area	A	KIS XX.		A			
Section, Lbs. per Foot.	Section, Square Inches.	Moment of Inertia.	Section Modulus.	Radius of Gyration, Inches.	Moment of Inertia.	Section Modulus.	Radius of Gyration, Inches.	Section Number.
64.5	19.00	499.0	84.9	5.13	168.6	28.3	2.98	
71.5	20.96	556.6	93.7	5.15	188.2	31.5	3.00	
			2.78	191			0.58	
78.0	22.94	615.6	102.6	5.18	208.1	34.7	3.01	
84.5	24.92	676.1	111.5	5.21	228.5	37.9	3.03	
91.5	26.92	738.1	120.5	5.24	249.2	41.3	3.04	
98.5	28.92	801.7	129.6	5.27	270.1	44.6	3.06	
105.0	30.94	866.8	138.6	5.30	291.7	48.0	3.07	
112.0	32.96	933.4	147.9	5.33	313.6	51.4	3.08	H12
118.5	34.87	1000.0	156.9	5.36	335.0	54.8	3.10	
125.5	36.91	1069.8	166.2	5.38	357.7	58.3	3.11	
132.5	38.97	1141.3	175.6	5.41	380.7	61.9	3.13	
139.5	41.03	1214.5	185.0	5.44	404.1	65.4	3.14	
146.5	43.10	1289.4	194.6	5.47	428.0	69.1	3.15	
153.5	45.19	1366.0	204.3	5.50	452.2	72.8	3.16	
161.0	47.28	1444.3	214.0	5.53	477.0	76.5	3.18	

BETHLEHEM ROLLED STEEL 10" H COLUMNS.


Comment I	Weight	-		DIMEN	SIONS,	IN IN	CHES.		
Section Number.	of Section, Lbs. per Foot.	D	Nominal.	В	w	M	N	G	L
	49.0	978	9 16	9.97	.36	.514	.611	1416	
	54.0	10	58	10.00	.39	.577	.673	143	
	59.5	$10\frac{1}{8}$	11 16	10.04	.43	.639	.736	$14\frac{5}{16}$	
	65.5	101	34	10.08	.47	.702	.798	$14\frac{3}{8}$	
	71.0	$10\frac{3}{8}$	13	10.12	.51	.764	.861	$14\frac{1}{2}$	7.67//
HELES	77.0	$10\frac{1}{2}$	7 8	10.16	.55	.827	.923	145	= 7.6
H10	82.5	105	$\frac{15}{16}$	10.20	.59	.889	.986	$14\frac{3}{4}$	nt =
1110	88.5	$10\frac{3}{4}$	1	10.24	.63	.952	1.048	1478	constant ==
	94.0	107/8	116	10.28	.67	1.014	1.111	15	is co
	99.5	11	11/8	10.31	.70	1.077	1.173	151/8	Li
	105.5	$11\frac{1}{8}$	$1\frac{3}{16}$	10.35	.74	1.139	1.236	$15\frac{3}{16}$	
	111.5	111	11/4	10.39	.78	1.202	1.298	$15\frac{5}{16}$	RIA.
	117.5	$11\frac{3}{8}$	1 5 1 6	10.43	.82	1.264	1.361	$15\frac{7}{16}$	
	123.5	1112	13/8	10.47	.86	1.327	1.423	15 9 1 6	

BETHLEHEM ROLLED STEEL 10" H COLUMNS.

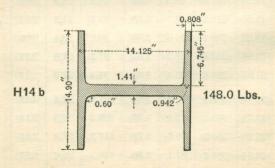
Weight	Area	A	AXIS XX.		A			
of Section, Lbs. per Foot.	of Section, Square Inches.	Moment of Inertia.	Section Modulus.	Radius of Gyration, Inches.	Moment of Inertia.	Section Modulus.	Radius of Gyration, Inches.	Section Number.
			3	-		5		
49.0	14.37	263.5	53.4	4.28	89.1	17.9	2.49	
54.0	15.91	296.8	59.4	4.32	100.4	20.1	2.51	
59.5	17.57	331.9	65.6	4.35	112.2	22.3	2.53	
65.5	19.23	368.0	71.8	4.37	124.2	24.6	2.54	
71.0	20.91	405.2	78.1	4.40	136.5	27.0	2.56	
77.0	22.59	443.6	84.5	4.43	149.1	29.4	2.57	
82.5	24.29	483.0	90.9	4.46	162.0	31.8	2.58	H10
88.5	25.99	523.5	97.4	4.49	175.1	34.2	2.60	H10
94.0	27.71	565.2	103.9	4.52	188.6	36.7	2.61	
99.5	29.32	607.0	110.4	4.55	201.7	39.1	2.62	
105.5	31.06	651.0	117.0	4.58	215.6	41.7	2.64	
111.5	32.80	696.2	123.8	4.61	229.9	44.3	2.65	
117.5	34.55	742.7	130.6	4.64	244.4	46.9	2.66	
123.5	36.32	790.4	137.5	4.67	259.3	49.5	2.67	

BETHLEHEM ROLLED STEEL 8" H COLUMNS.

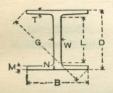
Weight		D	IMENS	IONS,	IN INC	HES.		
of Section, Lbs. per Foot.	D	Nominal.	В	w	M	N	G	L
32.0	$7\frac{7}{8}$	7 16	8.00	.31	.399	.476	114	
34.5	8	1/2	8.00	.31	.462	.538	113	
39.0	81/8	9 16	8.04	.35	.524	.601	117	
43.5	81	58	8.08	.39	.587	.663	$11\frac{9}{16}$	
48.0	838	116	8.12	.43	.649	.726	11^{11}_{16}	4"
53.0	$8\frac{1}{2}$	34	8.16	.47	.712	.788	$11\frac{13}{16}$	6.14"
57.5	85	13 16	8.20	.51	.774	.851	12	constant ==
62.0	$8\frac{3}{4}$	7/8	8.24	.55	.837	.913	$12\frac{1}{16}$	star
67.0	87/8	$\frac{15}{16}$	8.28	.59	.899	.976	$12\frac{1}{8}$	con
71.5	9	1	8.32	.63	.962	1.038	$12\frac{1}{4}$	L is
76.5	$9\frac{1}{8}$	116	8.36	.67	1.024	1.101	$12\frac{3}{8}$	
81.0	91	11/8	8.39	.70	1.087	1.163	$12\frac{1}{2}$	
85.5	93	13	8.43	.74	1.149	1.226	125	
90.5	$9\frac{1}{2}$	11/4	8.47	.78	1.212	1.288	$12\frac{3}{4}$	
	Section, Lbs. per Foot. 32.0 34.5 39.0 43.5 48.0 57.5 62.0 67.0 71.5 76.5 81.0 85.5	of Section, Lbs. per Foot. D 32.0 7\frac{7}{8} 34.5 8 39.0 8\frac{1}{8} 43.5 8\frac{1}{4} 48.0 8\frac{3}{8} 53.0 8\frac{1}{2} 57.5 8\frac{5}{8} 62.0 8\frac{3}{4} 67.0 8\frac{7}{8} 71.5 9 76.5 9\frac{1}{8} 81.0 9\frac{1}{4} 85.5 9\frac{3}{8}	Weight of Section, Lbs. per Foot. D T 32.0 77 8 76 76 76 34.5 8 ½ 39.0 88 976 43.5 81 58 116 53.0 8½ 34 57.5 85 13 662.0 83 176 62.0 83 176 62.0 83 176 78 78 78 78 71.5 9 1 76.5 98 116 76.5 91 116 81.0 91 118 85.5 93 116 71.6 71.6 71.6 71.6 71.6 71.6 71.6	Weight of Section, Lbs. per Foot. D T B 32.0 7\frac{7}{8} \frac{7}{16} 8.00 34.5 8 \frac{1}{2} 8.00 39.0 8\frac{1}{8} \frac{9}{16} 8.04 43.5 8\frac{1}{4} \frac{5}{8} 8.08 48.0 8\frac{3}{8} \frac{1}{16} 8.12 53.0 8\frac{1}{2} \frac{3}{4} 8.16 57.5 8\frac{5}{8} \frac{1}{8}\frac{3}{8} 8.20 62.0 8\frac{3}{4} \frac{7}{8} 8.24 67.0 8\frac{7}{8} \frac{1}{16} 8.28 71.5 9 1 8.32 76.5 9\frac{1}{8} 1\frac{1}{16} 8.36 81.0 9\frac{1}{4} 1\frac{1}{8} 8.39 85.5 9\frac{3}{8} 1\frac{3}{16} 8.43	Weight of Section, Lbs. per Foot. D T B W 32.0 7\frac{7}{8} \frac{7}{6} 8.00 .31 34.5 8 \frac{1}{2} 8.00 .31 39.0 8\frac{1}{8} \frac{9}{16} 8.04 .35 43.5 8\frac{1}{4} \frac{5}{8} 8.08 .39 48.0 8\frac{3}{8} \frac{1}{16} 8.12 .43 53.0 8\frac{1}{2} \frac{3}{4} 8.16 .47 57.5 8\frac{5}{8} \frac{1}{36} 8.20 .51 62.0 8\frac{3}{4} \frac{7}{8} 8.24 .55 67.0 8\frac{7}{8} \frac{1}{16} 8.28 .59 71.5 9 1 8.32 .63 76.5 9\frac{1}{8} 1\frac{1}{16} 8.36 .67 81.0 9\frac{1}{4} 1\frac{1}{8} 8.39 .70 85.5 9\frac{3}{8} 1\frac{3}{16} 8.43 .74	Weight of Section, Lbs. per Foot. D T B W M 32.0 7\frac{7}{8} \frac{7}{6} 8.00 .31 .399 34.5 8 \frac{1}{2} 8.00 .31 .462 39.0 8\frac{1}{8} \frac{9}{16} 8.04 .35 .524 43.5 8\frac{1}{4} \frac{5}{8} 8.08 .39 .587 48.0 8\frac{3}{8} \frac{1}{16} 8.12 .43 .649 53.0 8\frac{1}{2} \frac{3}{4} 8.16 .47 .712 57.5 8\frac{5}{8} \frac{1}{36} 8.20 .51 .774 62.0 8\frac{3}{4} \frac{7}{8} 8.24 .55 .837 67.0 8\frac{7}{8} \frac{1}{5} 8.28 .59 .899 71.5 9 1 8.32 .63 .962 76.5 9\frac{1}{8} 1\frac{1}{16} 8.36 .67 1.024 81.0 9\frac{1}{4} 1\frac{1}{8}	of Section, Los, per Foot. D T B W M N 32.0 $7\frac{7}{8}$ $7\frac{7}{6}$ 8.00 .31 .399 .476 34.5 8 $\frac{1}{2}$ 8.00 .31 .462 .538 39.0 $8\frac{1}{8}$ $\frac{9}{16}$ 8.04 .35 .524 .601 43.5 $8\frac{1}{4}$ $\frac{8}{8}$ 8.08 .39 .587 .663 48.0 $8\frac{3}{8}$ $\frac{1}{16}$ 8.12 .43 .649 .726 53.0 $8\frac{1}{2}$ $\frac{3}{4}$ 8.16 .47 .712 .788 57.5 $8\frac{5}{8}$ $\frac{1}{16}$ 8.20 .51 .774 .851 62.0 $8\frac{3}{4}$ $\frac{7}{8}$ 8.24 .55 .837 .913 67.0 $8\frac{7}{8}$ $\frac{1}{16}$ 8.28 .59 .899 .976 71.5 9 1 8.32 .63 .962 1.038 76.5	Weight of Section, Lbs. per Foot. D T B W M N G 32.0 7\frac{7}{8} \frac{7}{6} 8.00 .31 .399 .476 11\frac{1}{4} 34.5 8 \frac{1}{2} 8.00 .31 .462 .538 11\frac{3}{8} 39.0 8\frac{1}{8} \frac{9}{16} 8.04 .35 .524 .601 11\frac{7}{16} 43.5 8\frac{1}{4} \frac{5}{8} 8.08 .39 .587 .663 11\frac{9}{16} 48.0 8\frac{3}{8} \frac{1}{16} 8.12 .43 .649 .726 11\frac{1}{16} 53.0 8\frac{1}{2} \frac{3}{4} 8.16 .47 .712 .788 11\frac{1}{8} 57.5 8\frac{5}{8} \frac{1}{8} 8.20 .51 .774 .851 12 62.0 8\frac{3}{4} \frac{7}{8} 8.28 .59 .899 .976 12\frac{1}{8} 71.5 9 1 8.32 .63

BETHLEHEM ROLLED STEEL 8" H COLUMNS.

Weight	Area	A	XIS XX		A	XIS YY	10 miles	
of Section, Lbs. per Foot.	of Section, Square Inches.	Moment of Inertia.	Section Modulus.	Radius of Gyration, Inches.	Moment of Inertia.	Section Modulus.	Radius of Gyration, Inches.	Section Number.
32.0	9.17	105.7	26.9	3.40	35.8	8.9	1.98	
34.5	10.17	121.5	30.4	3.46	41.1	10.3	2.01	
39.0	11.50	139.5	34.3	3.48	47.2	11.7	2.03	
43.5	12.83	158.3	38.4	3.51	53.4	13.2	2.04	
48.0	14.18	177.7	42.4	3.54	59.8	14.7	2.05	
53.0	15.53	197.8	46.5	3.57	66.3	16.3	2.07	
57.5	16.90	218.6	50.7	3.60	73.1	17.8	2.08	Н8
62.0	18.27	240.2	54.9	3.63	80.0	19.4	2.09	
67.0	19.66	262.5	59.2	3.65	87.1	21.0	2.11	
71.5	21.05	285.6	63.5	3.68	94.4	22.7	2.12	
76.5	22.46	309.5	67.8	3.71	101.9	24.4	2.13	
81.0	23.78	333.5	72.1	3.75	109.2	26.0	2.14	
85.5	25.20	359.0	76.6	3.77	117.2	27.8	2.16	
90.5	26.64	385.3	81.1	3.80	125.1	29.6	2.17	


BETHLEHEM 14" SPECIAL SECTION ROLLED STEEL H COLUMN.

When columns are required of greater sectional area than the regular sections of H columns, it is necessary to build a compound section to obtain the desired area. This may be the case in the columns for the lower stories of a high building.


Additional area may be secured by riveting plates to the flanges of the regular H columns, but the drilling of the holes for attaching such plates may be objectionable, on account of the thick metal in the flanges of the heavy H columns. The 14" special section is designed to match the regular 14" H columns, and permits the addition of plates, or other shapes, for increasing the area to the desired extent, avoiding the drilling of thick metal in the flanges.

Dimensions and properties of this special section are given on the opposite page. The section is produced by the same rolls and has the same inner contour as the series of 14" H columns on page 44. If the largest regular 14" H column does not provide the required area, the special section can be used and increased in area to the desired amount, in the manner indicated by Figs. 1-3 on the opposite page. This may be necessary for the heavy columns required in the lower stories of a high building. The regular series of 14" H columns can then be used in the upper stories, where they provide sufficient area. The regular 14" H columns can be spliced to the special section in the usual way.

Properties of Compound Columns, similar to Fig. 1, are given on pages 54–55, and safe loads in the tables on pages 86–87.

BETHLEHEM 14" SPECIAL SECTION ROLLED STEEL H COLUMN.

DIMENSIONS.

	Weight		DIMENSIONS, IN INCHES.										
Section Number.	Section, Lbs. per Foot.	D	Nominal,	В	w	M	N	G	L				
H14b	148.0	141/8	7/8	14.90	1.41	.808	.942	207/8	11.06				

PROPERTIES.

	Weight	Area	A	XIS XX		A	CIS YY	
Section Number.	of Section, Lbs. per Foot.	of Section, Square Inches.	Moment of Inertia.	Section Modulus.	Radius of Gyration, Inches.	Moment of Inertia.	Section Modulus.	Radius of Gyration, Inches.
H14b	148.0	43.52	1368.5	193.8	5.61	468.6	62.9	3.28

SUGGESTIONS FOR USING THE SPECIAL SECTION OF H COLUMN IN BUILDING UP COLUMNS OF LARGE SECTIONAL AREA.

Fig. 2

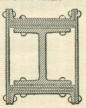
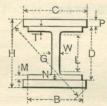
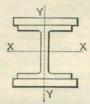



Fig. 3

COMPOUND COLUMNS.

14" x 148 Lb. Special H Section.



Reënforced with Cover Plates.

	Weight		DIMENS	IONS, IN	INCHES.	
Section.	Section, Lbs. per Foot.	Width.	Thickness.	Depth of Column.	Diagonal Diameter.	Dimension of 14" Specia H Section.
	06.4.0					II bookion.
Section, d thick-	284.0	16	114	$16\frac{5}{8}$	231	
thic two two	290.8	16	15	163	23 3 6	_
ty	297.6	16	13	167	231	D
	304.4	16	17.6	17	$23\frac{3}{8}$	141
Column width ar	311.2	16	15	171	23,7	0
h	318.0	16	1.9	171	231	
ng dt	324.8	16	15	$17\frac{3}{8}$	$23\frac{5}{8}$	
Column width a be made	331.6	16	$1\frac{5}{8}$ $1\frac{1}{16}$	171	$23\frac{11}{16}$	T
	338.4	16	134	175	2313	T
o o o	345.2	16	1 1 3 1 6	173	2016	8
148 Lb. Special cover plates of ckness, P, may thickness.	010.2	10	116	114	237	
plate P, 1	350.3	17	13	175	041	В
	357.5	17	134	175	241	
l of a 14" x 148 Lb. nforced with cover p The total thickness, f punchable thicknes			113	173	24 16	14.90
s ve ck	364.7	17	$ \begin{array}{c c} 1\frac{7}{8} \\ 1\frac{1}{8} \\ 1\frac{1}{16} \\ 2 \\ 2\frac{1}{16} \end{array} $	$17\frac{7}{8}$	2411	1
4 8 % id	372.0	17	115	18	$24\frac{3}{4}$	
	379.2	17	2	181	247	W
ti z	386.4	17	216	181	2415	1.41
d wind tall that	393.6	17	25	183	$25\frac{1}{16}$	
a 1 ced tot	400.9	17	23	181	$25\frac{1}{8}^{\circ}$	
of a 14" x forced with the total the punchable	408.1	17	210	185	25 3	M
of poly	415.3	17	25	183	$25\frac{5}{16}$	0.808
composed of a 14" x 14b), reënforced with n table. The total thi s, each of punchable t			-16	104	2016	0.000
se se	423.4	18	214	185	257	
ole ch	431.0	18	24	183		N
impos tb), re table.	438.7	18	2^{5}_{16} 2^{3}_{8}		26	
com 14b in ta	446.3		28	187	$26\frac{1}{16}$	0.942
		18	$2\frac{7}{16}$ $2\frac{1}{2}$	19	26 3	
In Fen	454.0	18	22	191	264	
lumns composition H 14b), regiven in table.	461.6	18	216	191	$26\frac{3}{8}$	L
(Section H ness given i	469.3	18	$2\frac{9}{16}$ $2\frac{5}{8}$	193	267	11.06
(Section ness grane	476.9	18	$\begin{array}{c c} 2\frac{1}{16} \\ 2\frac{3}{4} \end{array}$	191	26 9	
p e o	484.6	18	93	195	265	

COMPOUND COLUMNS.

14" x 148 Lb. Special H Section.

Reënforced with Cover Plates.

Weight	Area	A	XIS XX		A	XIS YY		Cover	Plates.
Section, Lbs. per Foot.	Section, Square Inches.	Moment of Inertia.	Section Modulus.	Radius of Gyration, Inches.	Moment of Inertia.	Section Modulus.	Radius of Gyration, Inches.	Width, Inches.	Thick- ness, Inches.
284.0	83.52	3737.7	449.6	6.69	1321.9	165.2	3.98	16	11
290.8	85.52	3876.9	462.9	6.73	1364.6	170.6	3.99	16	1 5 1 6
297.6	87.52	4018.2	476.2	6.78	1407.3	175.9	4.01	16	130
304.4	89.52	4161.7	489.6	6.82	1449.9	181.2	4.02	16	17
311.2	91.52	4307.2	503.0	6.86	1492.6	186.6	4.04	16	$1\frac{7}{16}$ $1\frac{1}{2}$
318.0	93.52	4454.9	516.5	6.90	1535.3	191.9	4.05	16	1 9 1 6
324.8	95.52	4604.8	530.0	6.94	1577.9	197.2	4.06	16	15
331.6	97.52	4756.8	543.6	6.98	1620.6	202.6	4.0	16	$1\frac{1}{1}\frac{1}{6}$
338.4	99.52	4911.0	557.3	7.02	1663.3	207.9	4.09	16	13
345.2	101.52	5067.5	571.0	7.07	1705.9	213.2	4.10	16	113
350.3	103.02	5132.5	582.4	7.06	1901.6	223.7	4.30	17	13
357.5	105.15	5298.7	597.0	7.10	1952.8	229.7	4.31	17	113
364.7	107.27	5467.2	611.7	7.14	2003.9	235.8	4.32	17	17/8
372.0	109.40	5638.1	626.5	7.18	2055.1	241.8	4.33	17	115
379.2	111.52	5811.5	641.3	7.22	2106.3	247.8	4.35	17	2
386.4	113.65	5987.2	656.1	7.26	2157.5	253.8	4.36	17	$2\frac{1}{16}$
393.6	115.77	6165.4	671.1	7.30	2208.7	259.8	4.37	17	21
400.9	117.90	6345.9	686.0	7.34	2259.8	265.9	4.38	17	$2\frac{3}{16}$ $2\frac{1}{4}$
408.1	120.02	6529.0	701.1	7.38	2311.0	271.9	4.39	17	21
415.3	122.15	6714.5	716.2	7.41	2362.2	277.9	4.40	17	25
423.4	124.52	6832.6	733.7	7.41	2655.6	295.1	4.62	18	21
431.0	126.77	7029.0	749.8	7.45	2716.4	301.8	4.63	18	25
438.7	129.02	7228.1	765.9	7.48	2777.1	308.6	4.64	18	$2\frac{5}{16}$ $2\frac{3}{8}$
446.3	131.27	7429.8	782.1	7.52	2837.9	315.3	4.65	18	27
454.0	133.52	7634.2	798.3	7.56	2898.6	322.1	4.66	18	21/3
461.6	135.77	7841.3	814.7	7.60	2959.4	328.8	4.67	18	2,9
469.3	138.02	8051.1	831.1	7.64	3020.1	335.6	4.68	18	$2\frac{9}{16}$ $2\frac{5}{8}$
476.9	140.27	8263.6	847.6	7.68	3080.9	342.3	4.69	18	211
484.6	142.52	8478.9	864.1	7.71	3141.6	349.1	4.70	18	23

SAFE UNIFORMLY DISTRIBUTED LOADS FOR BETHLEHEM I BEAMS AND GIRDER BEAMS.

The tables on pages 57-65 give the safe uniformly distributed loads, in tons of 2000 lbs., on Bethlehem beams for a maximum fiber stress of 16,000 lbs. per square inch. The tabular loads include the weight of the beam, which must be deducted to obtain the net load a beam will support.

Safe loads for intermediate or heavier weights of beams can be obtained from the separate column of corrections, given for each size, which states the increase in safe load for each pound increase in weight per foot of beam.

If the load is concentrated at the center of the span, the safe load is one-half the safe uniformly distributed load for the same span.

The safe loads on short spans may be limited by the shearing strength of the web, instead of by the maximum fiber stress allowed in the flanges. This limit is indicated in the tables by heavy cross lines. The loads given above these lines are greater than the safe crippling strength of the web, and must not be used unless the webs are stiffened. In such cases it will generally be advisable to select a heavier beam with a thicker web. Maximum safe shears for all beam and girder sections are given on page 67.

It is assumed in the tables that the compression flanges of the beams are properly secured against yielding sideways. They should be held in position at distances not exceeding 20 times the width of the flange, otherwise the allowable safe loads must be reduced as per the following table:

BEAMS UNSUPPORTED SIDEWAYS.

Unsupported Length of Beam.	Greatest Safe	Unsupported	Greatest Safe	
	Load.	Length of Beam.	Load.	
20 flange widths. 30 flange widths. 40 flange widths.		50 flange widths. 60 flange widths. 70 flange widths.	fo tabular load.	

Bethlehem beams, on account of their much wider flanges, will safely support greater loads than Standard beams on long spans, where the beams are without lateral support.

BETHLEHEM GIRDER BEAMS,

IN TONS OF 2000 LBS.

BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

		" G	Add for	28	" G	Add	26"	G	Add
Span, in	G 30 а	G30	each Lb.	G28 a	G28	each Lb.	G26 a	G26	each Lb.
Feet.	200 Lbs.	180 Lbs.	Inc. in Wgt.	180 Lbs.	165 Lbs.	Inc. in Wgt.	160 Lbs.	150 Lbs.	Inc. in Wgt.
18	180.75	161.87	.44	153.75	138.89	.41	128.11	117.47	.38
19	171.24	153.35	.41	145.66	131.58	.39	121.37	111.29	.36
20	162.68	145.68	.39	138.38	125.00	.37	115.30	105.72	.34
21	154.93	138.74	.37	131.79	110.05	0.5	100.01		
22	147.89	132.44			119.05	.35	109.81	100.69	.32
23	141.46	132.44	.36	125.80	113.64	.33	104.82	96.11	.31
24	135.56		.34	120.33	108.70	.32	100.26	91.93	.30
25		121.40	.33	115.31	104.17	.31	96.08	88.10	.28
25	130.14	116.55	.31	110.70	100.00	.29	92.24	84.58	.27
26	125.14	112.06	.30	106.44	96.16	.28	88.69	81.32	.26
27	120.50	107.91	.29	102.50	92.60	.27	85.41	78.31	.25
28	116.20	104.06	.28	98.84	89.29	.26	82.36	75.52	.24
29	112.19	100.47	.27	95.43	86.21	.25	79.52	72.91	.23
30	108.45	97.12	.26	92.25	83.34	.24	76.87	70.48	.23
31	104.95	93.99	.25	89.27	80.65	.24	74.39	68.21	.22
32	101.67	91.05	.25	86.48	78.13	.23	72.06	66.08	.21
33	98.59	88.29	.24	83.86	75.76	.22	69.88	64.07	.21
34	95.69	85.70	.23	81.40	73.53	.22	67.82	62.19	
35	92.96	83.25	.22	79.07	71.43	.21	65.88	60.41	.19
36	90.38	80.93	.22	70 00					100
37	87.93	78.75	.21	76.88 74.80	69.45	.20	64.05	58.73	.19
38	85.62	76.67	.21	72.83	67.57	.20	62.32	57.15	
39	83.42	74.71	.20	70.96	65.79	.19	60.68	55.64	.18
40	81.34	72.84	.20	69.19	64.10 62.50	.19	59.13	54.22	.17
100	01.04	12.04	.20	09.19	02.50	.18	57.65	52.86	.17
41	79.35	71.06	.19	67.50	60.98	.18	56.24	51.57	.17
42	77.47	69.37	.19	65.89	59.53	.17	54.90	50.34	.16
43	75.66	67.76	.18	64.36	58.14	.17	53.63	49.17	.16
44	73.94	66.22	.18	62.90	56.82	.17	52.41	48.06	
45	72.30	64.75	.17	61.50	55.56	.16	51.24	46.99	
46	70.73	63.34	.17	60.16	54.35	.16	50.13	45.97	.15
47	69.22	61.99	.17	58.88	53.19	.16	49.06	44.99	.14
48	67.78	60.70	.16	57.66	52.09	.15	48.04	44.05	
-					,	, .20	20.01	11.00	.17

Safe loads given include weight of beam. Maximum fiber stress, 16,000 lbs. per square inch.

BETHLEHEM GIRDER BEAMS. IN TONS OF 2000 LBS.

BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

	24	' G	Add for	20	" G	Add for	18" G	Add for
Span, in	G24 a	G24	each Lb. Increase	G20 a	G20	each Lb. Increase	G18	each Lb. Increase
Feet.	140 Lbs.	120 Lbs.	in Weight.	140 Lbs.	112 Lbs.	in Weight.	92 Lbs.	in Weight.
12	155.61	133.60	.52	130.43	104.09	.44	78.59	.39
13	143.64	123.33	.48	120.40	96.09	.40	72.54	.36
14	133.38	114.52	.45	111.80	89.23	.37	67.36	.34
15	124.48	106.88	.42	104.34	83.28	.35	62.87	.31
16	116.71	100.20	.39	97.82	78.07	.33	58.94	.29
17	109.84	94.31	.37	92.07	73.48	.31	55.47	.28
18	103.74	89.07	.35	86.95	69.40	.29	52.39	.26
19	98.28	84.38	.33	82.38	65.74	.28	49.63	.25
20	93.37	80.16	.31	78.26	62.46	.26	47.15	.24
21	88.92	76.35	.30	74.53	59.48	.25	44.91	.22
22	84.88	72.88	.29	71.14	56.78	.24	42.87	.21
23	81.19	69.71	.27	68.05	54.31	.23	41.00	.20
24	77.80	66.80	.26	65.22	52.05	.22	39.29	.20
25	74.69	64.15	.25	62.61	49.97	.21	37.72	.19
26	71.82	61.66	.24	60.20	48.04	.20	36.27	.18
27	69.16	59.38	.23	57.97	46.26	.19	34.93	.17
- 28	66.69	57.26	.22	55.90	44.61	.19	33.68	.17
29	64.39	55.29	.22	53.97	43.07	.18	32.52	.16
30	62.24	53.44	.21	52.17	41.64	.17	31.43	.16
31	60.24	51.72	.20	50.49	40.30	.17	30.42	.15
32	58.35	50.10	.20	48.91	39.04	.16	29.47	.15
33	56.58	48.58	.19	47.43	37.85	.16	28.58	.14
34	54.92	47.15	.18	46.04	36.74	.15	27.74	.14
35	53.35	45.81	.18	44.72	35.69	.15	26.94	.13
36	51.87	44.54	.17	43.48	34.70	.15	26.20	.13
37	50.47	43.33	.17	42.30	33.76	.14	25.49	.13
38	49.14	42.19	.17	41.19	32.87	.14	24.82	.12
39	47.88	41.11	.16	40.13	32.03	.13	24.18	.12
40	46.68	40.08	.16	39.13	31.23	.13	23.58	.12

Safe loads given include weight of beam. Maximum fiber stress, 16,000 lbs. per square inch.

Loads given above the heavy lines are greater than safe loads for web

crippling.

Safe loads given below the dotted line produce deflections exceeding 360 of the span.

BETHLEHEM GIRDER BEAMS.

IN TONS OF 2000 LBS.

BEAMS BEING SECURED AGAINST VIELDING SIDEWAYS.

	J - 5/19	15" G	2 6	Add	12	" G	Add
Span,	G15 b	G15 a	G15	for each	G12 a	G12	for each
in Feet.	GISD	GISA	GID	Lb.	GIZa	GIZ	Lb.
10004	140 Lbs.	104 Lbs.	73 Lbs.	Inc. in Wgt.	70 Lbs.	55 Lbs.	Inc. in Wgt.
10	113.26	86.76	62.83	.39	47.89	38.40	.31
11	102.96	78.88	57.12	.36	43.54	34.91	.29
12	94.38	72.30	52.36	.33	39.91	32.00	.26
13	87.12	66.74	48.33	.30	36.84	29.54	.24
14	80.90	61.97	44.88	.28	34.21	27.43	.22
15	75.51	57.84	41.89	.26	31.93	25.60	21
16	70.79	54.23	39.27	.25	29.93	24.00	.20
17	66.62	51.04	36.96	.23	28.17	22.59	.19
18	62.92	48.20	34.91	.22	26.61	21.33	.18
19	59.61	45.67	33.07	.21	25.21	20.21	.17
20	56.63	43.38	31.42	.20	23.95	19.20	.16
21	53.93	41.32	29.92	.19	22.81	18.28	.15
22	51.48	39.44	28.56	.18	21.77	17.45	.14
23	49.24	37.72	27.32	.17	20.82	16.69	.14
24	47.19	36.15	26.18	.16	19.95	16.00	.13
25	45.30	34.71	25.13	.16	19.16	15.36	.13
	20.00	-			20120	20.00	120
26	43.56	33.37	24.17	.15	18.42	14.77	.12
27	41.95	32.13	23.27	.15	17.74	14.22	.12
28	40.45	30.99	22.44	.14	17.10	13.71	.11
29	39.05	29.92	21.67	.14	16.51	13.24	.11
30	37.75	28.92	20.94	.13	15.96	12.80	.10
31	36.54	27.99	20.27	.13	15.45	12.39	.10
32	35.39	27.11	19.63	.12	14.97	12.00	.10
33	34.32	26.29	19.04	.12	14.51	11.64	.10
34	33.31	25.52	18.48	.12	14.09	11.29	.09
35	32.36	24.79	17.95	.11	13.68	10.97	.09

Safe loads given include weight of beam. Maximum fiber stress, 16,000

lbs. per square inch.

Load given above the heavy line is greater than a safe load for web

crippling.
Safe loads given below the dotted lines produce deflections exceeding 300 of the span.

BETHLEHEM GIRDER BEAMS,

IN TONS OF 2000 LBS.

BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

	10" G	Add for		9" G	Add for	8" G	Add for
Span, in	G10	each Lb. Increase	Span, in	G9	each Lb. Increase	G8	each Lb.
Feet.	44 Lbs.	in Weight.	Feet.	38 Lbs.	Weight,	32.5 Lbs.	Weight.
10	26.05	.26	5	40.50	.47	30.51	.42
11	23.68	.24	6	33.75	.39	25.42	35
12	21.71	.22	7	28.93	.34	21.79	.30
13	20.04	.20	8	25.31	.29	19.07	26
14	18.61	.19	9	22.50	.26	16.95	.23
15	17.37	.17	10	20.25	.23	15.25	.21
16	16.28	.16	11	18.41	.21	13.87	.19
17	15.32	.15	12	16.88	.20	12.71	.17
18	14.47	.15	13	15.58	.18	11.73	.16
19	13.71	.14	14	14.47	.17	10.90	.15
20	13.03	.13	15	13.50	.16	10.17	.14
21	12.40	.12	16	12.66	.15	9.53	.13
22	11.84	.12	17	11.91	.14	8.97	.12
23	11.33	.11	18	11.25	.13	8.47	.12
24	10.85	.11	19	10.66	.12	8.03	.11
25	10.42	.10	20	10.13	.12	7.63	.10
26	10.02	.10	21	9.64	.11	7.26	.10
27	9.65	.10	22	9.21	11	6.93	.09
28	9.30	.09	23	8.80	.10	6.63	.09
29	8.98	.09	24	8.44	.10	6.36	.08
30	8.68	.09	25	8.10	.09	6.10	.08
31	8.40	.08	26	7.79	.09		
32	8.14	.08	27	7.50	.09		
33	7.89	.08	28	7.23	.08		
34	7.66	.08	29	6.98	.08		
35	7.44	.07	30	6.75	.07		1 3 5 5

Safe loads given include weight of beam. Maximum fiber stress, 16,000 lbs. per square inch.

lbs. per square inch.

Loads given above the heavy lines are greater than safe loads for web crippling.

Safe loads given below the dotted lines produce deflections exceeding 300

of the span.

BETHLEHEM I BEAMS,

IN TONS OF 2000 LBS.

BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

Span,	30" I	Add for each	28" I	Add for each	26" I	
in	B30	Lb. Increase	B28	Lb. Increase	B26	Add for each Lb. Increase
Feet.	120 Lbs.	in Weight.	105 Lbs.	in Weight.	90 Lbs.	in Weight.
18	103.50	.44	84.95	.41	67.86	.38
19	98.05	.41	80.48	.39	64.29	.36
20	93.15	.39	76.46	.37	61.07	.34
21	88.71	.37	72.82	.35	58.16	.32
22	84.68	.36	69.51	.33	55.52	.31
23	81.00	.34	66.49	.32	53.11	.30
24	77.62	.33	63.72	.31	50.89	.28
25	74.52	.31	61.17	.29	48.86	.27
26	71.65	.30	58.81	.28	46.98	.26
27	69.00	.29	56.64	.27	45.24	.25
28	66.54	.28	54.61	.26	43.62	.24
29	64.24	.27	52.73	.25	42.12	.23
30	62.10	.26	50.97	.24	40.71	.23
31	60.10	.25	49.33	.24	39.40	.22
32	58.22	.25	47.79	.23	38.17	.21
33	56.45	.24	46.34	.22	37.01	.21
34	54.79	.23	44.98	.22	35.92	.20
35	53.23	.22	43.69	.21	34.90	.19
36	51.75	.22	42.48	.20	33.93	.19
37	50.35	.21	41.33	.20	33.01	.18
38	49.03	.21	40.24	.19	32.14	.18
39	47.77	.20	39.21	.19	31.32	.17
40	46.57	.20	38.23	.19	30.54	.17
41	45.44	.19	37.30	.18	29.79	.17
42	44.36	.19	36.41	.18	29.08	.16
43	43.33	.18	35.56	.17	28.41	.16
44	42.34	.18	34.75	.17	27.76	.15
45	41.40	.17	33.98	.16	27.14	.15
46	40.50	.17	33.24	.16	26.55	.15
47	39.64	.17	32.54	.16	25.99	.14
48	38.81	.16	31.86	.15	25.45	.14

Safe loads given include weight of beam. Maximum fiber stress, 16,000 lbs. per square inch.

BETHLEHEM I BEAMS, IN TONS OF 2000 LBS.

BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

Span.	24	" I	Add for each Lb.						Add for each Lb.	
in	B24 a	B24	Increase	B2	oa		B20		Increase	
Feet.	84 Lbs.	73 Lbs.	in Weight.	82 Lbs.	72 Lbs.	69 Lbs.	64 Lbs.	59 Lbs.	in Weight.	
12	88.22	77.45	.52	69.33	65.18	56.40	54.32	52.10	.44	
13	81.43	71.49	.48	63.99	60.17	52.06	50.14	48.09	.40	
14	75.62	66.38	.45	59.42	55.87	48.34	46.56	44.65	.37	
15	70.58	61.96	.42	55.46	52.14	45.12	43.45	41.68	.35	
16	66.16	58.08	.39	51.99	48.88	42.30	40.74	39.07	.33	
17	62.27	54.67	.37	48.94	46.01	39.81	38.34	36.77	.31	
18	58.81	51.63	.35	46.22	43.45	37.60	36.21	34.73	.29	
19	55.72	48.91	.33	43.78	41.17	35.62	34.31	32.90	.28	
20	52.93	46.47	.31	41.60	39.11	33.84	32.59	31.26	.26	
21	50.41	44.26	.30	39.61	37.25	32.23	31.04	29.77	.25	
22	48.12	42.24	.29	37.81	35.55	30.76	29.63	28.42	.24	
23	46.03	40.41	.27	36.17	34.01	29.42	28 34	27.18	.23	
24	44.11	38.72	.26	34.66	32.59	28.20	27.16	26.05	.22	
25	42.35	37.17	.25	33.28	31.29	27.07	26.07	25.01	.21	
26	40.72	35.74	.24	32.00	30.08	26.03	25.07	24.04	.20	
27	39.21	34.42	.23	30.81	28.97	25.07	24.14	23.15	.19	
28	37.81	33.19	.22	29.71	27.93	24.17	23.28	22.33	.19	
29	36.50	32.05	.22	28.69	26.97	23.34	22.48	21.56	.18	
30	35.29	30.98	.21	27.73	26.07	22.56	21.73	20.84	.17	
31	34.15	29.98	.20	26.84	25.23	21.83	21.03	20.17	.17	
32	33.08	29.04	.20	26.00	24.44	21.15	20.37	19.54	.16	
33	32.08	28.16	.19	25.21	23.70	20.51	19.75	18.94	.16	
34	31.14	27.33	.19	24.47	23.00	19.90	19.17	18.39	.15	
35	30.25	26.55	.18	23.77	22.35	19.34	18.62	17.86	.15	
36	29.41	25.82	.17	23.11	21.73	18.80	18.11	17.37	.15	
37	28.61	25.12	.17	22.48	21.14	18.29	17.62	16.90	.14	
38	27.86	24.46	.17	21.89	20.58	17.81	17.15	16.45	.14	
39	27.14	23.83	.16	21.33	20.06	17.35	16.71	16.03	.13	
40	26.47	23.23	.16	20.80	19.55	16.92	16.30	15.63	.13	
	C									

Safe loads given include weight of beam. Maximum fiber stress, 16,000 lbs. per square inch.

Loads given above the heavy lines are greater than safe loads for web crippling.

BETHLEHEM I BEAMS,

IN TONS OF 2000 LBS.

BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

	18" I			Add for	15" I					Add for
Span, in	- CT-SET	B18		each Lb.	B15 b	B15 a	of on	B15		each Lb.
Feet.	59	54	48.5	in	71	54	46	41	38	Increase
F C C 0.	Lbs.	Lbs.	Lbs.	Weight.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Weight.
										8
12	43.62	41.58	39.42	.39	47.18	36.15	28.73	27.06	26.23	.33
13	40.26	38.38	36.39	.36	43.55	33.37	26.52	24.98	24.21	.30
14	37.39	35.64	33.79	.34	40.44	30.99	24.62	23.19	22.48	.28
15	34.90	33.26	31.54	.31	37.75	28.92	22.98	21.65	20.98	.25
10	20 71	91 10	00 50	00	0= 00	07 11	01 55	00 00	10 05	00
16 17	32.71	31.18	29.56	.29			21.55			.26
18	30.79	29.35	27.83 26.28	.28			20.28			.23
19	29.08 27.55	27.72 26.26	24.90	.26			19.15 18.14			
20	26.17	24.95	23.65	.23			17.24			.21
20	20.11	24.99	20.00	.24	20.51	21.09	11.24	10.24	10.74	.20
21	24.93	23.76	22.53	.22	26.96	20.66	16.42	15.46	14.99	.19
22	23.79	22.68	21.50	.21			15.67			.18
23	22.76	21.70	20.57	.21			14.99			
24	21.81	20.79	19.71	.20	23.59	18.07	14.36	13.53	13.11	.16
25	20.94	19.96	18.92	.19	22.65	17.35	13.79	12.99	12.59	.16
26	20.13	19.19	18.19	.18	21 78	16 68	13.26	19 40	19 11	.15
27	19.39	18.48	17.52	.17			12.77			
28	18.69	17.82	16.89	.17			12.31			.14
29	18.05	17.21	16.31	.16			11.89			
30	17.45	16.63	15.77	.16			11.49			.13
31	16.88	16.10	15.26	.15			11.12			.13
32	16.36	15.59	14.78	.15			10.77			.12
33	15.86	15.12	14.33	.14			10.45			.12
34	15.40	14.68	13.91	.14			10.14			
35	14.96	14.26	13.52	.13	16.18	12.39	9.85	9.28	8.99	.11
36	14.54	13.86	13.14	.13	15.73	12.05	9.58	9.02	8.74	.11
37	14.15	13.49	12.78	.13	15.30	11.72	9.32	8.78	8.51	.11
38	13.77	13.13	12.45	.12		11.42	9.07	8.55		.10
39	13.42	12.79	12.13	.12		11.12	8.84	8.33		
40	13.09	12.47	11.83	.12		10.84				.10
2						-			-	

Safe loads given include weight of beam. Maximum fiber stress, 16,000 lbs. per square inch.

Load given above the heavy line exceeds safe load for web crippling. Safe loads given below the dotted lines produce deflections exceeding sate of the span.

BETHLEHEM I BEAMS.

IN TONS OF 2000 LBS.

BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

Comm	Span, 12" I			Add for	10	Add for	
in	B12 a	В	12	each Lb. Increase	В	10	each Lb. Increase
Feet.	36 Lbs.	32 Lbs.	28.5 Lbs.	Weight.	28.5 Lbs.	23.5 Lbs.	in Weight.
	00.50	00 54	01.00	0.5	1505		-
9 10	26.59 23.93	22.57 20.31	21.36 19.22	.35	15.95 14.35	14.57 13.11	.29
11	21.76	18.46	17.47	.29	13.05	11.92	04
12	19.94	16.92	16.02	.26	11.96	10.92	.22
13 14	18.41 17.09	15.62 14.51	14.79	.24	11.04 10.25	10.08	.20
15	15.95	13.54	13.73 12.81	.22	9.57	9.36 8.74	.19
16	14.96	12.69	12.01	.20	8.97	8.19	10
17	14.08	11.95	11.31	.19	8.44	7.71	.16
18	13.30	11.28	10.68	.17	7.97	7.28	.15
19 20	12.60 11.97	10.69 10.15	10.12 9.61	.17	7.55 7.18	6.90 6.55	.14
21 22	11.40 10.88	9.67 9.23	9.15 8.74	.15	6.84 6.52	6.24 5.96	.12
23	10.41	8.83	8.36	.14	6.24	5.70	.11
24	9.97	8,46	8.01	.13	5.98	5.46	.11
25	9.57	8.12	7.69	.13	5.74	5.24	.10
26	9.20	7.81	7.39	.12	5.52	5.04	.10
27 28	8.86 8.55	7.52 7.25	7.12 6.86	.12	5.32 5.13	4.86 4.68	.10
29	8.25	7.00	6.63	.11	4.95	4.52	.09
30	7.98	6.77	6.41	.11	4.78	4.37	.09
31	7.72	6.55	6.20	.10			
32 33	7.48 7.25	6.35 6.15	6.01 5.82	.10			
34	7.04	5.97	5.65	.09			
35	6.84	5.80	5.49	.09		- HARRY	Oi .
-	1				1		

lbs. per square incl. Safe loads given below the dotted lines produce deflections exceeding ato of the span. Safe loads given include weight of beam. Maximum fiber stress, 16,000

BETHLEHEM I BEAMS. IN TONS OF 2000 LBS.

BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

	9" I		Add for	Add for		
Span, in		В9	each Lb.		38	each Lb.
Feet.	24 Lbs.	20 Lbs.	in Weight.	19.5 Lbs.	17.5 Lbs.	in Weight.
5	21.83	20.18	.47	16.16	15.30	.42
6	18.19	16.81	.39	13.46	12.75	.35
7	15.60	14.41	.34	11.54	10.93	.30
8	13.65	12.61	.29	10.10	9.57	.26
9	12.13	11.21	.26	8.98	8.50	.23
10	10.92	10.09	.24	8.08	7.65	.21
11	9.92	9.17	.21	7.34	6.96	.19
12	9.10	8.41	.20	6.73	6.38	.17
13	8.40	7.76	.18	6.21	5.89	.16
14	7.80	7.21	.17	5.77	5.47	.15
15	7.28	6.73	.16	5.39	5.10	.14
16	6.82	6.31	.15	5.05	4.78	.13
17	6.42	5.93	.14	4.75	4.50	.12
18	6.07	5.61	.13	4.49	4.25	.12
19	5.75	5.31	.13	4.25	4.03	.11
20	5.46	5.04	.12	4.04	3.83	.11
21	5.20	4.80	.11	3.85	3.64	.10
22	4.96	4.59	.11	3.67	3.48	.10
23	4.75	4.39	.10	3.51	3.33	.09
24	4.55	4.20	.10	3.37	3.19	.09
25	4.37	4.04	.10	3.23	3.06	.08
26	4.20	3.88	.09			H. Birth
27	4.04	3.74	.09			
28	3.90	3.60	.09	size of		and I
29	3.76	3.48	.08	diam'r.		
30	3.64	3.36	.08			

Safe loads given include weight of beam. Maximum fiber stress, 16,000

lbs. per square inch.
Safe loads given below the dotted lines produce deflections exceeding 300 of the span.

MAXIMUM SAFE SHEAR ON THE WEBS OF BEAMS AND GIRDERS.

On relatively short spans the safe strength of the web of the beam against crippling, caused by the shearing stress, may determine the maximum safe load which the beam should support.

The shearing stresses in the web of a beam may be resolved into two component stresses of equal intensity, at right angles to each other, and at angles of 45 degrees with the neutral axis. Both of these stresses are of the same intensity and equal to that of the vertical shear. These component stresses are equivalent to compressive and tensile forces acting upon the web of the beam. The compressive forces tend to buckle the web, but it is not entirely free to buckle because the tensile forces acting at right angles have the effect of stiffening it.

The formula in general use for determining the maximum safe shear on the webs of beams and girders is as follows,

Maximum safe shear, in pounds =
$$\frac{12,000 \text{ dt}}{1 + \frac{h^2}{3000t^2}}$$

where d = depth of beam, t = thickness of web, and k = clear distance between flanges, all dimensions in inches.

The safe shears on the webs of Bethlehem beams and girders, derived from this formula, are given in the table on the opposite page, and also the corresponding minimum spans for the greatest safe uniformly distributed loads.

The safe uniformly distributed load for any span less than the minimum span given must not exceed twice the safe shear. The safe load concentrated at the center of a span must not be greater than twice the safe shear given, and the corresponding minimum span will be one-half the minimum span given in the table. Loading of any kind must not produce a shear exceeding the safe shear given unless the webs are stiffened.

In general, the shearing strength of the webs will be found ample for all ordinary cases of loading.

MAXIMUM SAFE SHEAR FOR

BETHLEHEM I BEAMS AND GIRDER BEAMS,

BASED UPON THE CRIPPLING STRENGTH OF THE WEBS.
ALSO THE CORRESPONDING MINIMUM SPANS
FOR GREATEST SAFE UNIFORMLY DISTRIBUTED LOADS.

I BEAMS.					GIRDER BEAMS.				
Section Number.	Depth of Beam, Inches.	Weight per Foot, Pounds.	Maximum Safe Shear, Pounds.	Mini- mum Span, Feet.	Section Number.	Depth of Beam, Inches.	Weight per Foot, Pounds.	Maximum Safe Shear, Pounds.	Mini- mum Span, Feet.
B30	30	120.0	103,800	17.9	G30 a	30	200.0	189,300	17.2
B28	28	105.0	89,000	17.2	G30	30	180.0	165,200	17.6
B26	26	90.0	75,300	16.2	G28 a	28	180.0	161,500	17.3
B24 a	24	84.0	75,100	14.1	G28	28	165.0	150,300	16.6
The same	24	83.0	93,100	10.7	G26 a	26	160.0	135,900	17.0
B24	24	73.0	54,000	17.2	G26	26	150.0	135,900	15.6
B20 a	20	82.0	102,400	8.1	G24 a	24	140.0	121,700	15.3
3	20	72.0	64,900	12.1	G24	24	120.0	98,500	16.3
B20	20	69.0	88,200	7.7	G20 a	20	140.0	124,200	12.6
D20	20 20	64.0 59.0	69,400 50,000	9.4	G20	20	112.0	98,500	12.7
	18	59.0	78,000	6.7	G18	18	92.0	76,100	12.4
D10	18	54.0	57,500	8.7	G15b	15	140.0	134,200	8.4
B18	18	52.0	49,200	9.9	G15a	15	104.0	94,300	9.2
	18	48.5	36,700	12.9	G15	15	73.0	59,200	10.6
B15b	15	71.0	77,900	7.3	G12 a	12	70.0	57,200	8.4
B15a	15	64.0	93,900	5.0	G12	12	55.0	42,300	9.1
	15	54.0	54,800	7.9	G10	10	44.0	29,800	8.7
B15	15 15	46.0	60,000	5.7	G9	9	38.0	26,700	7.6
DIO	15	38.0	30,100	10.5	G8	8	32.5	23,600	6.5
B12 a	12	36.0	32,200	7.4	ORCH CE	Inc.			
B12	12	32.0	35,800	5.7	TEN.				
BIZ	12	28.5	22,200	8.7	Marin	num S	afe She	12,000	dt
B10	10	28.5	39,800	3.6	Maxii	num c	are bile	1.	h ²
1010	10	23.5	21,000	6.2	Wher	e.		30	000 t ²
В9	9	24.0	33,900	3.2	d=	- depth	of bear	n,	79
THE REAL PROPERTY.	9	20.0	20,100	5.0	h =	clear		between fla	anges.
B8	8	19.5 17.5	26,900 18,900	3.0	All di	mensio	ons in in	ches.	SVE I
	0	11.0	10,500	7.1					Control of the last

BETHLEHEM

I BEAMS AND GIRDER BEAMS FOR RAILROAD BRIDGES.

The table on the opposite page shows the application of Bethlehem rolled beam and girder sections for use as track stringers in railroad bridges and for short span railroad bridges. The table is calculated according to Theodore Cooper's Specifications for Railroad Bridges for a loading of E 40, equivalent to a capacity for 142-ton locomotives. All figures are given for one rail or one-half track.

The size and weight of the Bethlehem rolled sections which are required for the purpose are given for the various spans. As a comparison, the size and weight of the corresponding present standard I beams that could be employed for the same purpose are also given, so far as standard beams could be used. The economical weight of the Bethlehem beams is apparent from this comparison. Riveted girders would be required on spans greater than 17 feet in length, unless the more economical rolled Bethlehem beams are used.

Bethlehem rolled beams, for all spans under 25 feet in length, will weigh less than the most economical riveted girder it is possible to design, even when the depth of the latter is unlimited. For spans over 25 feet in length, the rolled beams will weigh less than riveted girders of equal depth.

In every case the Bethlehem rolled section is economical, weight or cost considered, as compared with a standard I beam or with a riveted girder.

The Bethlehem beams also can be used to advantage for the cross girders or floor beams of bridges. Where available depth is limited, the rolled girder sections having twice the section modulus of standard beams of equal depth will be found desirable for stringers or cross girders, and prove economical in weight and cost as compared with built-up riveted girders which otherwise would be required. These rolled girder sections will also be found specially adapted for solid bridge floors of shallow depth.

BETHLEHEM I BEAMS AND GIRDER BEAMS

USED FOR

RAILROAD TRACK STRINGERS AND SHORT SPAN RAILROAD BRIDGES.

DESIGNED ACCORDING TO COOPER'S SPECIFICATIONS
FOR LOADING E 40.

Span,	Bending Moment, in	Section	BETHLEHEM ROLLED SECTIONS REQUIRED.			STANDARI	ECONOMICAL DI REAM THAT BE USED.
in Feet.	Foot-Lbs. for 1/2 Track.	Modu_us Required.	Section Number	Depth, Inches.	Weight per Foot, Lbs.	Weight per Foot, Lbs.	Size.
10	65,800	79	В15 а	15	54.0	60	15" I
11	76,700	92	B18	18	52.0	60	18" I
12	89,000	107	B20	20	59.0	65	20" I
13	102,000	122	B20	20	64.0	70	20" I
14	116,800	140	B20 a	20	72.0	80	20″ I
15	133,000	160	B24	24	73.0	80	24" I
16	149,000	179	B24	24	83.0	85	24" I
17	166,000	199	B24 a	24	84.0	100	24" I
18	182,000	218	B26	26	90.0	FT 30 B	
19	200,600	241	B28	28.	105.0	spans under economical with unlim-	spans over girders of
20	223,000	268	B28	28	105.0	n st mon	rder
21	243,000	292	B30	30	120.0	par	sping
22	266,000	320	B30	30	120.0	or s st	for
23	287,000	344	B30	30	120.0	s, f	ive ive
24	310,000	372	G26	26	150.0	a rolled sections, for sin less than the most er possible to design w	sections, for than riveted
25 .	331,000	397	G26	26	150.0	sec han ble	the
26	354,000	425	G26 a	26	160.0	led ss t	rolled less depth.
27	377,000	452	G28	28	165.0	rol r pc	ro de de
28	401,000	481	G30	30	180.0	lehem r weigh girder	pth. lehem rolled weigh less equal depth.
29	427,000	512	G30	30	180.0	Bethlehem feet, weigh	d depth. Bethlehem feet, weigl arly equal
30	453,000	544	G30	30	180.0	Bethl 25 feet, riveted	ited dep Bethle 25 feet, nearly e
31	478,000	575	G30 a	30	200.0	12.23	# KA
32	504,000	605	G30 a	30	200.0		

OF SAFE LOADS FOR BETHLEHEM ROLLED STEEL H COLUMNS.

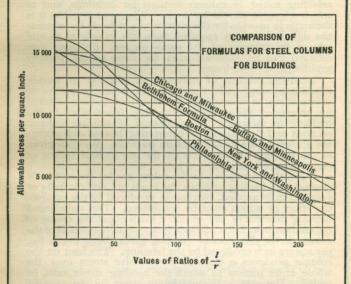
The superiority of steel columns over columns of any other material is so well understood and recognized as to need no comment. Cast iron columns are sometimes used solely on the score of cheapness because of the relatively greater cost of riveted steel columns—the only kind of steel columns heretofore obtainable; but in buildings of anything more than the most moderate height, or wherever stiffness of frame and absolute security is essential, steel columns are exclusively employed.

Bethlehem rolled steel H sections reduce the cost of steel columns to such an extent that they can be used for all purposes with economy. These rolled steel columns provide all the desired qualities of safety and reliability at a cost less than that of any other form of steel column, and at a cost as

low or even less than cast iron.

For very short lengths the compressive strength of structural steel of standard quality is the same as its tensile strength. As the length increases the compressive strength diminishes. A short column has a practically uniform compressive strength for all lengths less than about fifteen times its least diameter; but for greater lengths the strength decreases, the decrease being a function of the length of the column and the radius of gyration of the section in the direction of its least resistance to bending. Conforming to these conditions, the safe allowable stress, in lbs. per square inch, on square ended columns of medium steel used for buildings is given by the following formula:

13,000 lbs. for lengths under 55 radii of gyration. 16,000—55 $\frac{l}{r}$ for lengths over 55 radii of gyration.


in which l= unsupported length of column and r= least radius of gyration, both in inches.

The safe strength of steel columns given by this formula agrees in a satisfactory manner with the available experimental data on the subject. In addition it is of correct theoretical form. It represents a straight line which becomes tangent to the curve of Euler's formula for very long columns and fixes a maximum limit of stress for columns of relatively short length. The safe stress allowed on steel columns by this rule corresponds to the safe stress usually allowed for beams and girders in buildings. Columns pro-

portioned in accordance with this formula have the same proper degree of safety as the beams and girders which they support, thus maintaining a symmetrical proportion of all parts of the structure.

A comparison of this formula with the column formulas specified by the building laws of the principal cities in the United States is shown by the diagram herewith, from which it will be seen that it represents about an average of general

practice.

A riveted column, having the metal in its shaft injured and weakened by the punching of numerous rivet holes, is liable to fail under a less load than a rolled column in which the shaft is devoid of rivets. The formula does not take into consideration this advantage in favor of the rolled steel column sections. It represents only the best current practice in general steel column design, and is not limited to columns of special or superior shape.

Safe loads computed by this formula are given in the tables on pages 78-85 for all the sizes of Bethlehem rolled H columns and on pages 74-77 for Bethlehem I beams and girder beams when used as columns. The

column required for any given load and length is readily selected from these tables.

The unsupported length of a column should not exceed 150 radii of gyration, which is the limit of length for which safe loads are given in the tables. In the best practice the unsupported length of a column is frequently required not to exceed 125 times the least radius of gyration; this latter

limit is indicated in the tables by zigzag lines.

An example is given on page 73 showing the method of selecting rolled H column sections for buildings, and to which reference should be made. Wherever possible, it is desirable to provide for the given range of loads by selecting the different weights required from the variations in size offered by columns of the same section. Columns thus selected can be obtained from the same rolling, thereby avoiding delay in delivery.

Abutting sections of columns, in addition to having machine squared ends, should be connected by splices of sufficient size to maintain the continuity of section required for preserving the rigidity of the steel frame work of the building or structure. The method of splicing column sections and the manner of connecting beams and girders are shown by the illustrations on page 97. Weights given of the various column sections do not include splices or

connections of any kind.

The safe loads given in the tables are for concentric or symmetrical loading. When the loads are not centrally or symmetrically applied, bending is produced in the column, the effect of which must be considered. The unbalanced bending moment of the eccentric loads about the center of the column, in inch-lbs., divided by the section modulus of the column in the direction of bending gives the stress in lbs. per square inch produced by the bending. The load on the column produces a uniform compressive stress over the whole cross section to which the bending stress must be added. The sum is the maximum stress on the extreme fibers of the column section.

The maximum fiber stress due to direct load and bending must not be more than 25 per cent. in excess of the permissible stress on the column, for the given length, obtained from the formula for concentric loading, otherwise the section of the column must be increased until this limit is not

exceeded.

The section modulus about each principal axis for all the sections of rolled H columns is given in the tables of their properties on pages 44-55, by means of which the effect of eccentric loading is easily calculated and considered in the above manner.

EXAMPLE

SHOWING THE METHOD OF SELECTING BETHLEHEM ROLLED H COLUMNS FOR BUILDINGS.

For illustration, the interior columns of an actual 16-story building are taken as an example. The story heights and the loads on the columns are given in the following table:

	Height	Load		Н	Column S	Section Requ	uired.	
Story.	of	on	Safe	Dimer	nsions, in	Inches.	Weight	Section
	Story, Feet.	Column, Tons.	Load, Tons.	D	Т	В	of Section, Lbs. per Foot.	Number.
16th	12	27	55.0	77/8	7 16	8.00	31.5	Н8
15th 14th	13 14	53 79	81.5	83/8	11 16	8.12	48.0	Н8
13th 12th	13 13	104 128	132.2	103/8	13	10.12	71.0	H10
11th 10th	13 13	151 174	174.8	121/4	7/8	12.08	91.5	H12
9th 8th	13 13	197 219	219.1	141/4	15 16	14.08	114.5	H14
7th 6th	13 13	241 261	263.8	145%	11/8	14.19	138.0	H14
5th 4th	13 13	281 301	310.1	15	15	14.31	162.0	H14
3d 2d	13 15	321 341	341.3	151/4	$1\frac{7}{16}$	14.39	178.5	H14
1st Basement.	17 12	363 395	403.5	15¾	111	14.54	211.0	H14

Columns for buildings are usually selected in lengths of two stories. By inspection of the tables of safe loads for H columns, it is found that no columns smaller than 14" H sections have sufficient capacity for the lower stories. From the table on page 78 the 14" H columns required are then selected for the lower stories; and from the tables on pages 80, 82, and 84 the 12", 10", and 8" columns are selected for the upper stories.

All the sizes of columns, as selected and given in the above table, from the basement to the 9th story inclusive, are obtainable from the same rolls at a single rolling.

Where there is no limitation as to the size of the column, the largest dimension column having the required capacity will be the most economical.

BETHLEHEM GIRDER BEAMS USED AS COLUMNS. SQUARE ENDS.

Allowable stress per square inch: 13,000 lbs. for lengths under 55 radii.

16,000—55 $\frac{1}{r}$ for lengths over 55 radii.

Section	Depth	Weight	Area	Least Radius	UNSU	PPORTEI	LENGTE	OF COL	UMNS, I	n feet.
Number.	Beam, Inches.	Foot, Lbs.	Section, Sq. In.	of Gy- ration, Inches.	8 Ft.	9 Ft.	10 Ft.	11 Ft.	12 Ft.	13 Pt.
THE TA	in.	5,9								- His
G30 a	30		58.71		381.6	381.6	381.6	381.6	381.6	381.6
G30	30	180.0	53.00	2.86	344.5	344.5	344.5	344.5	344.5	344.5
G28 a	28	180.0	52.86	3.18	343.6	343.6	343.6	343.6	343.6	343.6
G28	28	165.0	48.47	2.77	315.1	315.1	315.1	315.1	315.1	312.7
G26 a	26	160.0	46.91	3.05	304.9	304.9	304.9	304.9	304.9	304.9
G26	26	150.0	43.94	2.38	285.6	285.6	285.6	285.6	285.6	281.2
G24 a	24	140.0	41.16	2.90	267.5	267.5	267.5	267.5	267.5	267.5
G24	24	120.0	35.38	2.66	230.0	230.0	230.0	230.0	230.0	225.8
G20 a	20	140.0	41.19	2.91	267.8	267.8	267.8	267.8	267.8	267.8
G20	20	112.0	32.81	2.70	213.3	213.3	213.3	213.3	213.3	210.4
G18	18	92.0	27.12	2.59	176.3	176.3	176.3	176.3	175.5	172.0
G15 b	15	140.0	41.27	2.83	268.2	268.2	268.2	268.2	268.2	267.6
G15 a	15		30.50							194.4
G15	15	73.0	21.49	2.39	139.7	139.7	139.7	139.3	136.3	133.4
G12 a	12	70.0	20.58	2.36	133.8	133.8	133.8	133.0	130.1	127.3
G12	12	55.0	16.18	2.24	105.2	105.2	105.2	103.2	100.9	98.5
G10	10	44.0	12.95	2.10	84.1	84.1	83.2	81.2	79.2	77.1
G9	9	38.0	11.22	1.98	72.9	72.9	71.1	69.2	67.3	65.4
G8	8	32.5	9.54	1.86	62.0	61.1	59.4	57.7	56.0	54.3

Beams not secured against yielding sideways and free to fail in direction of least radius of gyration.

BETHLEHEM GIRDER BEAMS USED AS COLUMNS.

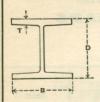
SQUARE ENDS.

Allowable stress per square inch:
13,000 lbs. for lengths under 55 radii.
16,000—55 — for lengths over 55 radii.

		UNSUPPO	ORTED L	ENGTH	OF COLU	JMNS IN	FEET.		Hall	Section
14 Ft.	15 Ft.	16 Ft.	18 Ft.	20 Ft.	22 Ft.	24 Ft.	28 Ft.	32 Ft.	36 Ft.	Number.
381.6	381.6	375.2	363.4	351.5	339.7	327.9	304.3	280.7	257.0	G30 a
	332.3									
	340.6									
306.9	301.1	295.4	283.8	272.3	260.7	249.2	226.1	203.0	179.9	G28
-	299.2	-			11111111111111111	-				
	270.4						2 100			Maria Maria
	259.0 217.0					-				Marie Land
264.1	259.5	254.8	245.5	236.1	226.8	217.4	198.8	180.1	161.4	G20 a
	202.3					-	20010			G20
168.6	165.1	161.7	154.8	147.9	140.9	134.0	120.2	106.4		G18
262.8	258.0	253.2	243.5	233.9	224.3	214.7	195.4	176.2		G15 b
	186.8 127.4						2000			G15 a G15
								200		
96.1	121.5 93.7		86.6	-					1000	G12 a G12
75.1	73.1	71.0	67.0	62.9	58.8	54.7				G10
63.6			10.00	1-6				1 16		G9
52.7	1111	49.3	18.60		11.0	TIL			DE L	G8
52.1	31.0	49.5	45.9	42.5	59.1	30.1				GO AN

Loads given to the right of the zigzag line are for lengths greater than 125 radii of gyration.

BETHLEHEM I BEAMS USED AS COLUMNS. SQUARE ENDS.


Section	Depth	Weight	Area	Least Radius	. 1	JNSUPPO	RTED LI	ENGTH O	F COLU	MNS.
Number.	Beam, Inches.	Foot, Pounds.	Section, Sq. In.	of Gy- ration. Inches.	5 Ft.	6 Ft.	7 Ft.	8 Ft.	9 It.	10 Ft.
B30	30	120.0	35.30	2.16	229.5	229.5	229.5	229.5	229.5	228.5
B28	28	105.0	30.88	2.06	200.7	200.7	200.7	200.7	200.7	197.6
B26	26	90.0	26.49	1.95	172.2	172.2	172.2	172.2	171.6	167.1
B24 a	24	84.0	24.80	1.92						155.8
B24	24	83.0	24.59			159.9				
	24 20	73.0	21.47	1.86						133.7
B20 a	20	82.0 72.0	24.17 21.37	1.82		157.1 138.9				
	20	69.0	20.26	1.59		131.7				
B20	20	64.0	18.86		122.6	122.6	122.6	120.1	116.3	112.5
	20	59.0	17.36							104.4
	18	59.0	17.40	1.50		112.4				
B18	18 18	54.0 52.0	15.87 15.24	1.54 1.56		$103.2 \\ 99.1$	99.1			93.0 89.7
	18	48.5	14.25		92.7		99.1		87.4	
B15 b	15	71.0	20.95	100000000000000000000000000000000000000	-	136.2			E 5 3 1 1 1 1 1	
B15a	15	64.0	18.81			122.3				
Біза	15	54.0	15.88	1000	103.2	103.2	103.2	100.0	96.6	
	15	46.0	13.52		87.9		85.2			
B15	15 15	41.0 38.0	12.02 11.27		78.1	78.1	76.5			
B12 a	12	36.0	10.61	1.44	73.2	0000000	72.1	69.5		
Diza	12	32.0	9.44	1.30	69.0 61.4		67.6 58.8		755	60.2
B12	12	28.5	8.42	1.35	54.8		53.0	56.4 50.9		51.6 46.8
D10	10	28.5	8.34	1.21	54.2	53.0	50.8		-	
B10	10	23.5	6.94		45.1	44.7	42.9			37.5
В9	9	24.0 20.0	7.04 6.01	1.12	45.8 39.1		41.8			35.6
-B en	8	19.5	5.78		37.4		36.2		1000000	
B8	8	17.5		1.11	33.6		33.9 30.6			28.6 26.0

Beams not secured against yielding sideways and free to fail in direction of least radius of gyration.

BETHLEHEM I BEAMS USED AS COLUMNS. SQUARE ENDS.

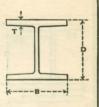
		UNS	UPPORT	ED LENG	GTH OF	COLUMN	s.			
11 Ft.	12 Ft.	13 Ft.	14 Ft.	15 Ft.	16 Ft.	18 Ft.	20 Ft.	22 Ft.	24 Ft.	Section Number.
223.1	217.7	212.3	206.9	201.5	196.1	185.3	174.6	163.8	153.0	B30
192.6	187.7	182.7	177.8	172.9	167.9	158.0	148.1	138.2	128.3	B28
162.6	158.1	153.6	149.1	144.7	140.2	131.2	122.3	113.3	104.3	B26
151.5	147.2	143.0	138.7	134.4	130.2	121.7	113.1	104.6	96.1	B24 a
		$137.5 \\ 122.3$								B24
	126.0	136.4 122.2	118.5	114.7	111.0	103.4	95.9	88.4		B20 a
115.8 108.6 100.9	104.8	107.4 100.9 94.0	97.1	93.3	89.4		74.0 69.9			B20
97.1 89.6 86.5 81.5	93.3 86.2 83.3 78.5	80.0	79.4 76.8	76.0 73.6	72.6	65.8 63.9	59.0 57.5			B18
123.1	119.1	115.0	111.0	107.0	102.9	94.8	86.7			B15 b
104.6 89.9	100.5 86.5	- 100000000				66.2	67.2 59.4			B15 a
72.1 65.2 61.7	68.8 62.4 59.2	59.6	56.8	54.0	51.1	45.5				B15
57.8 49.2	55.3		100000000000000000000000000000000000000		1	-				B12 a
44.7	42.7	40.6	38.6	36.5	34.4					B12
41.7 35.7	39.4				-					B10
33.5 29.4	31.4 27.7				Allowa	able stre	ss per so	uare in	eh:	В9
26.8 24.5	25.0 22.9				The same of the sa	1	for lengt			В8

Loads given to the right of the zigzag line are for lengths greater than 125 radii of gyration.

BETHLEHEM ROLLED STEEL 14" H COLUMNS.

SQUARE ENDS.

Allowable stress per square inch:
13,000 lbs. for lengths under 55 radii.
16,000—55 \(\frac{1}{r} \) for lengths over 55 radii.


	Weight	DIMEN	SIONS,	INCHES.	Area	Least Radius	UNSI	JPPORTE	D LENGI	H OF CO	LUMNS.
Section Number.	Section, Lbs. per Foot.	D	Т	В	Section, Square Inches.		10 Ft.	12 Ft.	14 Ft.	16 Ft.	18 Ft.
New York	83.5 91.0	$13\frac{3}{4}$ $13\frac{7}{8}$	11 16 3 4	13.92 13.96	24.46 26.76	3.47 3.49	159.0 173.9	159.0 173.9	159.0 173.9	158.5 173.9	153.8 168.5
	99.0 106.5	141	7/8	14.04	31.38	3.52	204.0	204.0	204.0	188.6 204.0	198.1
	114.5 122.5 130.5	143	1	14.12	36.04	3.55	234.3	234.3	234.3	219.1 234.3 249.5	
	138.0 146.0	$14\frac{5}{8}$ $14\frac{3}{4}$	1 1 8 1 3 1 5 6	14.19 14.23	40.59 42.95	3.58 3.59	263.8 279.2	263.8 279.2	263.8 279.2	263.8 279.2	257.4 272.5
	154.0 162.0	$\frac{14\frac{7}{8}}{15}$			45.33 47.71					294.7 310.1	288.1 303.4
H14	178.5	154	1176	14.39	52.51	3.65	341.3	341.3	341.3	325.7 341.3	319.0 334.6
	186.5 195.0 203.5	$15\frac{1}{2}$	1 9	14.47	54.92 57.35 59.78	3.68	372.8	372.8	372.8	357.0 372.8 388.6	350.3 366.1 381.9
	211.0 219.5	$15\frac{3}{4}$ $15\frac{7}{8}$	$1\frac{1}{16}$ $1\frac{3}{4}$	14.54 14.58	62.07 64.52	3.70 3.71	403.5 419.4	403.5 419.4	403.5 419.4	403.5 419.4	396.9
	227.5 236.0	16 16 ¹ / ₈	10		-	D. E.L	200		3.03	435.4	429.0
	244.5 253.0	164		14.70	71.94	3.75	467.6	467.6	467.6	451.4 467.6 483.8	461.5
	261.5 270.0 278.5	$16\frac{5}{8}$	$2\frac{1}{8}$	14.82	79.44	3.79	516.4	516.4	516.4	500.0 516.4 532.8	510.9
	287.5		$2\frac{1}{16}$							532.8 549.3	527.6 544.3

For detail dimensions, see page 44.

BETHLEHEM ROLLED STEEL 14" H COLUMNS.

SQUARE ENDS.

Allowable stress per square inch:
13,000 lbs. for lengths under 55 radii.
16,000—55 \frac{1}{r} for lengths over 55 radii.

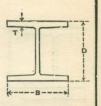
		UNS	UPPORT	ED LENG	TH OF C	OLUMNS.				Weight of
20 Ft.	22 Ft.	24 Ft.	26 Ft.	28 Ft.	30 Ft.	32 Ft.	36 Ft.	40 Ft.	44 Pt.	Section, Lbs. per Foot.
149.2 163.4						121.2 133.1				83.5 91.0
177.7 192.2 206.6 221.3	186.3 200.3	180.4 194.0	174.6 187.7	168.7 181.4	162.8 175.1	144.8 156.9 168.8 181.1	145.1 156.2	133.4 143.6	121.6 131.0	106.5 114.5
235.9 249.9 264.6	228.8 242.4 256.7	221.7 234.9 248.9	214.5 227.4 241.0	207.4 220.0 233.1	200.3 212.5 225.2	193.2 205.0 217.3	179.0 190.0 201.5	164.7 175.1 185.7	150.5 160.1 170.0	130.5 138.0 146.0
279.8 294.7 309.9	286.0	277.3	268.6	259.9	251.2	230.0 242.5 255.3	225.1	207.7	190.3	
325.1 340.4 355.8 371.2	330.5 345.5	$320.6 \\ 335.2$	310.7 324.9	300.8 314.6	290.9 304.3	268.1 281.0 294.0 307.0	261.2 273.4	$241.4 \\ 252.8$	221.6 232.2	195.0
385.8 401.4 417.2	374.8 390.0	363.7 378.5	352.6 367.1	$341.6 \\ 355.6$	330.5 344.1	319.4 332.6 345.9	297.3 309.7	275.1 286.8	$253.0 \\ 263.8$	211.0 219.5
433.0 448.9 464.8	436.2 451.8	423.6 438.7	$\frac{410.9}{425.7}$	398.2 412.6	385.6 399.6	359.4 372.9 386.5 400.2	347.6 360.4	$322.2 \\ 334.3$	296.9 308.1	244.5 253.0
480.9 497.0 513.3 529.6	483.2 499.1	469.3 484.8	455.5 470.6	441.6 456.3	427.8 442.1	413.9 427.8 441.8	386.3 399.4	$358.6 \\ 370.9$	$330.9 \\ 342.4$	270.0 278.5 287.5

Loads to the right of the heavy line are for lengths greater than 125 radii.

BETHLEHEM ROLLED STEEL 12" H COLUMNS.

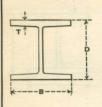
SQUARE ENDS.

Allowable stress per square inch: 13,000 lbs. for lengths under 55 radii. $16,000-55\frac{1}{r}$ for lengths over 55 radii.


	Weight	DIMENS	SIONS,	INCHES.	Area	Least Radius	UNSU	PPORTE	D LENGT	H OF CO	LMUNS.
Section Number.	Section, Lbs. per Foot.	D	т	В	Section, Square Inches.	of Gy- ration,	10 Ft.	12 Ft.	14 Ft.	16 Ft.	18 Ft.
	64.5	113	58	11.92	19.00	2.98	123.5	123.5	122.5	118.3	114.1
	71.5	117/8	116	11.96	20.96	3.00	136.2	136.2	135.4	130.8	126.2
	78.0	12	34	12.00	22.94	3.01	149.1	149.1	148.3	143.3	138.3
	84.5	121/8	13 16	12.04	24.92	3.03	162.0	162.0	161.4	155.9	150.5
	91.5	$12\frac{1}{4}$	78	12.08	26.92	3.04	175.0	175.0	174.5	168.6	162.8
	98.5	$12\frac{3}{8}$	15 16	12.12	28.92	3.06	188.0	188.0	187.7	181.5	175.2
H12	105.0	$12\frac{1}{2}$	1	12.16	30.94	3.07	201.1	201.1	201.0	194.3	187.7
1112	112.0	125	$1\frac{1}{16}$	12.20	32.96	3.08	214.2	214.2	214.2	207.2	200.1
	118.5	$12\frac{3}{4}$	11/8	12.23	34.87	3.10	226.7	226.7	226.7	219.6	212.1
	125.5	$12\frac{7}{8}$	136	12.27	36.91	3.11	239.9	239.9	239.9	232.6	224.8
	132.5	13	14	12.31	38.97	3.13	253.3	253.3	253.3	246.0	237.8
	139.5	131/8	$1\frac{5}{16}$	12.35	41.03	3.14	266.7	266.7	266.7	259.3	250.6
	146.5	131	138	12.39	43.10	3.15	280.2	280.2	280.2	272.6	263.5
	153.5	133	17/16	12.43	45.19	3.16	293.7	293.7	293.7	286.0	276.6
	161.0	131	11/2	12.47	47.28	3.18	307.3	307.3	307.3	299.7	289.9

For detail dimensions, see page 46.

BETHLEHEM ROLLED STEEL 12" H COLUMNS.


SQUARE ENDS.

Allowable stress per square inch:
13,000 lbs. for lengths under 55 radii.
16,000—55 \frac{1}{r} for lengths over 55 radii.

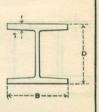
		UNS	UPPORTI	ED LENG	TH OF C	COLUMNS				
20 Pt.	22 Ft.	24 Ft.	26 Ft.	28 Ft.	30 Ft.	32 Ft.	34 Ft.	36 Ft.	38 Ft.	Weight of Section, Lbs. per Foot.
109.9	105.7	101.5	97.3	93.1	88.9	84.7	80.5	76.3		64.5
121.6	117.0	112.4	107.8	103.1	98.5	93.9	89.3	84.7		71.5
133.2	128.2	123.2	118.1	113.1	108.1	103.0	98.0	93.0		78.0
145.1	139.7	134.2	128.8	123.4	117.9	112.5	107.1	101.7		84.5
156.9	151.1	145.2	139.4	133.5	127.7	121.9	116.0	110.2	104.3	91.5
169.0	162.8	156.5	150.3	144.0	137.8	131.6	125.3	119.1	112.8	98.5
181.0	174.4	167.7	161.1	154.4	147.8	141.1	134.4	127.8	121.1	105.0
193.1	186.0	178.9	171.9	164.8	157.7	150.7	143.6	136.6	129.5	112.0
204.7	197.3	189.9	182.5	175.0	167.6	160.2	152.8	145.3	137.9	118.5
217.0	209.1	201.3	193.5	185.6	177.8	170.0	162.1	154.3	146.5	125.5
229.6	221.4	213.2	204.9	196.7	188.5	180.3	172.1	163.9	155.6	132.5
242.0	233.4	224.8	216.1	207.5	198.9	190.3	181.6	173.0	164.4	139.5
254.5	245.5	236.4	227.4	218.4	209.3	200.3	191.3	182.3	173.2	146.5
267.1	257.7	248.3	238.8	229.4	219.9	210.5	201.1	191.6	182.2	153.5
280.1	270.3	260.5	250.7	240.9	231.0	221.2	211.4	201.6	191.8	161.0

Loads to the right of the heavy line are for lengths greater than 125 radii.

BETHLEHEM ROLLED STEEL 10" H COLUMNS.

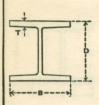
SQUARE ENDS.

Allowable stress per square inch: 13,000 lbs. for lengths under 55 radii. 16,000—55 $\frac{1}{r}$ for lengths over 55 radii.


Section	Weight of Section.	DIME	CHE		Area of Section.	Least Radius of Gy-	UNS		RTED		тн оғ
Number.	Lbs. per Foot.	D	Т	В	Square Inches.	ration,	10 Ft.	11 Ft.	12 Ft.	13 Ft.	14 Ft.
	49.0	978	9 16	9.97	14.37	2.49	93.5	93.5	92.1	90.2	88.3
	54.0	10	58	10.00	15.91	2.51	103.4	103.4	102.2	100.1	98.0
	59.5	101	11 16	10.04	17.57	2.53	114.2	114.2	113.1	110.8	108.5
	65.5	101	34	10.08	19.23	2.54	125.0	125.0	123.9	121.4	118.9
	71.0	103	$\frac{13}{16}$	10.12	20.91	2.56	135.9	135.9	134.9	132.2	129.5
	77.0	101	7/8	10.16	22.59	2.57	146.8	146.8	145.9	143.0	140.1
H10	82.5	105	15 16	10.20	24.29	2.58	157.9	157.9	157.0	153.9	150.8
	88.5	103	1	10.24	25.99	2.60	168.9	168.9	168.3	165.0	161.7
	94.0	107	$1\frac{1}{16}$	10.28	27.71	2.61	180.1	180.1	179.6	176.1	172.6
	99.5	11	11/8	10.31	29.32	2.62	190.6	190.6	190.2	186.6	182.9
	105.5	1118	1 3 T 6	10.35	31.06	2.64	201.9	201.9	201.9	198.0	194.1
	111.5	111	11/4	10.39	32.80	2.65	213.2	213.2	213.2	209.3	205.2
	117.5	113	156	10.43	34.55	2.66	224.6	224.6	224.6	220.7	216.4
	123.5	111	13/8	10.47	36.32	2.67	236.1	236.1	236.1	232.2	227.7

For detail dimensions, see page 48.

BETHLEHEM ROLLED STEEL 10" H COLUMNS.


SQUARE ENDS.

Allowable stress per square inch: 13,000 lbs. for lengths under 55 radii. 13,000—55 $\frac{1}{r}$ for lengths over 55 radii.

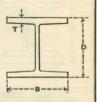
10 31	UNS	UPPO	RTED	LEN	GTH (OF CO	DLUM	NS.	1987.42	Weight of
15 Ft.	16 Ft.	18 Ft.	20 Ft.	22 Ft.	24 Ft.	26 Ft.	28 Ft.	30 Ft.	32 Ft.	Section, Lbs. per Foot.
86.3	84.5	80.7	76.9	73.1	69.3	65.4	61.6	57.8	54.0	49.0
95.9	93.8	89.6	85.4	81.3	77.1	72.9	68.7	64.5	60.3	54.0
106.2	103.9	99.3	94.7	90.1	85.6	81.0	76.4	71.8	67.2	59.5
116.4	113.9	108.9	103.9	98.9	93.9	88.9	83.9	78.9	73.9	65.5
126.9	124.2	118.8	113.4	108.0	102.6	97.2	91.8	86.4	80.1	71.0
137.2	134.3	128.5	122.7	116.9	111.1	105.3	99.5	93.7	87.9	77.0
147.7	144.6	138.4	132.2	126.0	119.8	113.5	107.3	101.1	94.9	82.5
158.4	155.1	148.5	142.0	135.4	128.8	122.2	115.6	109.0	102.4	88.5
169.1	165.6	158.6	151.6	144.6	137.6	130.6	123.6	116.6	109.6	94.0
179.2	175.5	168.1	160.7	153.3	145.9	138.5	131.2	123.8	116.4	99.5
190.3	196 4	170 6	170 0	169 1	155.3	147 5	120.0	199.0	104.0	105.5
201.2	-	and the			164.4	FIRE		1		
212.1										
223.2		Train I			173.5					
223.2	218.7	209.8	200.8	191.8	182.8	173.8	164.9	155.9	146.9	123.5

Loads to the right of the heavy line are for lengths greater than 125 radii.

BETHLEHEM ROLLED STEEL 8" H COLUMNS.

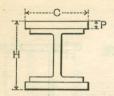
SQUARE ENDS.

Allowable stress per square inch: 13,000 lbs. for lengths under 55 radii. 16,000—55 $\frac{1}{2}$ for lengths over 55 radii.


Section	Weight of Section.	DIME	CHE		Area of Section.	Least Radius of Gy-	UNS		RTED		TH OF
Number.	Lbs. per Foot.	D	Т	В	Square Inches.	ration, Inches.	8 Ft.	9 Pt.	10 Ft.	11 Ft.	12 Ft.
	32.0	778	7 16	8.00	9.17	1.98	59.7	59.7	58.1	56.5	55.0
	34.5	8	1/2	8.00	10.17	2.01	66.1	66.1	64.7	63.0	61.3
	39.0	818	9 16	8.04	11.50	2.03	74.8	74.8	73.3	71.4	69.6
	43.5	81	5	8.08	12.83	2.04	83.4	83.4	81.9	79.8	77.7
	48.0	83	11 16	8.12	14.18	2.05	92.2	92.2	90.6	88.3	86.1
Н8	53.0	81/2	34	8.16	15.53	2.07	101.0	101.0	99.5	97.0	94.5
110	57.5	85	13 16	8.20	16.90	2.08	109.9	109.9	108.4	105.7	103.0
	62.0	834	7 8	8.24	18.27	2.09	118.8	118.8	117.3	114.4	111.5
	67.0	87/8	15 16	8.28	19.66	2.11	127.8	127.8	126.5	123.5	120.4
	71.5	9	1	8.32	21.05	2.12	136.8	136.8	135.6	132.4	129.1
	76.5	91/8	$1\frac{1}{16}$	8.36	22.46	2.13	146.0	146.0	144.9	141.4	137.9
	81.0	91	11/8	8.39	23.78	2.14	154.6	154.6	153.6	149.9	146.2
	85.5	93	$1_{\frac{3}{16}}$	8.43	25.20	2.16	163.8	163.8	163.1	159.3	155.4
	90.5	$9\frac{1}{2}$	11	8.47	26.64	2.17	173.2	173.2	172.6	168.6	164.5

For detail dimensions, see page 50.

BETHLEHEM ROLLED STEEL 8" H COLUMNS.


SQUARE ENDS.

Allowable stress per square inch: 13,000 lbs. for lengths under 55 radii. $16,000-55\frac{1}{r}$ for lengths over 55 radii.

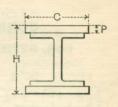
	UNS		Weight of							
13 Ft.	14 Ft.	15 Ft.	16 Ft.	17 Ft.	18 Ft.	20 Ft.	22 Ft.	24 Ft.	26 Ft.	Section, Lbs. per Foot.
53.5	52.0	50.4	48.9	47.4	45.9	42.8	39.7	36.7		32.0
59.7	58.0	56.3	54.6	53.0	51.3	48.0	44.6	41.3	38.0	34.5
67.7	65.8	64.0	62.1	60.2	58.4	54.6	50.9	47.1	43.4	39.0
75.7	73.6	71.5	69.4	67.4	65.3	61.1	57.0	52.8	48.7	43.5
83.8	81.5	79.2	76.9	74.6	72.4	67.8	63.2	58.7	54.1	48.0
92.1	89.6	87.1	84.6	82.2	79.7	74.7	69.8	64.8	59.9	53.0
100.3	97.7	95 0	92.3	89.6	86.9	81.6	76.2	70.9	65.5	57.5
108.7	105.8	102.9	100.0	97.1	94.2	88.5	82.7	76.9	71.2	62.0
117.3	114.2	111.2	108.1	105.0	101.9	95.8	89.6	83.5	77.3	67.0
125.8	122.5	119.2	116.0	112.7	109.4	102.9	96.3	89.8	83.2	71.5
134.4	131.0	127.5	124.0	120.5	117.0	110.1	103.1	96.2	89.2	76.5
142.6	138.9	135.2	131.6	127.9	124.2	116.9	109.6	102.2	94.9	81.0
151.6	147,7	143.9	140.0	136.1	132.3	124.6	116.9	109.2	101.5	85.5
160.5	156.4	152.4	148.3	144.3	140.2	132.1	124.0	115.9	107.8	90.5

Loads to the right of the heavy line are for lengths greater than 125 radii.

SAFE LOADS, IN TONS OF 2000 LBS., FOR COMPOUND COLUMNS. SQUARE ENDS.

14" x 148 Lb. Special H Column Section Reënforced with Cover Plates.

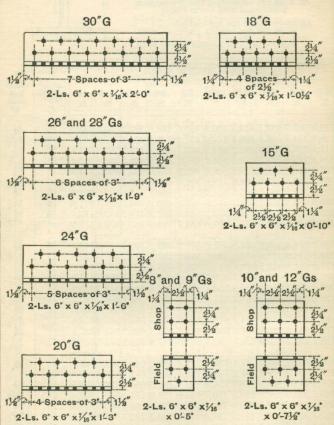
Allowable stress per square inch: 13,000 lbs. for lengths under 55 radii. $16,000 - 55 \frac{1}{r}$ for lengths over 55 radii.


	Weight	DIMENS	IONS,	INCHES.	Area	Least Radius	UNSU	PPORTED	LENGT	H OF CO	LUMNS.
Section.	Section, Lbs. per Foot.	С	P	н	Section, Square Inches.	of Gy- ration, Inches.	12 Ft.	14 Ft.	16 Ft.	18 Ft.	20 Ft.
Section, d thick-	284.0 290.8	16 16	$1\frac{1}{4}$ $1\frac{5}{16}$	$16\frac{5}{8}$ $16\frac{3}{4}$	83.52 85.52	3.98 3.99	555.9	555.9	555.9	542.9 555.9	542.7
Sec id th	297.6 304.4	16 16	$1\frac{3}{8}$ $1\frac{7}{16}$	$16\frac{7}{8}$ 17	87.52 89.52	4.01 4.02				568.9 581.9	
mn Se	311.2 318.0	16 16	$1\frac{1}{2}$ $1\frac{9}{16}$	17½ 17½	91.52 93.52	4.04				594.9 607.9	
Column width an	324.8 331.6	16 16	$1\frac{1}{5}^{6}$ $1\frac{11}{16}$	$17\frac{3}{8}$ $17\frac{1}{2}$	95.52 97.52	4.06 4.08	620.9	620.9	620.9	620.9 633.9	608.9
7. 10	338.4 345.2	16 16	13 113 113	$17\frac{5}{8}$ $17\frac{3}{4}$	99.52 101.52	4.09	646.9	646.9	646.9	646.9 659.9	635.6
b. Special plates of	350.3	17	13	175	103.02	4.30				669.6	
Lb.	357.5 364.7	17 17	1 1 3 8 1 7 8 1 7 8	17¾ 17¾	105.15 107.27	4.31 4.32	683.5	683.5	683.5	683.5 697.3	680.2
148 L cover	372.0 379.2	17	$1\frac{1}{1}\frac{5}{16}$	18 18 ¹	109.40 111.52	4.33	711.1	711.1 724.9	711.1	711.1 724.9	708.4
14" x with	386.4 393.6	17	$2\frac{1}{16}$	$18\frac{1}{4}$ $18\frac{3}{8}$	113.65 115.77	4.36 4.37	738.7 752.5	738.7 752.5	738.7	738.7	737.2
	400.9	17	$2\frac{1}{8}$ $2\frac{3}{16}$	$18\frac{1}{2}$	117.90	4.38	766.4	766.4	766.4	766.4	765.5
	408.1 415.3	17 17	$2\frac{1}{4}$ $2\frac{5}{16}$	$18\frac{5}{8}$ $18\frac{3}{4}$	120.02 122.15	4.39 4.40	780.1 794.0	780.1 794.0		780.1 794.0	794.0
reën reën	423.4	18	21	185	124.52	4.62				809.4	
ompose 4b), reë table.	431.0	18 18	$2\frac{5}{16}$ $2\frac{3}{8}$	$18\frac{3}{4}$ $18\frac{7}{8}$	126.77 129.02	4.63	838.6	838.6	838.6	824.0 838.6	838.6
Columns composed of section H14b), reënforces given in table.	446.3 454.0	18 18	$2\frac{7}{16}$ $2\frac{1}{2}$	$19 \\ 19\frac{1}{8}$	131.27 133.52	4.65	867.9	867.9	867.9	853.3 867.9	867.9
Section H	461.6 469.3	18 18	$2\frac{9}{16}$ $2\frac{5}{8}$	$19\frac{1}{4}$ $19\frac{3}{8}$	135.77 138.02	4.67 4.68	897.1	897.1	897.1	882.5 897.1	897.1
Co (Sect	476.9 484.6	18 18	$2\frac{11}{16}$ $2\frac{3}{4}$	$19\frac{1}{2}$ $19\frac{5}{8}$	$\frac{140.27}{142.52}$	4.69 4.70				911.8 926.4	

For detail dimensions, see page 54.

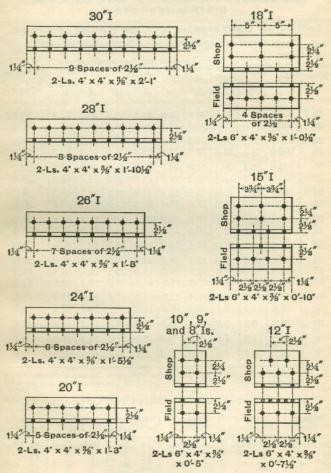
COMPOUND COLUMNS. SQUARE ENDS.

14" x 148 Lb. Special H Column Section Reënforced with Cover Plates.


Allowable stress per square inch: 13,000 lbs. for lengths under 55 radii. $16,000 - 55 \frac{1}{r}$ for lengths over 55 radii.

		UN		Cover	Plates.						
22 Ft.	24 Ft.	26 Ft.	28 Ft.	30 Ft.	32 Ft.	36 Ft.	40 Ft.	44 Ft.	48 Ft.	Width, Inches.	Thick- ness, Inches.
515.8	502.0	488.1	474.3	460.4	446.6	418.9	391.2	363.5	335.8	16	11/2
528.6	514.4	500.3	486.1	472.0	457.8	429.5	401.2	372.9	344.7	16	$1\frac{5}{16}$
541.7	527.3	512.9	498.5	484.1	469.7	440.9	412.1	383.3	354.4	16	13
554.5	539.8	525.1	510.4	495.7	481.0	451.6	422.2	392.8	363.4	16	$1\frac{7}{16}$ $1\frac{1}{2}$
567.7	552.7	537.8	522.8	507.9	492.9	463.0	433.1	403.2	373.3	16	$1\frac{1}{2}$
580.5	565.3	550.0	534.8	519.6	504.3	473.8	443.4	412.9	382.4	16	1 9
					515.7					16	$\frac{1_{16}^{9}}{1_{8}^{5}}$
606.6	590.9	575.1	559.3	543.5	527.8	496.2	464.7	433.1	401.6	16	$1\frac{11}{16}$
619.5	603.4	587.4	571.3	555.3	539.2	507.1	475.0	442.9	410.7	16	14
632.4	616.1	599.7	583.4	567.0	550.7	518.0	485.3	452.6	419.9	16	$1\frac{1}{16}$
					571.2					17	13/4
664.1	648.0	631.9	615.8	599.7	583.6	551.4	519.2	487.0	454.8	17	113
677.9	661.5	645.1	628.7	612.3	595.9	563.2	530.4	497.6	464.8	17	$1\frac{7}{8}$ $1\frac{15}{16}$
					608.4					17	115
706.0	689.1	672.2	655.3	638.4	621.4	587.6	553.8	519.9	486.1	17	2
720.0	702.8	685.5	668.3	651.1	633.9	599.5	565.1	530.7	496.3	17	21/6
733.8	716.3	698.9	681.4	663.9	646.4	611.4	576.5	541.5	506.5	17	$2\frac{1}{8}$
747.8	730.0	712.2	694.5	676.7	658.9	623.4	587.9	552.4	516.8	17	$2\frac{3}{16}$
761.7	743.6	725.6	707.5	689.5	671.5	635.4	599.3	563.2	527.1	17	21
775.7	757.3	739.0	720.7	702.4	684.0	647.4	610.8	574.1	537.5	17	25
900 5	700 7	7640	747 1	700.0	711 5	070 0	240 4	604 0	E60 0	18	01
					711.5 725.0					18	$\frac{21}{4}$
										18	$\frac{2\frac{5}{16}}{2^3}$
					738.5					18	23
					752.0					18	$\frac{2^{7}}{16}$
					765.6					18	21
					779.2					18	$2\frac{9}{16}$ $2\frac{5}{8}$
										18	211
					806.3					18	$\begin{array}{c} 2\frac{11}{16} \\ 2\frac{3}{4} \end{array}$
920.0	900.0	000.0	300.0	040.0	019.9	119.9	759.9	099.9	009.8	10	24
	1		1	1 2 - 20			I STATE OF THE PARTY OF THE PAR	1	1	1	I.

Loads to the right of the heavy line are for lengths greater than 125 radii.


CONNECTION ANGLES FOR BETHLEHEM GIRDER BEAMS.

Spacing same in both legs of angles unless shown otherwise.

All holes \(\frac{18}{18} \) diameter for \(\frac{3}{4} \) diameter rivets or bolts.

CONNECTION ANGLES FOR BETHLEHEM I BEAMS.

Spacing same in both legs of angles unless shown otherwise.

All holes \(\frac{1}{3} \) diameter for \(\frac{3}{4} \) diameter rivets or bolts.

MINIMUM SPANS, IN FEET, ON WHICH THE CONNECTION ANGLES FOR

BETHLEHEM GIRDER BEAMS CAN BE USED FOR GREATEST SAFE UNIFORMLY DISTRIBUTED LOADS.

		LEAST SPAN, IN FEET, FOR VARIOUS CON								DITIONS.
Depth	Weight	Rivets	: Sheari	ng 10,000	Lbs., Be	earing 2	0,000 Lbs	. per Squ	are In.	Field
of Beam,	per Foot,	Connec-	Field	other	Connection. Rivet Shear.					
Inches.	Lbs.	tion to Web of	Connec-	as fol	lows:		100	1		8,000 Lbs. per
		Beam.		9 // 16	1/2"	7/1	3/8"	5 // 16	4"	Square Inch.
30	200.0	24.5	24.5	25.7	28.9	33.1	38.6	46.3	57.8	30.7
30	180.0	22.0	22.0	23.0	25.9	29.6	34.5	41.4	51.8	27.5
28	180.0	24.1	24.1	25.2	28.4	32.4	37.8	45.4	56.8	30.1
28	165.0	21.8	21.8	22.8	25.6	29.3	34.2	41.0	51.3	27.2
26 26	160.0 150.0	20.1	20.1	21.0 19.3	23.7 21.7	27.0 24.8	31.5 28.9	37.8 34.7	47.3 43.4	25.1 23.0
24	140.0	19.2	19.2	20.1	22.6	25.9	30.2	36.2	45.3	24.0
24	120.0	18.3	16.5	17.3	19.4	22.2	25.9	31.1	38.9	20.6
20	140.0	19.7	19.7	20.6	23.2	26.5	30.9	37.1	46.4	24.6
20	112.0	16.8	15.7	16.4	18.5	21.1	24.7	29.6	37.0	19.6
18	92.0	14.6	11.9	12.4	14.0	16.0	18.6	22.3	27.9	14.8
15	140.0	18.3	18.3	19.2	21.6	24.7	28.8	34.5	43.1	22.9
15 15	104.0 73.0	14.0	14.0 10.2	14.7 10.6	16.5 12.0	18.9 13.7	22.0 16.0	26.4 19.1	33.1 23.9	17.5 12.7
	Towns or the second				12.8	14.6		-	25.5	
12 12	70.0 55.0	11.6 11.5	10.8	11.4 9.1	10.2	11.7	17.0 13.7	20.4 16.4	20.5	13.5 10.9
10	44.0	9.3	5.9	6.2	6.9	7.9	9.3	11.1	13.9	7.4
9	38.0	11.3	7.6	8.0	9.0	10.3	12.0	14.4	18.0	9.5
8	32.5	8.8	5.8	6.0	6.8	7.7	9.0	10.8	13.6	7.2
E										

The greatest value given of the least span for any of the governing conditions is the minimum span for which the connection may be used.

WEIGHTS OF CONNECTION ANGLES FOR GIRDER BEAMS.

Depth of Beam.	Weight of One Connection.	Depth of Beam.	Weight of One Connection.	Depth of Beam.	Weight of One Connection.
30 Inches. 28 " 26 " 24 "	77 Lbs. 67 " 67 " 57 "	20 Inches. 18 " 15 " 12 "	48 Lbs. 41 · 32 " 25 "	10 Inches. 9 "8 "	25 Lbs. 17 " 17 "

Weights given do not include rivets for field connections.

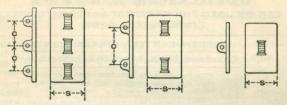
MINIMUM SPANS, IN FEET, ON WHICH THE CONNECTION ANGLES FOR

BETHLEHEM I BEAMS

CAN BE USED FOR GREATEST SAFE UNIFORMLY
DISTRIBUTED LOADS.

		LEA	CON	DITIONS.						
Depth	Weight	Rivets	: Shearin	ng 10,000	Lbs., Be	aring 20	000 Lbs,	per Squa	re In.	Field
of Beam, Inches.	Foot, Lbs.	Connection to Web of	Field Connec-		eam or		ame oppo with a			Rivet Shear, 8,000 Lbs. per
		Beam.	tion.	9 11	1/2"	7/1	3/8"	5 " 16"	1/4"	Square Inch.
30	120.0	23.0	21.1	22.1	24.8	28.4	33.1	39.7	49.7	26.3
28	105.0	22.7	19.2	20.1	22.7	25.9	30.2	36.2	45.3	24.0
26	90.0	22.1	17.3	18.1	20.4	23.3	27.1	32.6	40.7	21.6
24	84.0	21.9	17.1	17.9	20.2	23.1	26.9	32.2	40.3	21.4
24	73.0	22.7	15.0	15.7	17.7	20.2	23.6	28.3	35.4	18.8
20	72.0	20.2	14.7	15.4	17.4	19.9	23.2	27.8	34.8	18.4
20	59.0	18.5	11.8	12.3	13.9	15.9	18.5	22.2	27.8	14.7
18	48.5	16.4	10.7	11.2	12.6	14.4	16.8	20.2	25.2	13.4
15	71.0	12.1	16.0	16.8	18.9	21.6	25.1	30.2	37.7	20.0
15	54.0	11.8	12.3	12.8	14.5	16.5	19.3	23.1	28.9	15.3
15	38.0	12.1	8.9	9.3	10.5	12.0	14.0	16.8	21.0	11.1
12	36.0	10.3	9.0	9.5	10.6	12.2	14.2	17.0	21.3	11.3
12	28.5	10.3	7.2	7.6	8.5	9.8	11.4	13.7	17.1	9.1
10	23.5	8.7	7.4	7.8	8.7	10.0	11.6	14.0	17.5	9.3
9	20.0	6.7	5.7	6.0	6.7	7.7	9.0	10.8	13.5	7.1
8	17.5	5.1	4.3	4.5	5.1	5.8	6.8	8.2	10.2	5.4

The greatest value given of the least span for any of the governing conditions is the minimum span for which the connection may be used.

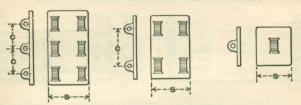

WEIGHTS OF CONNECTION ANGLES FOR BETHLEHEM I BEAMS.

Depth of	Weight of One Connection.	Depth of	Weight of	Depth of	Weight of
Beam.		Beam.	One Connection.	Beam.	One Connection.
30 Inches. 28 " 26 " 24 "	46 Lbs. 41 " 37 " 32 "	20 Inches. 18 " 15 " 12 "	28 Lbs. 28 " 24 " 18 "	10 Inches. 9 "8 "	12 Lbs. 12 " 12 "

Weights given do not include rivets for field connections.

CAST IRON SEPARATORS FOR

BETHLEHEM GIRDER BEAMS.


Separators for 18 to 30 inch beams are $\frac{5}{2}$ inch metal. Separators for 8 to 15 inch beams are $\frac{1}{2}$ inch metal.

SEPARATORS WITH THREE BOLTS.

DESIGNAT	TION OF	BEAM.	D	ISTANCE	S.	BOLT	rs.		WEIGHTS,	IN POUN	IDS.
Section Number.	Depth,	Weight per Foot,	Out to Out of Flanges of	Center to Center of	Width of Sepa- rator,	Center to Center, Inches.	Length, Inches.	Sepa-	Increase for 1"	Bolts	Increase for 1"
		Pounds.	Beams, Inches.	Beams, Inches.	Inches.	С		Width	Additional Spread of Beams.	WIGHT	Spread of Beams.
G30 a	30	200.0	30¾	15¾	15	10	171/2	73.0	4.50	7.7	.375
G30	30	180.0	2634	133/4	13	10	151/2	64.5	4.50	7.0	.375
G28 a	28	180.0	293/8	15	141/4	71/2	1634	65.0	4.15	7.4	.375
G28	28	165.0	253/4	131/4	125/8	71/2	15	59.1	4.15	6.8	.375
G26 a	26	160.0	277/8	141/4	135/8	71/2	16	59.0	3.85	7.1	.375
G26	26	150.0	243/4	123/4	121/8	71/2	141/2	53.0	3.85	6.6	.375
		SE	PARA	TOR	s w	ТН	TWO	ВОІ	LTS.		
G24 a	24	140.0	263/4	133/4	131/8	121/2	151/4	50.0	3.50	4.6	.25
G24	24	120.0	243/4	123/4	121/4	121/2	141/4	47.0	3.50	4.3	.25
G20 a	20	140.0	251/2	13	123/8	10	143/4	39.0	2.80	4.5	.25
G20	20	112.0	24 1/2	121/2	12	10	14	38.0	2.80	4.3	.25
G18	18	92.0	231/2	12	111/2	10	131/2		2.60	4.2	.25
G15 b	15	140.0	24	121/4	113/8	71/2	14	22.0	1.50	4.3	.25
G15 a	15	104.0	23	1134	111/8	71/2	131/2		1.60	4.2	.25
G15	15	73.0	21 1/2	11	10 1/2	71/2	$\frac{12\frac{1}{2}}{12}$		1.60	4.0	.25
G12 a G12	12 12	70.0	20 1/2 20 1/8	10 1/2 10 3/8	10 10	5 5	113/	17.5 17.5	1.30	3.8	.25
GIZ	14	33.0	20 78	10%8	10	0	111%	11.0	1.50	0.0	.20
		SI	EPAR	ATOF	RS W	ITH	ONE	ВО	LT.		
G10	10	44.0	181/2	91/2	91/8	ennia.	103/4	11.0	1.10	1.8	.125
G9	9	38.0	171/2	9	834	-	101/4		1.00	1.7	.125
G8	8	32.5	16½	81/2	81/4		934	8.0	.85	1.7	.125
	All bo	lts ¾ i	nch di	ameter		Librar	Little 2		De et da la		

CAST IRON SEPARATORS FOR

BETHLEHEM I BEAMS.

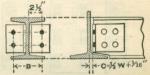
Separators for 18 to 30 inch beams are \% inch metal. Separators for 8 to 15 inch beams are \% inch metal.

SEPARATORS WITH THREE BOLTS.

DESIGNA	TION OF	BEAM.	D	ISTANCE	S.	B01	LTS.		WEIGHTS,	IN POUN	IDS.
Section Number.	Depth, Inches.	Weight per Foot, Pounds.	Flanges of Reams	of Beams,	Width of Separator, Inches.	Center to Center, Inches.	Length, Inches.	Sepa- rator for Width	Increase for 1" Additional Spread of Beams.	Bolts and Nuts for Width	Increase for 1" Additional Spread of Beams.
B30 B28 B26	30 28 26	90.0	20 5/8 19 5/8	101/8	95/8	71/2	11½			6.0 5.7 5.5	.375 .375 .375
Dot	04	SE	PARA	TOR			TWO		LTS.	0.0	0.5

		1									
B24 a	24	84.0	19	934	91/4	121/2	111/4	35.1	3.65	3.6	.25
B24	24	73.0	18 5/8	95/8	91/4	121/2	11	35.1	3.65	3.6	.25
B20 a	20	72.0	181/8	93/8	9	10	1034	28.2	3.00	3.5	.25
B20	20	59.0	16 5/8	85/8	81/4	10	10	26.1	3.00	3.4	.25
B18	18	48.5	151/2	8	75/8	10	91/4	22.1	2.70	3.2	.25
B15b	. 15	71.0	151/2	8	71/2	71/2	91/2	13.1	1.65	3.2	.25
B15 a	15	54.0	141/2	71/2	7	71/2	9	12.3	1.65	3.1	.25
B15	15	38.0		71/4	7	71/2	81/2	13.3	1.80	3.0	.25
B12 a	12	36.0	1316	634	63/8	5	8	9.1	1.30	2.8	.25
B12	12	28.5	125/8	61/2	61/4	5	73/4	9.0	1.30	2.8	.25

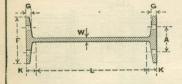
SEPARATORS WITH ONE BOLT.

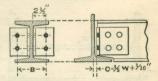

B10 B9 B8	10 9	23.5 12 1/8 20.0 11 1/4 17.5 10 7/8	6¼ 5¾	6 51/2	71/2	6.4	1.10	1.3	.125
B8	8	17.5 10 7/8	5 1/8	53/8	634	5.5	.85	1.3	.125

All bolts 3/4 inch diameter.

DETAIL DIMENSIONS FOR

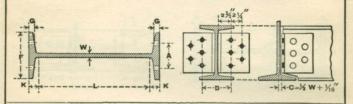
BETHLEHEM I BEAMS.





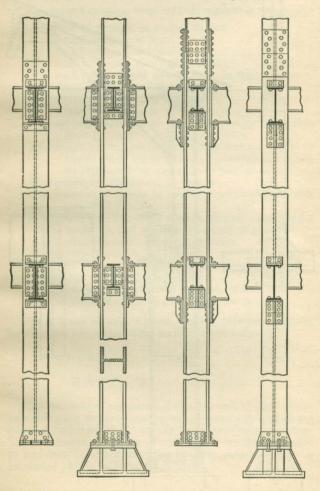
Section	Depth of	Weight		DII	MENS	IONS	, IN I	NCHE	s.	1	Maximum Rivet
Number.	Beam, Inches.	per Foot, Lbs.	F	W	L	K	G	A	В	С	or Bolt, Inch.
B30	30	120.0	10½	$\frac{35}{64}$	$26\frac{7}{16}$	$1\frac{2}{3}\frac{5}{2}$	2 9 3 2	6½	$5\frac{9}{16}$	5 16	1
B28	28	105.0	10	1/2	$24\frac{11}{16}$	$1\tfrac{2}{3}\tfrac{1}{2}$	27 32	6	5½	5 16	1
B26	26	90.0	9½	$\frac{15}{32}$	23	1½	25 32	5½	$5\frac{7}{16}$	5 16	1
B24 a	24	84.0	91/4	$\frac{15}{32}$	21	1½	3/4	51/4	$5\frac{7}{16}$	5 16	7/8
B24	24	83.0	91/8		$21\frac{5}{16}$	$1\frac{1}{3}\frac{1}{2}$	11 16	51/4	5½	5 16	7/8
- Maria	24	73.0	9	25 64	$21\frac{5}{16}$	$1\frac{1}{3}\frac{1}{2}$	116	51/4	53/8	1/4	7/8
Doo	20	82.0	857	37 64	171/8	17	3/4	5	5 9	3/8	7/8
B20 a	20	72.0	83/4	7 16	171/8	$1_{\frac{7}{16}}$	3/4	5	$5\frac{7}{16}$	1/4	7/8
	20	69.0	8 9 4	33	171/2	11/4	5/8	41/2	5½	5 16	7/8
B20	20	64.0	$8\frac{5}{64}$	29 64	171/2	11/4	5/8	41/2	$5\frac{7}{16}$	5 16	7/8
	20	59.0	8	3/8	17½	11/4	5/8	41/2	53/8	1/4	7/8
	18	59.0	743	1/2	15¾	11/8	9 16	41/4	51/2	5 16	7/8
D10	18	54.0	$7\frac{1}{3}\frac{9}{2}$	$\frac{1}{3}\frac{3}{2}$	1534	11/8	9 16	41/4	$5\frac{7}{16}$	1/4	7/8
B18	18	52.0	$7\frac{9}{16}$	3/8	15¾	11/8	9 16	41/4	53/8	1/4	7/8
	18	48.5	71/2	2 1 6 4	15¾	11/8	9 16	41/4	$5\frac{5}{16}$	1/4	7/8

DETAIL DIMENSIONS FOR


BETHLEHEM I BEAMS.

Section	Depth of	Weight	STATE OF	DI	MENS	IONS	, IN	INCH	ES	100	Maximum Rivet
Number.	Beam, Inches.	per Foot, Lbs.	F	W	L	K	G	A	В	С	or Bolt, Inch.
B15 b	15	71.0	7½	3364	113/4	15%	15 16	41/4	51/2	5 16	7/8
	15	64.0	7 3 6	3964	$12\frac{5}{16}$	111	3/4	4	5 5/8	3/8	7/8
B15 a	15	54.0	7	$\frac{1}{3}\frac{3}{2}$	$12\frac{5}{16}$	$1\frac{1}{3}\frac{1}{2}$	23 32	4	$5\frac{7}{16}$	1/4	7/8
	15	46.0	$6\frac{13}{16}$	7 16	127/8	116	$\frac{17}{32}$	33/4	5 7 1 6	5 16	7/8
B15	15	41.0	623	$\frac{1}{3}\frac{1}{2}$	127/8		$\frac{17}{32}$	33/4	$5\frac{5}{16}$	1/4	7/8
	15	38.0	$6\tfrac{21}{32}$	19 64	127/8	$1_{\overline{16}}$	$\frac{1}{3}\frac{7}{2}$	3¾	$5\frac{5}{16}$	16	7/8
B12 a	12	36.0	619	5 16	97/8	116	9 16	3½	$5\frac{5}{16}$	3 16	3/4
B12	12	32.0	$6\frac{3}{16}$	$\frac{21}{64}$	$10\frac{3}{16}$	$\frac{29}{32}$	7 16	31/2	$5\frac{5}{16}$	1/4	3/4
D12	12	28.5	61/8	1/4	$10_{\frac{3}{16}}$	$\frac{29}{32}$	7 16	31/2	51/4	3 16	3/4
B10	10	28.5	$5\frac{63}{64}$	25 64	83/8	13 16	3/8	31/4	53/8	1/4	3/4
P10	10	23.5	$5\tfrac{2}{3}\tfrac{7}{2}$	1/4	83/8	$\frac{13}{16}$	3/8	31/4	51/4	3 16	3/4
	9	24.0	$5\frac{9}{16}$	23 64	71/2	3/4	3/8	3	53/8	1/4	3/4
B9	9	20.0	$5\frac{7}{16}$	1/4	71/2		3/8	3	51/4	3 16	3/4
	8	19.5	$5\frac{21}{64}$	21 64	65/8	11 16	5 16	23/4	$5\frac{5}{16}$	1/4	3/4
B8	8	17.5	51/4	1/4	65/8	11 16	5 16	2¾	51/4	3 16	3/4

DETAIL DIMENSIONS FOR BETHLEHEM GIRDER BEAMS.



Section	Depth of	Weight	DIMENSIONS, IN INCHES.								Maximum Rivet
Number.	Beam, Inches.	per Foot, Lbs.	F	W	L	K	G	A	В	С	or Bolt, Inch.
G30 a	30	200.0	15	3/4	$25\frac{3}{16}$	$2\frac{1}{3}\frac{3}{2}$	11/8	11	534	7 16	1
G30	30	180.0	13	11 16	$25\frac{3}{16}$	$2\tfrac{1}{3}\tfrac{3}{2}$	$1_{\frac{7}{3}}$	9	$5\frac{11}{16}$	7 16	1
G28 a	28	180.0	$14\frac{11}{32}$	11 16	233/8	$2\tfrac{5}{16}$	$1\frac{3}{32}$	101/4	$5\frac{11}{16}$	7 16	1
G28	28	165.0	121/2	$\frac{21}{32}$	233/8	$2\frac{5}{16}$	13	81/2	$5\frac{11}{16}$	3/8	1
G26 a	26	160.0	$13\frac{19}{32}$	5/8	21 5/8	$2\frac{3}{16}$	116	91/2	5 5/8	3/8	1
G26	26	150.0	12	5/8	21 5/8	$2\frac{3}{16}$	11/8	8	5 5/8	3/8	1
G24 a	24	140.0	13	$\frac{19}{32}$	20	2	$\frac{31}{32}$	9	5 5/8	3/8	1
G24	24	120.0	12	$\frac{17}{32}$	201/4	17/8	29 32	8	51/2	5	1
G20 a	20	140.0	121/2	$\frac{41}{64}$	$15\frac{11}{16}$	$2\frac{5}{32}$	11/8	81/2	5 1/8	3/8	1
G20	20	112.0	12	$\frac{35}{64}$	163/8	$1\tfrac{13}{16}$	7/8	8	$5\frac{9}{16}$	5 16	1
G18	18	92.0	111/2	31 64	143/4	15/8	$\frac{25}{32}$	71/2	51/2	5 16	1
G15 b	15	140.0	1134	$\frac{51}{64}$	101/8	$2\frac{7}{16}$	$1\frac{9}{32}$	73/4	$5\frac{13}{16}$	7 16	1
G15 a	15	104.0	111/4	$\frac{19}{32}$	111/8	$1\frac{15}{16}$	15 16	71/4	5 5/8	3/8	1
G15	15	73.0	10½	7	$12\frac{1}{16}$	$1\tfrac{1}{3}\tfrac{5}{2}$	11 16	61/2	$5\frac{7}{16}$	14	1
G12 a	12	70.0	10	$\frac{15}{32}$	9	11/2	3/4	6	$5\frac{7}{16}$	5 16	1
G12	12	55.0	934	3/8	91/2	11/4	$\frac{1}{3}\frac{9}{2}$	6	53/8	1/4	1
G10	10	44.0	9	5 16	73/4	11/8	$\frac{1}{3}\frac{7}{2}$	51/2	$5\frac{5}{16}$	3 16	7/8
G9	9	38.0	81/2	19 64	67/8	116	$\frac{15}{32}$	51/4	$5\frac{5}{16}$	3 16	7/8
G8 、	8	32.5	8	19 64	6	1	7 16	5	5 5 1 6	3 16	7/8

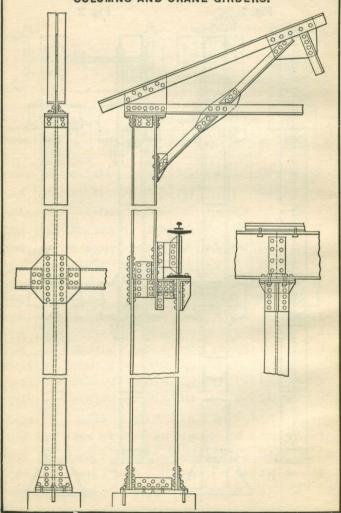

TYPES OF H COLUMN DETAILS.

Fig. 1

Fig. 2

SHOP BUILDING CONSTRUCTION WITH BETHLEHEM WIDE FLANGE BEAMS USED FOR COLUMNS AND CRANE GIRDERS.

NOTES ON THE STRENGTH AND DEFLECTION OF BEAMS.

The general notation employed throughout is as follows:

a = area of section, in square inches.

L = length of span, in feet.

l = length of span, in inches.

W = load uniformly distributed, in lbs.

P = load concentrated at any point, in lbs.

d = depth of cross-section, in inches. M = bending moment, in foot-lbs.

m =bending moment, in inch-lbs.

n = greatest distance of center of gravity of section from top or from bottom, in inches.

f = stress, in lbs., per square inch in extreme fibers of beam, either top or bottom, according as n refers to distance from top or from bottom of section.

D = maximum deflection, in inches.

I = moment of inertia of section, neutral axis through center of gravity.

I" = moment of inertia of section, neutral axis parallel to above, but not through center of gravity.

z = distance between these neutral axes.

S = section modulus.

R = least moment of resistance of section, in inch-lbs.

r =radius of gyration, in inches.

C = coefficient of transverse strength, in lbs.

E = modulus of elasticity (29,000,000 for steel).

For a beam of any cross-section the relations existing between the properties of the section are as follows:

$$I'' = I + az^{2}. r = \sqrt{\frac{I}{a}}. S = \frac{I}{n}.$$

$$R = \frac{I}{n}f = fS. C = \frac{2}{3}fS.$$

The moment of resistance of the internal stresses of the beam resisting flexure must be equal to the moment of the external forces which act on the beam producing bending. The moment of resistance of a section is usually expressed in inch-lbs., in which case the bending moment must be expressed also in inch-lbs.

The relations existing between bending moment, moment of resistance, section modulus and stress per square inch are expressed thus:

$$m = R$$
. $S = \frac{m}{f}$. $f = \frac{m}{S}$.

When the bending moment is in foot-lbs., the following relations are useful:

$$C = 8M$$
. $M = \frac{C}{8}$.

If W is a uniformly distributed load in lbs., and the span, L, is taken in feet, then:

$$C = WL$$
. $W = \frac{C}{L}$.

The last two formulas are convenient. To find the safe uniformly distributed load in lbs. for any section, it is only necessary to divide its coefficient of strength by the span in feet. If the uniformly distributed load in lbs. is given, multiply it by the span in feet and the result is the coefficient of strength required by the section.

On the next page formulas are given for finding bending moments, safe loads and deflections for beams loaded and supported in usual ways. Bending moments will be in footlbs. or inch-lbs. according as the lengths are taken in feet or inches. To obtain deflection in inches the lengths must be taken in inches.

For illustration, take a center load of 30,000 lbs. on a span of 20 feet:

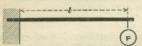
$$M = \frac{30,000 \times 20}{4} = 150,000$$
 foot-lbs.
 $C = 8M = 8 \times 150,000 = 1,200,000$.

The nearest beam is a 20" Bethlehem I beam, weighing 59 lbs. per foot, which has a coefficient of 1,250,300.

If the beriding moment had been taken in inch-lbs., then

$$m = \frac{30,000 \times 240}{4} = 1,800,000 \text{ inch-lbs.}$$

 $S = \frac{m}{f} = 1,800,000 \div 16,000 = 112.5$

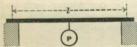

The beam selected by the first method has a section modulus of 117.2, which is the nearest to that required. Both methods of calculation give identical results.

BENDING MOMENTS AND DEFLECTIONS OF BEAMS FOR USUAL METHODS OF LOADING.

P or W = total load l = length of beam

I — moment of inertia E — modulus of elasticity

(1.) Beam fixed at one end and loaded at the

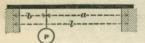

Safe load — 1/2 that given in tables.

Maximum bending moment at point of support — Pt.

Maximum shear at point of support

Deflection
$$=\frac{Pl^3}{3EI}$$

(3.) Beam supported at both ends, single load in the middle.

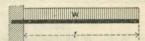


Safe load $= \frac{1}{2}$ that given in tables. Maximum bending moment at middle of beam $= \frac{Pl}{4}$.

Maximum shear at points of support

Deflection
$$=\frac{Pl^3}{48EI}$$
.

(5.) Beam supported at both ends, single unsymmetrical load.


Safe load — that given in tables $\times \frac{l^2}{8ab}$.

Maximum bending moment under load $= \frac{\text{Pab}}{I}$.

Maximum shears: at support, a end $\frac{Pb}{I}$; at other support $\frac{Pa}{I}$.

Max. Deflec. =
$$\frac{\text{Pab}(2l-a)}{9\text{EI}l}\sqrt{\frac{1}{3}a(2l-a)}$$
.

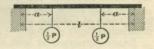
(2.) Beam fixed at one end and uniformly loaded.

Safe load = $\frac{1}{4}$ that given in tables. Maximum bending moment at point of support= $\frac{Wl}{2}$.

Maximum shear at point of support = W.

Deflection
$$=\frac{Wl^3}{8EI}$$
.

(4.) Beam supported at both ends and uniformly loaded.


Safe load = that given in tables Maximum bending moment at mid-

dle of beam
$$=\frac{Wl}{8}$$
.

Maximum shear at points of support $=\frac{1}{2}$ W.

Deflection
$$=\frac{5 \text{W} l^3}{384 \text{EI}}$$
.

(6.) Beam supported at both ends, two symmetrical loads.

Safe load — that given in tables $\times \frac{l}{4a}$.

Maximum bending moment between loads = ½ Pa.

Maximum shear between load and nearer support $= \frac{1}{2}$ P.

Max. Deflection = $\frac{\text{Pa}}{48\text{EI}}$ (3 l^2 -4 a^2).

DEFLECTION

OF STEEL BEAMS AND GIRDERS UNDER TRANSVERSE LOADS.

Using the notation given on page 99, the deflection, in inches, of a steel beam or other section under a uniformly distributed load of W, in lbs., is found from the formula,

$$D = \frac{5}{384} \frac{Wl^3}{EI} = \frac{5}{384} \frac{W(12L)^3}{EI}.$$

When W is the safe uniformly distributed load corresponding to a coefficient of strength C, the following relations exist between W and C and the properties of the shape:

$$W = \frac{C}{L}$$
, and $C = \frac{2}{3}fS = \frac{2}{3}f\frac{I}{n}$.

Substituting these values in the above formula, then,

$$D = \frac{15fL^2}{nE}$$

When the fiber stress is 16,000 lbs. per square inch and the modulus of elasticity of steel taken as 29,000,000, then the deflection, in inches, is given by the formula:

$$D=\frac{0.01655L^2}{2n}.$$

In the case of a beam, girder or other section symmetrical about its neutral axis, 2n equals the depth of the beam. The deflection, in inches, of such a section under its safe uniformly distributed load which produces a fiber stress of 16,000 lbs. per square inch is given by the simple formula,

$$D = \frac{0.01655L^2}{d}$$
, or very nearly $= \frac{1}{60} \frac{L^2}{d}$.

The table on the opposite page gives the value of the expression $0.01655L^2$ for spans from 1 foot to 60 feet.

The safe loads and corresponding deflections for other usual cases of loading, as compared with the safe uniformly distributed loads given in the tables, are as follows:

Beam supported at both ends and loaded with a single load concentrated at center of span. Safe load = $\frac{1}{2}$ tabular load. Deflection = $\frac{8}{10}$.

Cantilever beam, fixed at one end and unsupported at the other, uniformly loaded. Safe load $= \frac{1}{4}$ tabular load. Deflection $= 2\frac{1}{10}$.

Cantilever beam, fixed at one end and unsupported at the other, single load concentrated at free end. Safe load = $\frac{1}{8}$ tabular load. Deflection = $3\frac{2}{10}$.

DEFLECTION COEFFICIENTS

FOR UNIFORMLY DISTRIBUTED LOADS.

FIBER STRESS, 16,000 LBS. PER SQUARE INCH.

Length of Span, Feet.	Deflection Coefficient.	Length of Span, Feet.	Deflection Coefficient.	Length of Span, Feet.	Deflection Coefficient,	Length of Span, Feet.	Deflection Coefficient.		
1	.0166	16	4.2372	31	15.9062	46	35.0234		
2	.0662	17	4.7834	32	16.9490	47	36.5628		
3	.1490	18	5.3628	33	18.0248	48	38.1352		
4 5	.2648	19	5.9752	34	19.1338	49	39.7407		
5	.4138	20	6.6207	35	20.2759	50	41.3793		
6	.5959	21	7.2993	36	21.4510	51	43.0510		
7	.8110	22	8.0110	37	22.6593	52	44.7559		
8	1.0593	23	8.7559	38	23.9007	53	46.4938		
9	1.3407	24	9.5338	39	25.1752	54	48.2648		
10	1.6552	25	10.3448	40	26.4828	55	50.0690		
11	2.0028	26	11.1890	41	27.8234	56	51.9062		
12	2.3834	27	12.0662	42	29.1972	57	53.7766		
13	2.7972	28	12.9766	43	30.6041	58	55.6800		
14	3.2441	29	13.9200	44	32.0441	59	57.6166		
15	3.7241	30	14.8966	45	33.5172	60	59.5862		

These coefficients furnish a convenient means of finding the deflection of steel sections under their uniformly distributed safe loads for a maximum fiber stress of 16,000 lbs. per square inch.

To find the deflection of a steel beam, girder or other section which is symmetrical about its neutral axis, under the above condition of loading, divide the deflection coefficient found in the above table for the given span by the depth of the beam in inches. The quotient will be the deflection in inches.

To find the deflection of an angle or other section which is not symmetrical about its neutral axis under the above condition of loading, divide the deflection coefficient in the table for the given span by twice the greatest distance, in inches, of the neutral axis from the outside fiber in the direction of bending.

Under uniformly distributed loading corresponding to other intens ties of stress the deflection can be found by simple proportion. Thus, for a uniformly distributed load producing a fiber stress of 12,000 lbs. per square inch the deflection will be $\frac{12000}{16000}$ or $\frac{3}{4}$ of that found by the use of the above coefficients.

SPACING OF TIE RODS.

Tie rods are used in fire proof floors to resist the thrust of the floor arches and to hold the steel beams in position laterally. Rods of 34 inch diameter are generally employed for this purpose. They should be placed as near as possible in the line of thrust of the arch, usually 3 inches above the bottom of the beams.

The proper spacing of tie rods is determined by two considerations. The stress on the net area of the rod produced by the thrust of the arch must not exceed 15,000 lbs. per square inch. Also the lateral stress produced in the beams or channels by the thrust of the arches must not be

excessive.

The spacing required to satisfy the first of these requirements is found in the following manner:

Let t = thrust of arch, in lbs. per lineal foot.

r = rise of arch, in inches.

l = distance between beams, or span of arch, in feet. w = load per square foot, in lbs.

a = net area of tie rod, in square inches.

d = distance between tie rods, in feet.

Then,
$$t = \frac{3wl^2}{2r}$$
, (1); and $d = \frac{10,000ar}{wl^2}$, (2)

The net areas, in square inches, of the usual sizes of tie rods are as follows:

Diameter of rod =
$$\frac{5}{4}$$
" $\frac{3}{4}$ " $\frac{7}{6}$ " $\frac{1}{6}$ " Net area, $a = 0.20$ 0.30 0.42 0.55

For $\frac{3}{4}$ inch rods, the size generally used, and for a total load of 150 lbs. per square foot the spacing given by formula (2) becomes $d = 20r + l^2$.

The effective rise of flat tile arches may be assumed as

2 inches less than the depth of the arch.

The maximum spacing, in feet, of ¾ inch tie rods for a total load of 150 lbs. per square foot, producing a stress of 15,000 lbs. per square inch in net area of rods is given in the following table:

MAXIMUM SPACING, IN FEET, OF 3/4" TIE RODS FOR A TOTAL LOAD OF 150 LBS. PER SQUARE FOOT.

Span of	EFFECTIVE RISE OF ARCH.										
Arch, Feet.	3"	4"	5"	6"	7"	8"	9"	10"			
4 5 6 7 8	3.7 2.4	5.0 3.2 2.2	6.2 4.0 2.8 2.0	7.5 4.8 3.3 2.4	8.7 5.6 3.9 2.9 2.2	10.0 6.4 4.4 3.3 2.5	11.2 7.2 5.0 3.7 2.8	12.5 8.0 5.5 4.1 3.1			

It may be necessary to decrease the distance between tie rods given in the preceding table or found from formula (2), in order to satisfy the second requirement that the lateral stress in the beams or channels produced by the thrust of the arches may not be excessive.

Let I'=moment of inertia of beam or channel, sideways.

b = width of flange of beam or channel, in inches.
 x = distance, in inches, of neutral axis from back of channel.

f = fiber stress produced by thrust of arch, in lbs., per square inch.

The beams or channels may be considered as continuous, in which case the stress produced by flexure and the corresponding spacing of rods are given by the following formulas:

For Beams,
$$f = \frac{td^2b}{2I'}$$
, (3); and $d = \sqrt{\frac{2fI'}{tb}}$, (4)

For Channels,
$$f = \frac{td^2(b-x)}{I'}$$
, (5); and $d = \sqrt{\frac{fI'}{t(b-x)}}$, (6)

Where the thrusts of adjacent arches are opposed to each other, as in the interior beams of a floor, the thrust *t* in these formulas may be taken only for the live loads. The sum of the stresses produced by lateral thrust and vertical loading should not exceed 20,000 lbs. per square inch. As the vertical loading in building construction is usually allowed to produce a fiber stress of 16,000 lbs. per square inch, the lateral stress must therefore be limited to 4000 lbs. per square inch. In such case the fiber stress, *f*, in formula (4) is to be taken as 4000.

For exterior arches along walls, or around openings, the thrust *t* must be taken for the full live and dead load.

Channels will be found to require a greater number of tie rods than interior beams, and it may be advisable in some instances to use a beam for a skewback instead of a channel.

If formulas (4) and (6) give a greater distance between rods than is obtained by the use of formula (2), the value given by the latter is to be used, as the stress on the tie rod itself must not exceed its safe limit.

Beams must be held laterally at intervals not greater than twenty times the width of their flanges, otherwise their safe loads as given the tables must be reduced in the proportion given in the table at the bottom of page 56.

BEARING PLATES.

Steel bearing plates are used under the ends of steel beams resting on walls to distribute the pressure on the latter. The plate must be of a sufficient size so that the allowable

safe pressure on the wall will not be exceeded.

For good brickwork laid in cement mortar, capable of sustaining a safe pressure of 200 lbs. per square inch, the table below gives standard sizes of bearing plates which will suffice in general on ordinary spans for I beams up to 24 inches in depth.

STANDARD BEARING PLATES FOR I BEAMS.

Depth of	Bearing on	SIZE (F BEARING P	Safe End Reaction at 200	Weight of	
Beam, Inches,	Wall, Inches.	Length, Inches.	Width, Inches.	Thickness, Inches.	Lbs. per Sq. In., Tons.	Bearing Plate, Lbs.
24	16	16	16	7/8	25.6	64
20	16	16	15	7/8	24.0	60
18	16	16	14	7/8 7/8 7/8 7/8 3/4 5/8	22.4	56
15	12	12	14	7/8	16.8	42
12	12	12	12	3/4	14.4	31
10	10	10	10	5/8	10.0	18
9	8	. 8	9	1/2	7.2	11
8	8	8	8	1/2	6.4	9
7	8	8	8	1/2	6.4	9
6	6	6	6	1/2 1/2 1/2 1/2	3.6	5
and less	The second			pii teg ca		

Larger I beams, girder beams and girders will require plates of increased size. In such special cases the size of the bearing plate must be determined by the area required to distribute the pressure and its thickness then obtained by the following formula:

 $t=\frac{1}{2}(w-b)\sqrt{\frac{3p}{f}}$,

in which.

t = thickness of plate, in inches.

w = width of plate perpendicular to beam, in inches.

b = width of flange of beam, in inches.

p = allowable pressure on wall, in lbs. per square inch. f = allowable fiber stress in plate, in lbs. per square inch.

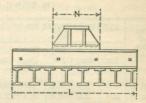
For an allowable stress of 16,000 lbs. per square inch the thickness of the plate required can be obtained for various pressures by multiplying $\frac{1}{2}(w-b)$, or the cantilever projection of the plate, by the following coefficients:

Pressure, lbs. sq. in., 100 150 200 350 500 Coefficient,..... 0.137 0.168 0.194 0.256 0.306

q. In.

BEARING VALUES OF PLATES, IN TONS OF 2000 LBS.

Size						Size of ALLOWABLE PRESSURE P.				E PER	PER SQUARE	
Plate,	100	150	200	350	500	Plate,	100	150	200	350	500	
Inches.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Inches.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	
6x 6	1.8	2.7	3.6	6.3	9.0	14x14	9.8	14.7	19.6	34.3	49.0	
6x 8	2.4	3.6	4.8	8.4	12.0	14x16	11.2	16.8	22.4	39.2	56.0	
6x10	3.0	4.5	6.0	10.5	15.0	14x18	12.6	18.9	25.2	44.1	63.0	
8x 8	3.2	4.8	6.4	11.2	16.0	16x16	12.8	19.2	25.6	44.8	64.0	
8x10	4.0	6.0	8.0	14.0	20.0	16x18	14.4	21.6	28.8	50.4	72.0	
8x12	4.8	7.2	9.6	16.8	24.0	16x20	16.0	24.0	32.0	56.0	80.0	
10x10	5.0	7.5	10.0	17.5	25.0	18x18	16.2	24.3	32.4	56.7	81.0	
10x12	6.0	9.0	12.0	21.0	30.0	18x20	18.0	27.0	36.0	63.0	90.0	
10x14	7.0	10.5	14.0	24.5	35.0	18x22	19.8	29.7	39.6	69.3	99.0	
12x12	7.2	10.8	14.4	25.2	36.0	20x20	20.0	30.0	40.0	70.0	100.0	
12x14	8.4	12.6	16.8	29.4	42.0	20x22	22.0	33.0	44.0	77.0	110.0	
12x16	9.6	14.4	19.2	33.6	48.0	20x24	24.0	36.0	48.0	84.0	120.0	


The pressure on masonry of different kinds should not exceed the following values, in lbs. per square inch:

Kind of Masonry.	Pressure, Lbs. per Se
Brickwork in lime mortar,	100
Brickwork in cement and lime mortar,	150
Brickwork in Portland cement mortar,	200
Portland cement concrete,	350
Sandstone of good quality,	400
Bluestone and limestone,	500
Granite,	600

Frequently a template of bluestone, or other hard quality of stone, is used instead of a steel bearing plate. Where the load to be supported is considerable, as at the ends of girders, both steel bearing plates and stone templates should be used; in which case the size of the bearing plate is determined by the allowable pressure on the stone template according to the safe pressure given above for the kind of stone used. The size of the stone template must also be sufficient to limit the pressure on the brickwork to the safe allowable value as given above for the quality of masonry used. The stone should not project beyond the steel bearing plate in any direction more than ¾ of the thickness of the stone.

GRILLAGE BEAMS IN FOUNDATIONS.

Grillages of steel beams imbedded in concrete are used in column footings to distribute the load over the desired area on yielding soil, thereby avoiding large masses of masonry and deep excavations. The beams should not be less than 3 inches apart in the clear between flanges so that the space between beams can be thoroughly filled with concrete. Separators should be used to keep the beams properly spaced.

The load supported by each beam in a layer equals the total load on the foundation divided by the number of beams in the layer. Loading is uniformly distributed over the length on which it is applied and the beam is uniformly supported from below over its entire length. Maximum bending

occurs at c, the center of length of the beam.

W= load supported by each beam, in lbs.

L =length of beam, in feet.

N=length, in feet, on which load is applied.

C=coefficient of strength for the beam.

Maximum bending moment, in foot-lbs. = $\frac{1}{N}W(L-N)$. This formula for bending moment is the same as that for a simple beam of the length (L-N) supporting a uniformly distributed load of W. By using the length (L-N) as the span the size or safe load of grillage beams may be obtained directly from the tables of safe loads for I beams and girder beams. If (L-N) is less than the spans given in these tables the size or safe load must be obtained by means of the coefficient of strength or section modulus. When W is in pounds and L and N are in feet, the safe load on a given grillage beam is found by the formula.

$$W = \frac{C}{L - N}; \tag{1}$$

and the coefficient of strength required by a beam for a given loading from the formula,

$$C = W(L-N). \tag{2}$$

The greatest safe load may be limited by the safe shearing or crippling strength of the web which should be investigated. The shear due to the load W is a maximum at the point a under the outer edge of the superimposed load, and is found as follows:

 $V_s =$ maximum shear due to the load W.

V = greatest safe allowable shear on web of beam.

$$V_s = \frac{W(L-N)}{2L}$$
.

The shear V_s must not exceed V, the safe shearing strength of the web. If the beams are thoroughly imbedded in concrete and the webs prevented from buckling,

V = 12,000dt = safe allowable shear, in lbs. But if the webs are not supported against buckling,

$$V = \frac{12,000dt}{1 + \frac{h^2}{3000t^2}} = \begin{cases} \text{safe crippling strength} \\ \text{of web, in lbs.} \end{cases}$$

where d = depth of beam, t = thickness of web and h = clear distance between flanges, all in inches. The last formula is that for the safe crippling strength of webs and values for it are given for Bethlehem beam and girder sections in the table on page 67.

When shearing strength of the web is considered, the

maximum load on a given grillage beam is

$$W = 2V \frac{L}{L-N}$$
; (3)

and the safe shearing strength required by the web of a beam for a given loading is

$$V = \frac{W}{2} \frac{L - N}{L}. \tag{4}$$

To find the safe load on a given beam use formulas (1) and (3) and take the lesser of the two values. When formula (3) gives the smaller value the safe load is limited by the shearing strength of the web.

To select a grillage beam for a given loading find the coefficient of strength required by formula (2) and the safe shearing strength of web required by formula (4). The proper beam must then be selected to satisfy both requirements

It will be found that Bethlehem girder beams are desirable and economical for use as grillage beams.

SHEARING AND BEARING VALUE OF RIVETS.

Diameter of Livet,	Area in Square	Single Shear at			Pounds, for I at 15,000 Lbs.			
Inches.	Inches.	7500 Lbs.	1/4"	5"	3/8"	7"	1/2"	
3/8	.1104	830	1410	1760	2110			
1/2	.1963	1470	1880	2340	2810	3280	3750	
5/8	.3068	2300	2340	2930	3520	4100	4690	
3/4	.4418	3310	2810	3520	4220	4920	5630	
7/8	.6013	4510	3280	4100	4920	5740	6560	
1	.7854	5890	3750	4690	5620	6560	7500	
Diameter of Rivet,	Area in Square	Single Shear at	Bearing Plat	Values, in i	Pounds, for I at 18,000 Lbs.	ifferent Thick per Square	ness of	
Inches.	Inches.	9000 Lbs.	14"	5"	3/8"	7"	1/2"	
3/8	.110	990	1680	2110	2530			
1/2	.196	1770	2250	2820	3370	3940	4500	
5/8	.307	2760	2790	3480	4180	4870	5580	
3/4	.442	3970	3370	4210	5050	5910	6750	
7/8	.601	5410	3940	4920	5910	6880	7870	
1	.785	7060	4500	5620	6750	7870	9000	
Diameter of Rivst,	Area in Square	Single Shear at	Bearing Values, in Pounds, for Different Thickness Plate in Inches at 20,000 Lbs. per Square Inch.					
Inches.	Inches.	10,000 Lbs.	1/4"	5 " 16"	3/8"	7"	1/2"	
3/8	.1104	1100	1880	2340	2810			
1/2	.1963	1960	2500	3130	3750	4380	5,000	
5/8	.3068	3070	3130	3910	4690	5470	6.250	
3/4	.4418	4420	3750	4690	5630	6560	7,500	
7/8	.6013	6010	4380	5470	6570	7660	8,750	
1	.7854	7850	5000	6250	7500	8750	10,000	
Diameter of Rivet,	Area in Square	Single Shear at	Bearing Plate	Values, in i	Pounds, for I	ifferent Thick per Square	ness of Inch.	
Inches.	Inches.	11,000 Lbs.	1/4"	5"	3/8"	7"	1/2"	
3/8	.1104	1210	2060	2580	3090			
1/2	.1963	2160	2750	3440	4130	4820	5,500	
5/8	.3068	3370	3440	4300	5160	6020	6,880	
3/4	.4418	4860	4130	5160	6190	7220	8 250	
7/8	.6013	6510	4810	6020	7220	8430	9,630	
1	.7854	8640	5500	6880	8250	9630	11,000	
Rea	ring value	es giver al	hove or to	the right o	of the upp	er ziozao 1	ines are	

Bearing values given above or to the right of the upper zigzag lines are greater than double shear. Bearing values given between the upper and lower zigzag lines are less than double shear and greater than single shear.

SHEARING AND BEARING VALUE OF RIVETS.

		D-				100 100 100 100 100 100 100 100 100 100	1				
Bearing Values, in Pounds, for Different Thickness of Plate in Inches at 15,000 Lbs. per Square Inch.											
9"	5/8"	11"	3/4"	13"	7/8"	15"	1"	of Rivet, Inches.			
,								3/8			
								1/2			
5280	5860 7030	7.500	0.440				•••••	5/8			
6330 L	8200	7,720	8,440		11 490	12,300		3/4			
8440	9380	7				14,060	15 000	1/8			
					,						
Ве	earing Val	lues, in Po	unds, for 18,000 Lbs	Different The per Square	re Inch.	Plate in Inc	hes	Diameter of Rivet,			
9"	5/8"	117"	3/4"	13"	7/8"	15" 16"	1"	Inches.			
								3/8			
								1/2			
6,330	7,030							5/8			
7,590			10,130					3/4			
				198(11)	13.780	14.770		7/8			
	9,840						10000				
						16,880	18,000	1			
10,120	11,250	12,370 lues, in Po	13,500 ounds, for	14,630	15,750			1 Diameter			
10,120	11,250	12,370 lues, in Po	13,500 ounds, for	14,630 Different T	15,750	16,880		1			
10,120 B	11,250 Searing Va	12,370 lues, in Po	13,500 ounds, for 20,000 Lbs	14,630 Different To s. per Squa	15,750 hickness of re Inch.	16,880 Plate in Inc	ches	Diameter of Rivet,			
10,120 B	11,250 Valearing Va	12,370 lues, in Po	13,500 ounds, for 20,000 Lbs	14,630 Different To s. per Squa	15,750 hickness of re Inch.	16,880 Plate in Inc	ches	Diameter of Rivet, Inches.			
10,120 B 9" 16" 7,030	11,250 Searing Va 5/8" 7,810	12,370 lues, in Po at \frac{11''}{16''}	13,500 bunds, for 20,000 Lbs	14,630 Different To s. per Squa	15,750 hickness of re Inch.	16,880 Plate in Inc	ches	Diameter of Rivet, Inches.			
10,120 B 16" 7,030 8,440	11,250 Searing Va 5%" 7,810 9,380	12,370 lues, in Po at	13,500 ounds, for 20,000 Lbs	14,630 Different T. s. per Squa	15,750 hickness of re Inch.	16,880 F Plate in Inc 15"	ches	Diameter of Rivet, Inches. 3/8 1/2 5/8 3/4			
7,030 8,440 9,840	11,250 Searing Va 58" 7,810 9,380 10,940	12,370 lues, in Po at	13,500 ounds, for 20,000 Lbs 34"	14,630 Different To per Squa 133" 14,220	15,750 hickness of re Inch. 7/8" 15,310	16,880 F Plate in Inc 15" 16,410	1"	Diameter of Rivet, Inches. 3/8 1/2 5/8 3/4 7/8			
10,120 B	11,250 Searing Va 5%" 7,810 9,380 10,940 12,500	12,370 lues, in Poat 11	13,500 punds, for 20,000 Lbs 34" 11,250 13,130 15,000	14,630 Different Tis, per Squa 133" 14,220 16,250	15,750 hickness of re Inch. 7/8" 15,310 17,500	16,880 Plate in Inc 15" 16,410 18,750	1" 20,000	Diameter of Rivet, Inches. 3/8 1/2 5/8 3/4			
10,120 B	11,250 Searing Va 5%" 7,810 9,380 10,940 12,500	12,370 lues, in Pat at 118" 10,310 12,030 13,750 lues, in Polues, in Polues, in Polues in Polue	13,500 ounds, for 20,000 Lbs 34" 11,250 13,130 15,000 ounds, for	14,630 Different Tis, per Squa 133" 14,220 16,250	15,750 hickness of re Inch. 7/8" 15,310 17,500 hickness of	16,880 F Plate in Inc 15" 16,410	1" 20,000	Diameter of Rivet, Inches. 3/8 1/2 5/8 3/4 7/8			
10,120 B	11,250 Searing Va 5%" 7,810 9,380 10,940 12,500	12,370 lues, in Pat at 118" 10,310 12,030 13,750 lues, in Polues, in Polues, in Polues in Polue	13,500 ounds, for 20,000 Lbs 34" 11,250 13,130 15,000 ounds, for	14,630 Different Tales, per Squal 13. per Squal 14,220 16,250 Different T	15,750 hickness of re Inch. 7/8" 15,310 17,500 hickness of	16,880 Plate in Inc 15" 16,410 18,750	1" 20,000	Diameter of Rivet, Inches. 3/8 3/4 5/8 3/4 7/8 1			
10,120 B 9'' 7,030 8,440 9,840 11,250 Be	7,810 9,380 10,940 12,500 earing Va	12,370 lues, in Poat at 116" 10,310 12,030 13,750 lues, in Poat at	13,500 unds, for 20,000 Lbs 34" 11,250 13,130 15,000 unds, for 22,000 Lbs	14,630 Different Tales, per Squal 13. per Squal 14,220 16,250 Different T	15,750 hickness of re Inch. 78" 15,310 17,500 hickness of re Inch.	16,880 f Plate in Inc 15'' 16,410 18,750 f Plate in Inc	1" 20,000 thes	Diameter of Rivet, Inches. 3/8 1/2 5/8 1 Diameter of Rivet, Inches.			
10,120 B 9'' 7,030 8,440 9,840 11,250 Be	7,810 9,380 10,940 12,500 earing Va	12,370 lues, in Poat at 116" 10,310 12,030 13,750 lues, in Poat at	13,500 unds, for 20,000 Lbs 34" 11,250 13,130 15,000 unds, for 22,000 Lbs	14,630 Different Tales, per Squal 13. per Squal 14,220 16,250 Different T	15,750 hickness of re Inch. 78" 15,310 17,500 hickness of re Inch.	16,880 f Plate in Inc 15'' 16,410 18,750 f Plate in Inc	1" 20,000 thes	Diameter of Rivet, Inches. 3/8 3/4 7/8 1 Diameter of Rivet, Inches.			
7,030 8,440 9,840 11,250 8,7740	7,810 9,380 10,940 12,500 earing Va	12,370 lues, in Poat at 118" 10,310 12,030 13,750 lues, in Poat at 118"	13,500 ounds, for 20,000 Lbs 34" 11,250 13,130 15,000 ounds, for 22,000 Lbs	14,630 Different Tales, per Squal 13. per Squal 14,220 16,250 Different T	15,750 hickness of re Inch. 78" 15,310 17,500 hickness of re Inch.	16,880 f Plate in Inc 15'' 16,410 18,750 f Plate in Inc	1" 20,000 thes	Diameter of Rivet, Inches. 3/8 3/4 7/8 1 Diameter of Rivet, Inches.			
7,030 8,440 9,840 11,250 8,7740 9,280	7,810 9,380 10,940 12,500 earing Va	12,370 lues, in Poat 11 lues, in Poat 11 lues, in Poat 12,030 lues, in Poat 11 lues, in Poat 11,340 lues, in Poat 11,340	13,500 ounds, for 20,000 Lbs 34" 11,250 13,130 15,000 ounds, for 22,000 Lbs 34" 12,380	14,630 Different T. s. per Squa 13. 14,220 16,250 Different T. s. per Squa 13. 13.	15,750 hickness of re Inch. 78" 15,310 17,500 hickness of re Inch.	16,880 f Plate in Inc 15'' 16,410 18,750 f Plate in Inc 15'' 15''	1" 20,000 thes	Diameter of Rivet, Inches. 3/8 3/4 7/8 1 Diameter of Rivet, Inches. 3/8 3/4 3/8 3/4 3/8 3/4			
10,120 B 9'' 7,030 8,440 9,840 11,250 B 7,740 9,280 10,840	7,810 9,380 10,940 12,500 earing Va 5%" 8,600 10,320 12,040	12,370 lues, in Poat 1116" 10,310 12,030 13,750 lues, in Poat 11,340 13,240	13,500 ounds, for 20,000 Lbs 34" 11,250 13,130 15,000 ounds, for 22,000 Lbs 34" 12,380 14,440	14,630 Different T. per Squa 13" 14,220 16,250 Different T. per Squa 13" 15,640	15,750 hickness of re Inch. 78" 15,310 17,500 hickness of re Inch.	16,880 f Plate in Inc 15'' 16,410 18,750 f Plate in Inc	1" 20,000 thes	Diameter of Rivet, Inches. 3/8 3/4 7/8 1 Diameter of Rivet, Inches.			

Bearing values given below or to the left of the lower zigzag lines are less than single shear.

WEIGHT OF 100 STEEL RIVETS OR ROUND HEAD BOLTS WITHOUT NUTS.

POUNDS.

Length, Inches.	3% In. Diam.	½ In. Diam.	5% In. Diam.	3/4 In. Diam.	7% In. Diam.	1 In. Diam.	1½ In. Diam.	1 ¹ / ₄ In. Diam.
11/4	5.5 6.3	12.8 14.2	22.0 24.1	29.3 32.4	43.9 48.2	66.6 72.1	93.3	127.0 136.0
13/4	7.0 7.9	15.5 16.9	26.3 28.5	35.5 38.7	52.5 56.7	77.7 83.3	107.0 114.0	145.0 153.0
2¼ 2½ 2¾	8.7 9.4 10.2	18.3 19.7 21.1	30.7 32.8 35.0	41.8 44.9 48.0	61.0 65.2 69.5	88.8 94.4 100.0	121.0 128.0 136.0	162.0 171.0 179.0
3 31/4	11.0 11.7	22.5 23.9	37.2 39.3	51.1 54.3	73.7 78.0	105.0 111.0	143.0 150.0	188.0 197.0
31/2 33/4	12.6 13.4	25.3 26.7	41.5 43.7	57.4 60.5	82.3 86.5	$116.0 \\ 122.0$	157.0 164.0	205.0 214.0
4 41/4	14.1	28.1 29.4	45.9 48.0	63.6	90.8 95.0	128.0 134 0	170.0 177.0	223.0 231.0
4½ 4¾ 5	15.7 16.5 17.2	30.8 32.2 33.6	50.2 52.4 54.5	69.9 73.0 76.1	99.3 104.0 108.0	139.0 145.0 150.0	185.0 192.0 199.0	240.0 249.0 258.0
51/4	18.1	35.0	56.7	79.2 82.3	112.0 116.0	156.0	206.0	266.0
5½ 5¾ 6	18.8 19.6 20.4	36.4 37.8 39.2	58.9 61.1 63.2	85.5 88.6	120.0 124.0	161.0 166.0 172.0	213.0 220.0 227.0	275.0 284.0 292.0
6½	21 9 23.5	42.0 44.7	67.6 71.9	95.1 101.0	133.0 142.0	184.0 195.0	241.0 255.0	310.0 327.0
7½	25.1 26.6	47.5 50.3	76.1 80.6	108.0 114.0	150.0 159.0	206.0 217.0	269 0 284.0	345.0 362.0
8½	28.2	53.1 55.9	85.0 89.3	120.0 126.0	167.0 176.0	227.0 239.0	2£8.0 312.0	379.0 397.0
10	31.3 32.8	58.7 61.4	93.7 98.0	133.0 139.0	185.0 193.0	250 0 261.0	325.0 340.0	414.0 431.0
10½ 11 11½	34.5 36.0 37.6	64.2 67.0 69 8	103.0 107.0 111.0	145.0 151.0 158.0	202.0 210.0 218.0	272.0 284.0 295.0	354.0 368.0 382.0	449.0 466.0 484.0
12	39.2	72.5	115.0	164.0	227.0	306.0	396.0	501.0
100 Heads.	1.8	5.8	11.1	13.6	22.6	39.0	58.0	83.5

WEIGHT, IN POUNDS, OF 100 BOLTS WITH SQUARE HEADS AND NUTS.

Length			3.001	Dia	meter of B	olts.			ad and
Head, Inches.	1/4 In.	5 In.	3/8 In.	7 In.	½ In.	5% In.	3/4 In.	7/8 In.	1 In.
11/2	4.0	7.0	10.5	15.2	22.5	39.5	63.0		
13/4	4.4	7.5	11.3	16.3	23.8	41.6	66.0		
2	4.8	8.0	12.0	17.4	25.2	43.8	69.0	109.0	163
21/4	5.2	8.5	12.8	18.5	26.5	45.8	72.0	113.3	169
21/2	5.5	9.0	13.5	19.6	27.8	48.0	75.0	117.5	174
23/4	5.8	9.5	14.3	20.7	29.1	50.1	78.0	121.8	180
3	6.3	10.0	15.0	21.8	30.5	52.3	81.0	126.0	185
31/2	7.0	11.0	16.5	24.0	33.1	56.5	87.0	134.3	196
4	7.8	12.0	18.0	26.2	35.8	60.8	93.1	142.5	207
41/2	8.5	13.0	19.5	28.4	38.4	65.0	99.1	151.0	218
5	9.3	14.0	21.0	30.6	41.1	69.3	105.2	159.6	229
51/2	10.0	15.0	22.5	32.8	43.7	73.5	111.3	168.0	240
6	10.8	16.0	24.0	35.0	46.4	77.8	117.3	176.6	251
61/2			25.5	37.2	49.0	82.0	123.4	185.0	262
7			27.0	39.4	51.7	86.3	129.4	193 7	273
71/2			28.5	41.6	54.3	90.5	135.0	202.0	284
-8			30.0	43.8	59.6	94.8	141.5	210.7	295
9				48.2	64.9	103.3	153.6	227.8	317
10				52.6	70.2		165.7	244.8	339
11				57.0	75.5	120.3	177.8	261.9	360
12				61.4	80.8	128.8	189.9	278.9	382
14	******				91.4		214.1	313.0	426
16					102.0	162.8	238.3	347.1	470
18					112.6	179.5	262.6	381.2	514
20					123.2	206.5	286.8	415.3	558
Per Inch Additional	1.4	2.1	3.1	4.2	5.5	8.5	12.3	16.7	21.8

WEIGHTS OF NUTS AND BOLT HEADS IN POUNDS.

1/4 In.	5 In.	3% In.	½ In.	5% In.	3/4 In.	7/8 In.
.021	.036	.064	.13	.26	.40	.68
.024	.042	.070	.15	.29	.47	.77
1 In.	1¼ In.	1½ In.	13/4 In.	2 In.	2½ In.	3 In.
1.01	2.10	4.26	6.89	9.24	17.3	27.2
1.19	2.39	5.01	8.41	12.93	21.4	33.5
	.021 .024 1 In. 1.01	.021 .036 .024 .042 1 In. 11/4 In. 1.01 2.10	.021 .036 .064 .024 .042 .070 1 tn. 1½ tn. 1½ tn. 1.01 2.10 4.26	.021 .036 .064 .13 .024 .042 .070 .15 1 In. 1½ In. 1½ In. 1¾ In. 1.01 2.10 4.26 6.89	.021 .036 .064 .13 .26 .024 .042 .070 .15 .29 1 tn. 1½ ln. 1½ ln. 1¾ ln. 2 ln. 1.01 2.10 4.26 6.89 9.24	.021 .036 .064 .13 .26 .40 .024 .042 .070 .15 .29 .47 1 In. 1½ In. 1½ In. 1¾ In. 2 In. 2½ In. 1.01 2.10 4.26 6.89 9.24 17.3

REDUCTION OF AREA,

IN SQUARE INCHES, FOR ONE RIVET HOLE.

To be deducted from gross area of plates or shapes to obtain net area.

Thickness		DIAMETER OF HOLE,											
of Metal, Inches.	1/2"	9 //	5/8"	11/1/	3/4"	13"	7/8"	15"	1"	$1\frac{1}{16}''$	11/8"		
1/8 3 3 1 6 1/4 1/4	.03 .06 .09 .13	.04 .07 .11 .14	.04 .08 .12 .16	.04 .09 .13 .17	.05 .09 .14 .19	.05 .10 .15 .20	.05 .11 .16 .22	.06 .12 .18 .23	.06 .13 .19 .25	.07 .13 .20 .27	.07 .14 .21 .28		
3/8 7 1/2 16	.16 .19 .22 .25	.18 .21 .25 .28	.20 .23 .27 .31	.21 .26 .30 .34	.23 .28 .33 .38	.25 .30 .36 .41	.27 .33 .38 .44	.29 .35 .41 .47	.31 .38 .44 .50	.33 .40 .46 .53	.35 .42 .49 .56		
5/8 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.28 .31 .34 .38	.32 .35 .39 .42	.35 .39 .43 .47	.39 .43 .47 .52	.42 .47 .52 .56	.46 .51 .56 .61	.49 .55 .60	.53 .59 .64 .70	.56 .63 .69 .75	.60 .66 .73 .80	.63 .70 .77 .84		
7/8 1 5 1 5 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5	.41 .44 .47 .50	.46 .49 .53 .56	.51 .55 .59 .63	.56 .60 .64 .69	.61 .66 .70 .75	.66 .71 .76 .81	.71 .77 .82 .88	.76 .82 .88 .94	.81 .88 .94 1.00	.86 .93 1.00 1.06	.91 .98 1.05 1.13		
1 1/6 1 1/8 1 1/8 1 1/6 1 1/4	.53 .56 .59 .63	.60 .63 .67 .70	.66 .70 .74 .78	.73 .77 .82 .86	.80 .84 .89 .94	.86 .91 .96 1.02	.93 .98 1.04 1.09	1.00 1.05 1.11 1.17	1.06 1.13 1.19 1.25	1.13 1.20 1.26 1.33	1.20 1.27 1.34 1.41		
1 1 1 6 1 3/8 1 7 1 1 6 1 1/2	.66 .69 .72 .75	.74 .77 .81 .84	.82 .86 .90 .94	.90 .95 .99 1.03	.98 1.03 1.08 1.13	1.07 1.12 1.17 1.22	1.15 1.20 1.26 1.31	1.23 1.29 1.35 1.41	1.31 1.38 1.44 1.50	1.39 1.46 1.53 1.59	1.48 1.55 1.62 1.69		
1 9 1 5 8 1 1 1 6 1 3 4	.78 .81 .84 .88	.88 .91 .95 .98	.98 1.02 1.05 1.09	1.07 1.12 1.16 1.20	1.17 1 22 1 27 1.31	1.27 1.32 1.37 1.42	1.37 1.42 1.47 1.53	1.46 1.52 1.58 1.64	1.56 1.63 1.69 1.75	1.66 1.73 1.79 1.86	1.76 1.83 1.90 1.97		
$\begin{array}{c} 1\frac{1}{1}\frac{3}{6} \\ 1\frac{1}{8} \\ 1\frac{1}{1}\frac{5}{6} \\ 2 \end{array}$.91 .94 .97 1.00	1.02- 1.05 1.09 1.13	1.13 1.17 1.21 1.25	1.25 1.29 1.33 1.38	1.36 1.41 1.45 1.50	1.47 1.52 1.57 1.63	1.59 1.64 1.70 1.75	1.70 1.76 1.82 1.88	1.81 1.88 1.94 2.00	1.93 1.99 2.06 2.13	2.04 2.11 2.18 2.25		
		-					-		-		-		

When holes are punched the diameter of the hole should be taken $\frac{1}{18}$ inch greater than the diameter of the rivet or bolt. For drilled holes the diameter may be taken only $\frac{1}{18}$ inch greater than the diameter of the rivet or bolt.

DECIMALS OF AN INCH FOR EACH $\frac{1}{64}$ TH.

132ds.	1/64ths.	Decimal.	Fraction.	1/3 2 ds.	$\frac{1}{64}$ ths.	Decimal.	Fraction.
1	1 2 3	.015625 .03125 .046875		17	33 34 35	.515625 .53125 .546875	
2	4	.0625	1-16	18	36	.5625	9-16
3	5 6 7	.078125 .09375 .109375		19	37 38 39	.578125 .59375 .609375	
4	8	.125	1-8	20	40	.625	5-8
5	9 10 11	.140625 .15625 .171875		21	. 41 42 43	.640625 .65625 .671875	
6.	12	.1875	3-16	22	44	.6875	11-16
7	13 14 15	.203125 .21875 .234375		23	45 46 47	.703125 .71875 .734375	
8	16	.25	1-4	24	48	.75	3-4
9	17 18 19	.265625 .28125 .296875		25	49 50 51	.765625 .78125 .796875	3/1
10	20	.3125	5-16	26	52	.8125	13-16
11	21 22 23	.328125 .34375 .359375		27	53 54 55	.828125 .84375 .859375	
12	24	.375	3-8	28	56	.875	7-8
13	25 26 27	.390625 .40625 .421875		29	57 58 59	.890625 .90625 .921875	
14	28	.4375	7-16	30	60	.9375	15-16
15	29 30 31	.453125 .46875 .484375		31	61 62 63	.953125 .96875 .984375	
16	32	.5	1-2	32	64	1	1

DECIMALS OF A FOOT

FOR EACH $\frac{1}{64}$ th OF AN INCH.

Inch.	0"	1"	2"	3"	4"	5"	6"	7"	8"	9"	10"	11"
0	0	.0833	.1667	.2500	.3333	.4167	.5000	.5833	.6667	.7500	.8333	.9167
1 64	.0013	.0846	.1680	.2513	.3346	.4180	.5013	.5846	.6680	.7513	.8346	.9180
32	.0026	.0859	.1693	.2526	.3359	.4193	.5026	.5859	.6693	.7526	.8359	.9193
3	.0039	.0872	.1706	.2539	.3372	.4206	.5039	.5872	.6706	.7539	.8372	.9206
16	.0052	.0885	.1719	.2552	.3385	.4219	5052	.5885	.6719	.7552	.8385	.9219
5	.0065	.0898	.1732	.2565	.3398	.4232	.5065	.5898	.6732	.7565	.8398	.9232
32	.0078	.0911	.1745	.2578	.3411	.4245	.5078	.5911	.6745	.7578	.8411	.924
74	.0091	.0924	.1758	.2591	.3424	.4258	.5091	.5924	.6758	.7591	.8424	.925
1/8	.0104	.0937	.1771	.2604	.3437	.4271	.5104	.5937	.6771	.7604	.8437	.927
9	.0117	.0951	.1784	.2617	.3451	.4284	.5117	.5951	.6784	.7617	.8451	.928
5 32	.0130	.0964	.1797	.2630	.3464	.4297	.5130	.5964	.6797	.7630	.8464	.929
11	.0143	.0977	.1810	.2643	.3477	.4310	.5143	.5977	.6810	.7643	.8477	.931
3	.0156	.0990	.1823	.2656	.3490	.4323	.5156	.5990	.6823	.7656	.8490	.932
13	.0169	.1003	.1836	.2669	.3503	.4336	.5169	.6003	.6836	.7669	.8503	.933
7 32	.0182	.1016	.1849	.2682	.3516	.4349	.5182	.6016	.6849	.7682	.8516	.934
15	.0195	.1029	.1862	.2695	.3529	.4362	.5195	.6029	.6862	.7695	.8529	.936
1/4	.0208	.1042	.1875	.2708	.3542	.4375	.5208	.6042	.6875	.7708	8542	.937
17	.0221	.1055	.1888	.2721	.3555	.4388	.5221	.6055	.6888	.7721	.8555	.938
9 32	.0234	.1068	.1901	.2734	.3568	.4401	.5234	.6068	.6901	.7731	.8568	.940
19	.0247	.1081	.1914	.2747	.3581	.4414	.5247	.6081	.6914	.7747	.8581	.941
16	.0260	.1094	.1927	.2760	.3594	.4427	.5260	.6094	.6927	.7760	.8594	.942
21 64	.0273	.1107	.1940	.2773	.3607	.4440	.5273	.6107	.6940	.7773	.8607	.9440
11 32	.0286	.1120	.1953	.2786	.3620	.4453	.5286	.6120	.6953	.7786	.8620	.9453
23	.0299	.1133	.1966	.2799	.3633	.4466	.5299	.6133	.6966	.7799	.8633	.946
3/8	.0312	.1146	.1979	.2812	.3646	.4479	.5312	.6146	.6979	.7812	.8646	.9479
25	-0326	.1159	.1992	.2826	.3659	.4492	.5326	.6159	.6992	.7826	.8659	.9495
13	.0339	.1172	.2005	.2839	.3672	.4505	.5339	.6172	.7005	.7839	-8672	.950
27 64	.0352	.1185	.2018	.2852	.3685	.4518	.5352	.6185	.7018	.7852	.8685	.9518
78	.0365	.1198	.2031	.2865	.3698	.4531	.5365	.6198	.7031	.7865	.8698	.9531
29	.0378	.1211	.2044	.2878	.3711	.4544	.5378	.6211	.7044	.7878	.8711	.9544
15 32	.0391	.1224	.2057	.2891	.3724	.4557	.5391	.6224	.7057	.7891	.8724	.955
31	.0404	.1237	.2070	.2904	.3737	.4570	.5404	.6237	.7070	.7904	.8737	.9570
1/2	.0417	1250	.2083	.2917	.3750	.4583	.5417	.6250	.7083	.7917	.8750	.958
/2	.0111	2200	.2300		.0.00	1.300		.0200	500		10,00	

DECIMALS OF A FOOT

FOR EACH $\frac{1}{64}$ th OF AN INCH.

-					1				1	,		
Inch.	0"	1"	2"	3"	4"	5"	6"	7"	8"	9"	10"	11"
1/2	.0417	.1250	.2083	.2917	.3750	.4583	.5417	.6250	.7083	.7917	.8750	.9583
33	.0430	.1263	.2096	.2930	.3763	.4596	.5430	.6263	.7096	.7930	.8763	.9596
$\frac{17}{32}$.0443	.1276	.2109	.2943	.3776	.4609	.5443	.6276	.7109	.7913	.8776	.9609
35	.0456	.1289	.2122	.2956	.3789	.4622	.5456	.6289	.7122	.7956	.8789	.9622
16	.0469	.1302	.2135	.2969	.3802	.4635	.5469	.6302	.7135	.7969	.8802	.9635
37	.0482	.1315	.2148	,2982	.3815	.4648	.5482	.6315	.7148	.7982	.8815	.9648
19	.0495	.1328	.2161	.2995	.3828	.4661	.5495	.6328	.7161	.7995	.8828	.9661
39	.0508	.1341	.2174	.3008	.3841	.4674	.5508	.6341	.7174	.8008	.8841	.9674
5/8	.0521	.1354	.2188	.3021	.3854	.4688	.5521	.6354	.7188	.8021	.8854	.9688
41	.0534	.1367	.2201	.3034	.3867	.4701	.5534	.6367	.7201	.8034	.8867	.9701
21	.0547	.1380	.2214	.3047	.3880	.4714	.5547	.6380	.7214	.8047	.8880	.9714
43	.0560	.1393	.2227	.3060	.3893	.4727	.5560	.6393	.7227	.8060	.8893	.9727
11	.0573	.1406	.2240	.3073	.3906	.4740	.5573	.6406	.7240	.8073	.8906	.9740
45	.0586	.1419	.2253	.3086	.3919	.4753	.5586	.6419	.7253	.8086	.8919	.9753
84 23 32	.0599	.1432	.2266	.3099	.3932	.4766	.5599	.6432	.7266	.8099	.8932	.9766
47	.0612	.1445	.2279	.3112	.3945	.4779	.5612	.6445	.7279	.8112	.8945	.9779
3/4	.0625	.1458	.2292	.3125	.3958	.4792	.5625	.6458	.7292	.8125	.8958	.9792
40	0000		0005	0100	0024		F.400	0.000				
49 64	.0638	.1471	.2305	.3138	.3971	.4805	.5638	.6471	:7305	.8138	.8971	.9805
25 32 51 64	.0651	.1484	.2318	.3151	.3984	.4818	.5651	.6484	.7318	.8151	.8984	.9818
13 16	.0677	.1497	.2344	.3177	.3997	.4844	.5664	.6497	.7344	.8164	.8997	.9841
1.6	.0077	.1010	.2011	.0177	.4010	.4044	.0077	.0010	.7011	.01//	.9010	.3044
53	.0690	.1523	.2357	.3190	.4023	.4857	.5690	.6523	.7357	.8190	.9023	.9857
37/32	.0703	.1536	.2370	.3203	.4036	.4870	.5703	.6536	.7370	.8203	.9036	.9870
55	.0716	.1549	.2383	.3216	.4049	.4883	.5716	.6549	.7383	.8216	.9049	.9883
7/8	.0729	.1562	.2396	.3229	.4062	.4896	.5729	.6562	.7396	.8229	.9062	.9896
57	.0742	.1576	.2409	.3242	.4076	.4909	.5742	.6576	.7409	.8242	.9076	.9909
29 32	.0755	.1589	.2422	.3255	.4089	.4922	.5755	.6589	.7422	.8255	.9089	.9922
59	.0768	.1602	.2435	.3268	.4102	.4935	.57.68	.6602	.7435	.8268	.9102	.9935
15	.0781	.1615	.2448	.3281	.4115	.4948	.5781	.6615	.7448	.8281	.9115	.9948
61	.0794	.1628	.2461	.3294	.4128	.4961	.5794	.6628	.7461	.8294	.9128	.9961
31 32	.0807	.1641	.2474	.3307	.4141	.4974	.5807	.6641	.7474	.8307	.9141	9974
63	.0820	.1654	.2487	.3320	.4154	.4987	.5820	*6654	.7487	.8320	.9154	.9987
1												1.0000
-										-		-

INDEX.

Allowable variation in weights of sections	PAGE
Angles, connection, for I beams and girder beams	
Area, reduction of, for rivet holes	
Areas, method of increasing sectional	100 107
Beams, bearing plates for	100-107
bending moment, shear and deflection of	
deflection of	102-103
grillage, calculation of	108-109
notes on strength and deflection of	
unsupported sideways, reduced loads for	56
Beams, Bethlehem I:	
comparison of, with Standard I beams	
dimensions of	
distance c. to c., for equal radii of gyration	
moments of resistance for, in ft. lbs	
properties of	
safe loads, uniformly distributed for	
" for, used as columns	
safe shear on webs of	. 66-67
shapes of	. 19-25
standard gauges for rivet holes in	. 94-95
weights of	33
Beams, Bethlehem Rolled Girder:	
comparison of, with Standard I beams	40
dimensions of	32
distance c. to c., for equal radii of gyration	42
moments of resistance for, in ft. lbs	
properties of	
safe loads, uniformly distributed for	. 57-60
" for, used as columns	
safe shear on webs of	
shapes of	
standard gauges for rivet holes in	
weights of	
Bearing plates, notes on	
Bending moments, for usual methods of loading	
beauting moments, for usual methods of roading	101

	PAGE
Bolts, weights of	
Bridges, Bethlehem beams and girders for railroad	68-69
Columns, Bethlehem Rolled Steel H:	N. S. C.
areas of	44-51
connections and details for	97–98
dimensions of	44-51
example showing method of selecting	73
properties of	44-51
safe loads for	
shapes of	
special section, uses and properties of	
weights of	44-51
Compound Columns, weights and properties of	54-55
safe loads for	
Connection angles for I beams and girder beams	
minimum spans for	
Cutting to length, allowable variation in	9
Decimals of a foot, for each $\frac{1}{64}$ th inch	. 116-117
" an inch, for each that	
Deflection of beams, notes on	
Dimensions of Bethlehem girder beams	32
" Bethlehem H column sections	44-51
" Bethlehem I beams	
Explanation of Bethlehem structural shapes	
Formulas for bending moments and deflections	101
Grillage beams, notes on calculation of	
Rivet holes, reduction of area for	
Rivet spacing for Bethlehem beams and girders	
Rivets, shearing and bearing values for	
weights of	
Separators for I beams and girder beams	
Shear, safe, on webs of beams	66-67
Tie rods, size and spacing of	. 104-105
Weights of beams, Bethlehem I and girder	
" bearing plates	
" bolts	113
" connection angles for beams	88-89
" H column sections	44-51
" rivets	112
" separators for beams	92–93

BETHLEHEM STEEL COMPANY,

Works at South Bethlehem, Pa.,

The Largest Individual Steel Plant in America,

MANUFACTURES

Open Hearth Steel Structural Shapes, Wide Flange Beams, Rolled Girders, Rolled Column Sections, Standard I Beams, Channels, Angles, Rounds, Squares, and Flats,

Open Hearth Steel Rails from 60 to 100 pounds per yard.

Forgings of All Sizes, rough or finished, for Marine and Stationary Engines, Locomotives, Machine Tools, etc., of fluid compressed open hearth carbon or nickel steel, hydraulic forged solid or hollow around a mandrel, and annealed or oil tempered.

Drop Forgings of all sizes.

Hydraulic Presses, Heavy Machinery, and Machine Tools designed and built.

Armor Plate and Armor Plate Vaults

Land and Naval Ordnance, Finished Guns of All Calibers, Gun Forgings, Gun Carriages, Projectiles.

Pumping Engines and Machinery.
Gas Engines.

Steel Castings of all sizes, of carbon or nickel steel.

Iron Castings of all sizes.

Brass and Bronze Castings.

High Speed and Special Tool Steels.

Muck Bar Iron.

Stay Bolt Iron.

Steel Billets.

Pig Iron.

BETHLEHEM STRUCTURAL SHAPES

