Welcome to the RED HEAD[®] Product and Resource Book

Our Product and Resource Book is not just a catalog of the quality RED HEAD Anchoring Systems so many of you have come to rely on, but a resource guide to give you the information you need to help you work better, faster and easier.

This highly detailed Application Section allows you to look up your trade or specialty, view a variety of practical applications and receive simple product recommendations. Along with the product recommendations you'll notice page numbers for easy reference to the product selection and specifications pages.

We are continuing the consolidation of our Adhesive Anchoring System under the RED HEAD brand name. The *EPCON*[®] name is still prominent on our labels along with our RED HEAD logo. The adhesive anchoring products and formulas remain, providing versatile solutions.

As always this Product and Resource Book continues to provide a wealth of valuable information including: product approvals/listings, applications, selection charts, performance tables and installation steps.

Remember, if you ever need more information about ITW RED HEAD products, technology and service, contact your local distributor, or look on the back cover for a complete listing of ITW RED HEAD facilities. We welcome your calls and feedback, and look forward to answering any questions you might have.

www.itwredhead.com

Table of Contents

Fastening Applications Guide

Curtain Wall Applications
Electrical Contractor Applications
Mechanical Contractor Applications
Drywall Contractor and Carpenter Applications
Acoustical Ceiling Installer Applications
Steel Erector Applications
Concrete and Masonry Contractor Applications
Water & Waste Water Treatment Applications 10
Highway and Bridge Contractor Applications 11
General Contractor Applications 12
Material Handing Applications
Specialty Applications
Anchoring Working Principles

Anchoring Systems

RED HEAD Adhesive Anchoring Systems

TruSpec Software	19
Adhesive Anchoring Selection Guide	21
S7 Adhesive	23
A7 Adhesive	30
C6+ Adhesive	41
G5 Adhesive	47
Umbrella Inserts and Stubby Screens	53
Screen Tubes	56
Accessories	59

RED HEAD Mechanical Anchoring Systems

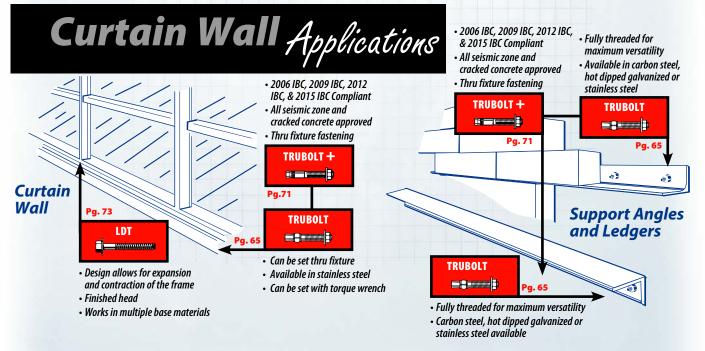
;,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Mechanical Anchoring Selection Guide
Trubolt Wedge Anchors65
Trubolt+ Seismic Wedge Anchors
Trubolt+ Stainless Steel Seismic Wedge Anchors72
Large Diameter Tapcon (LDT) Anchors73
Boa Coil Expansion Anchors
Multi-Set II Drop-in Anchors
Dynabolt Sleeve Anchors
Tapcon Concrete and Masonry Anchors (Original & 410 SS) 87
Tapcon Maxi-Set
Tapcon SCOTS®93
Tapcon XL
Tapcon StormGuard97
SAMMYS® Hurricane Protection Anchor99
Hammer-Set Anchors
Poly-Set Anchors
Performance values in accordance to 2009 IBC

The information and recommendations in this document are based on the best information available to us at the time of preparation. We make no other warranty, expressed or implied, as to its correctness or completeness, or as to the results or reliance of this document.

StormGuard

Hurricane

SCOTS

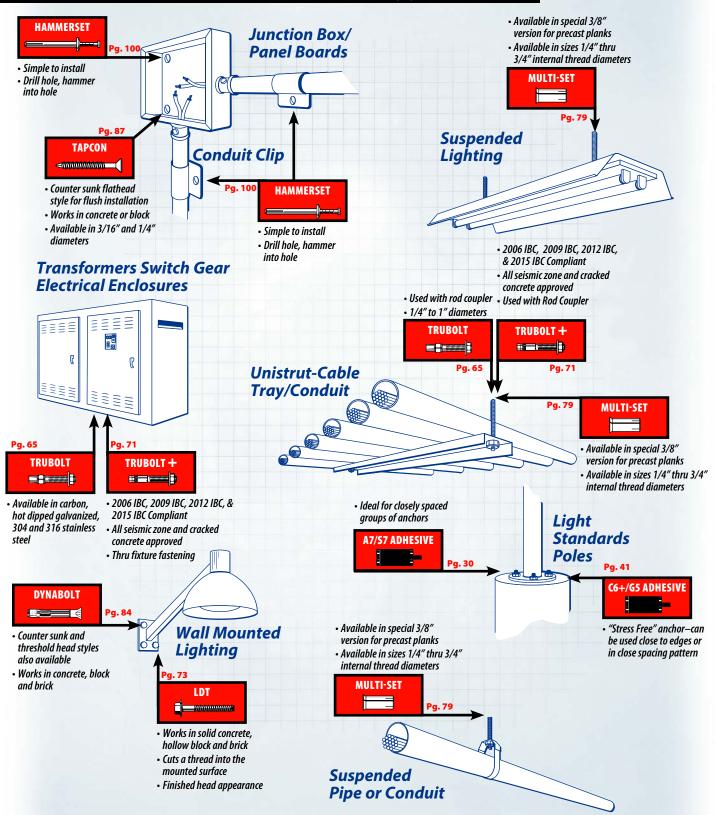

Fastening Applications Guide

This section highlights a variety of trade applications and provides information that will assist you in selecting the best fastening system for your application.

While these are not to be considered complete, they will give you an idea of how contractors use our products.

For example, on the Electrical Contractor page, you will find applications, such as junction box/panel boards and

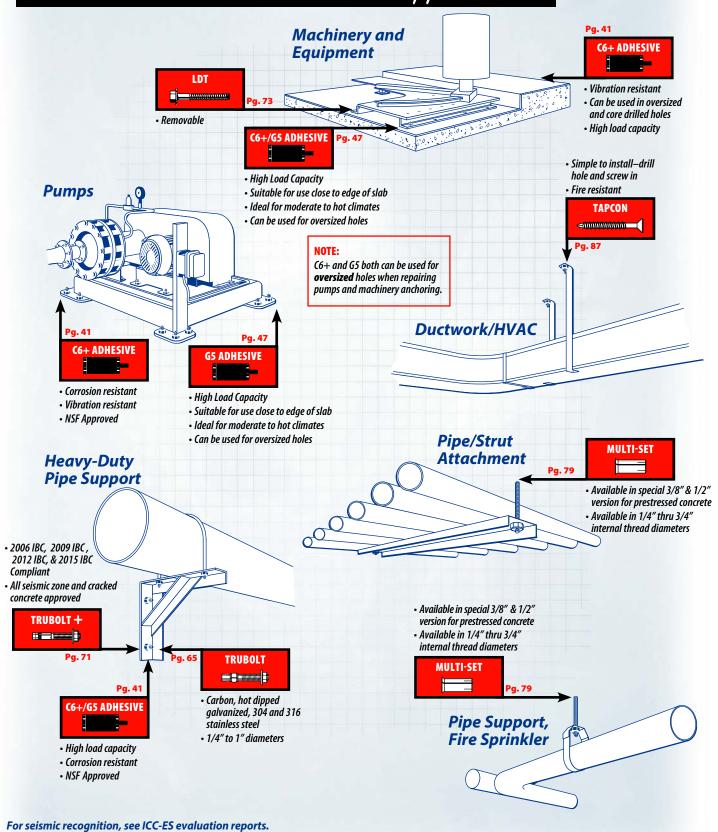
suspended lighting. Next to the diagrams are the product name(s) and page number in this catalog where you will find complete information on these products needed for that particular application.


For seismic recognition, see ICC-ES evaluation reports.

For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

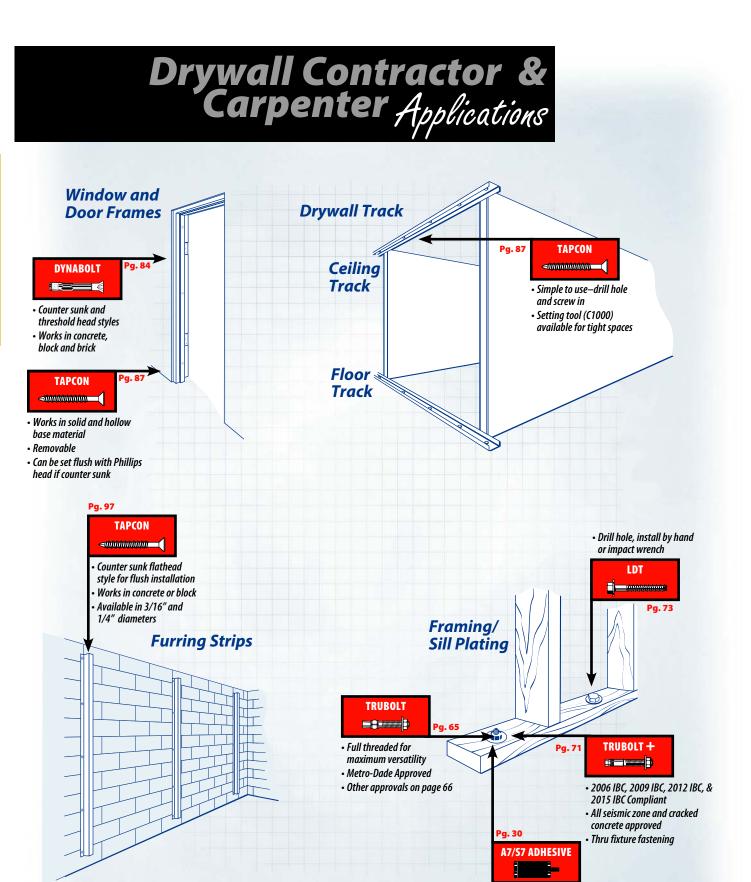
TW Reci Head Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Electrical Contractor Applications



For seismic recognition, see ICC-ES evaluation reports.

For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

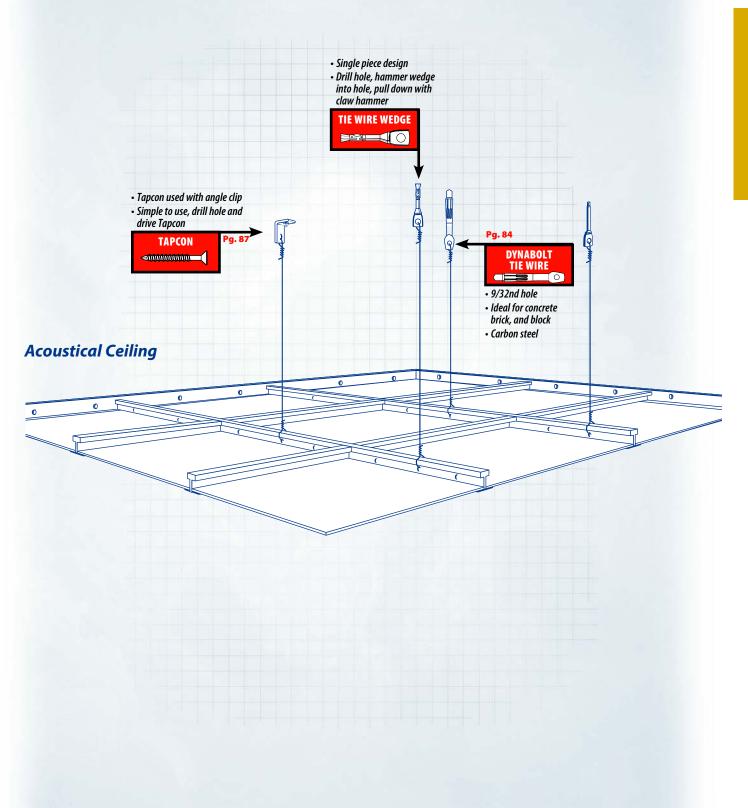

Mechanical Contractor Applications

For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

ITW Red Head

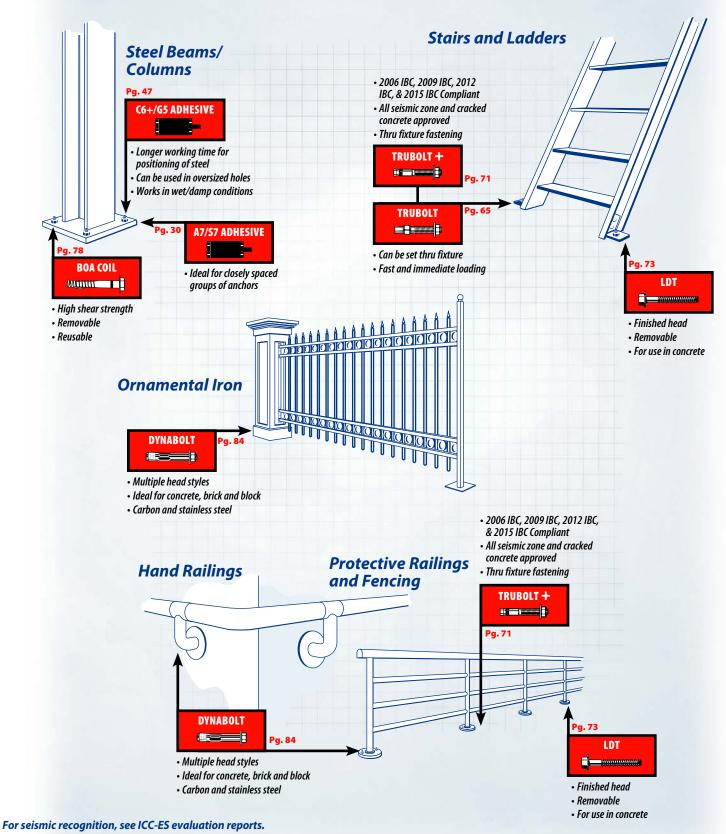
Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

For seismic recognition, see ICC-ES evaluation reports.

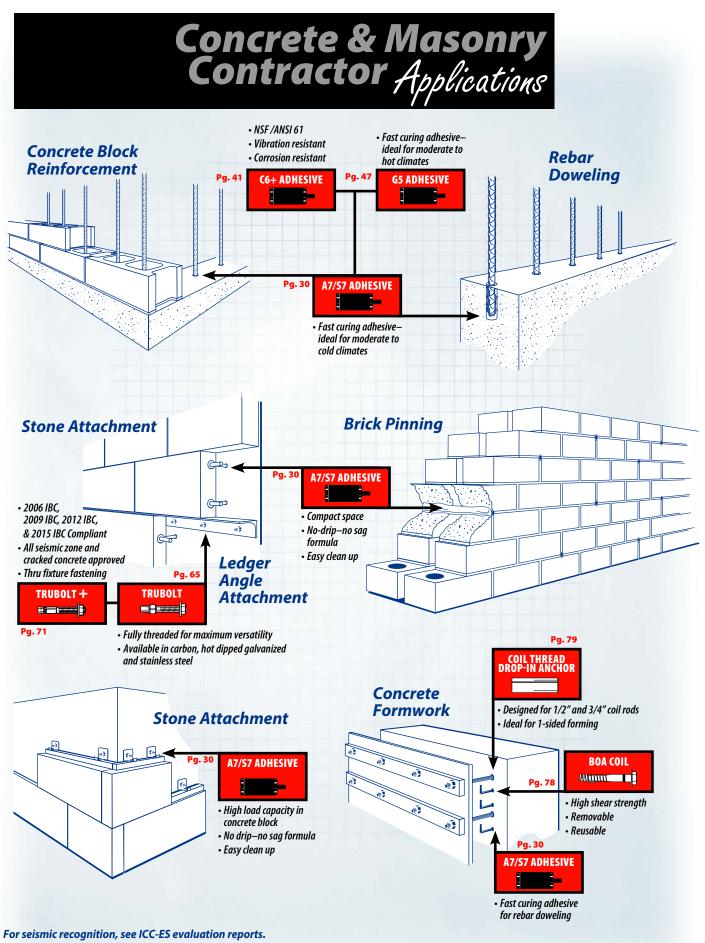

For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

Fast cure
Works in damp wet conditions

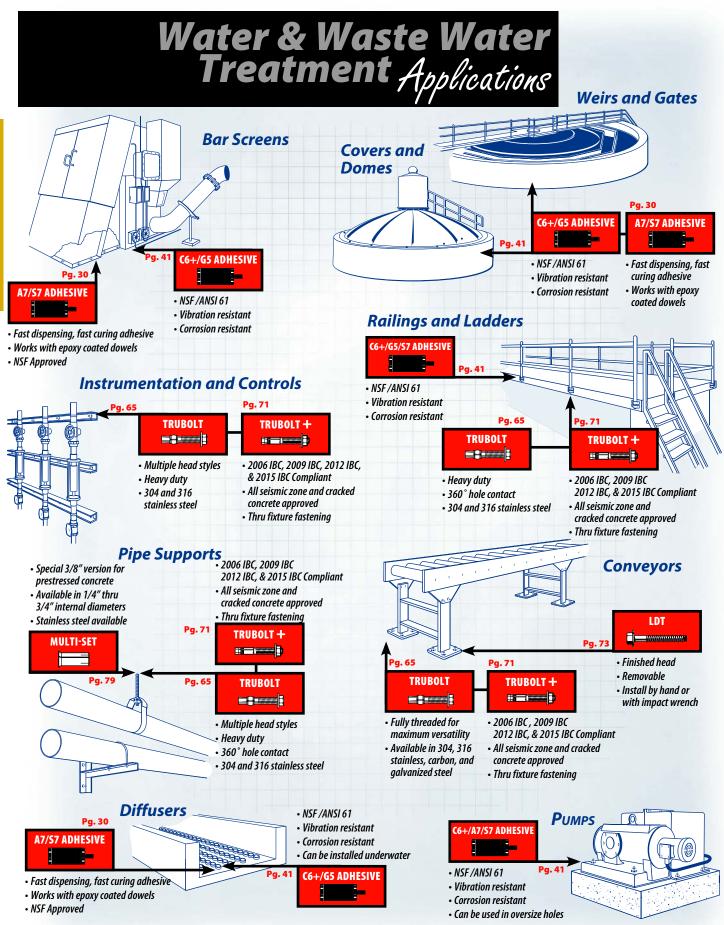
 Use A7 with threaded rod for this appplication


Acoustical Ceiling Installer Applications

For seismic recognition, see ICC-ES evaluation reports. For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

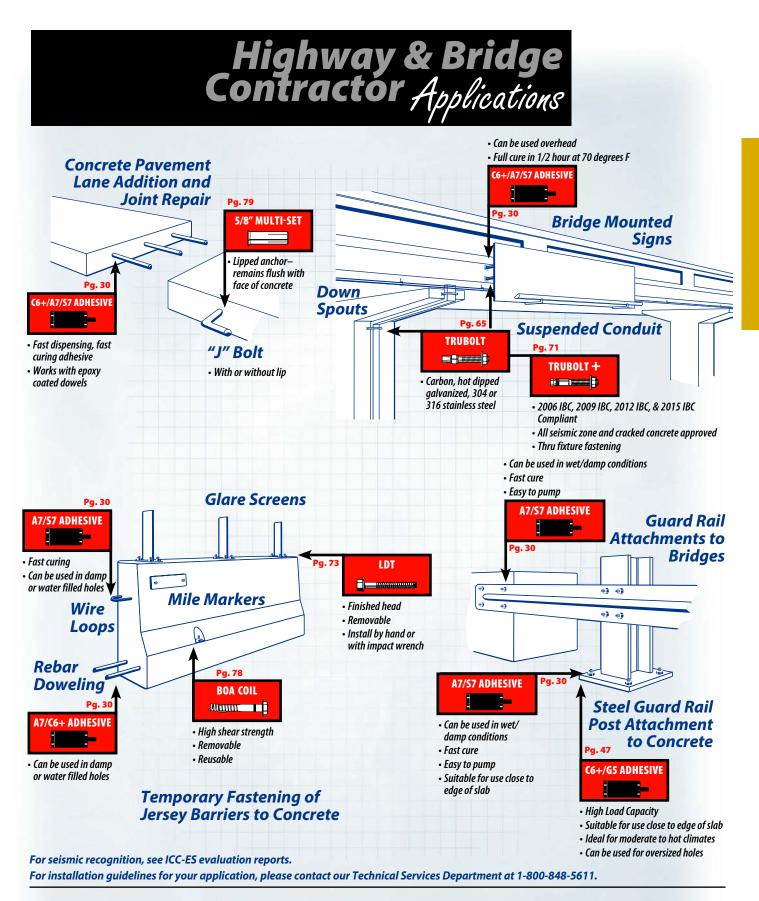


For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.


IT W Recl Head Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

TTW Red Head^{*} Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

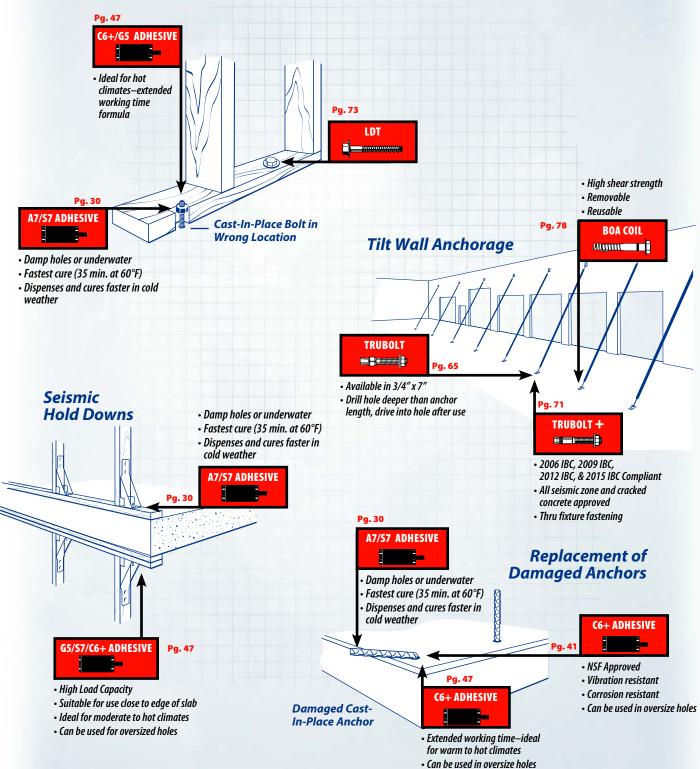


For seismic recognition, see ICC-ES evaluation reports.

For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

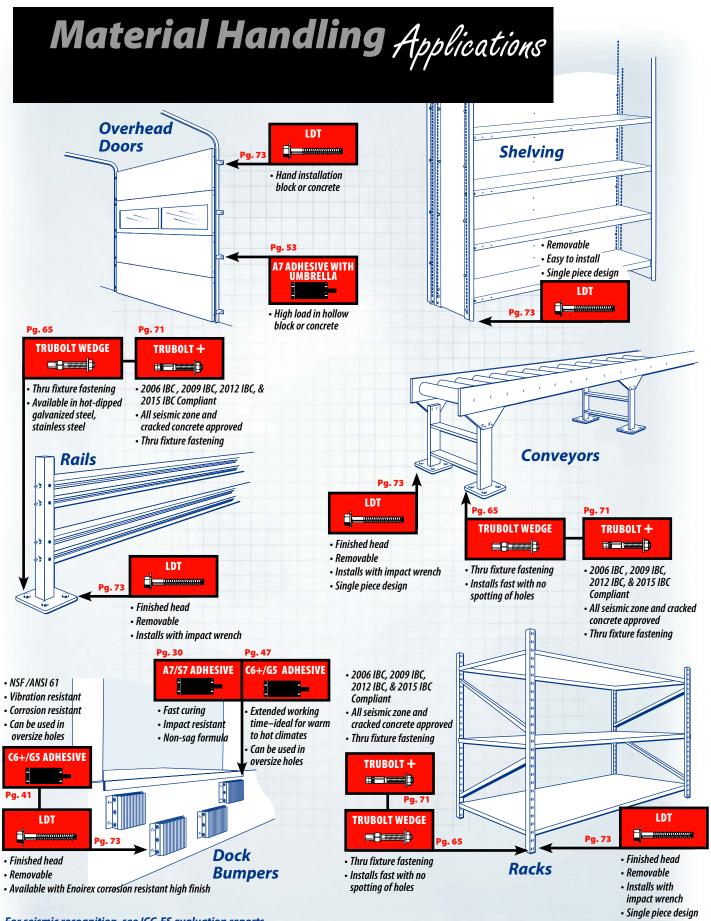
Department of Transportation Approvals & Listings

For approvals contact local engineering on a per project basis. Call your local RED HEAD sales person for more information.


IT W **Red Head**

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Replacement of Misplaced Anchors



For seismic recognition, see ICC-ES evaluation reports.

For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

#TW Rec Head Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

For seismic recognition, see ICC-ES evaluation reports.

For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

IT W **Red Head**

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Specialty Applications

Basement Wrap Stadium Seating ę, Sec. æ Pg. 30 **A7/S7 ADHESIVE** a. 100 Pg. 71 a. 65 HAMMERSET TRUBOLT + TRUBOLT Corrosion resistant Normal weight or 沒 lightweight concrete Simple to use-drill • 2006 IBC, 2009 IBC, 2012 Used in major stadiums 2 Corrosion resistant hole and hammer in across the country IBC, & 2015 IBC Compliant Normal weight or Large diameter head • All seismic zone and lightweight concrete securely fastens cracked concrete approved • Used in major stadiums basement wrap • Thru fixture fastening across the country Immediate loading Pg. 71 **Expansion Joints TRUBOLT WEDGE** TRUBOLT + LDT 65 • 2006 IBC, 2009 IBC, 2012 IBC, & 2015 IBC Pa. 73 High load capacity Fast installation Finished head Compliant Removable • All seismic zone and • Installs by hand or cracked concrete approved Pa. 47 with impact wrench • Thru fixture fastening C6+/G5 ADHESIVE High load capacity Suitable for use **Flooring Systems** close to edge of slab • 2006 IBC, 2009 IBC, 2012 IBC, & 2015 IBC Compliant Underwater All seismic zone and cracked concrete approved Installation • Thru fixture fastening TRUBOLT + Pg. 71 Pa. 30 a. 100 TRUBOLT WEDGE HAMMERSET **A7/S7 ADHESIVE** _)---- Vibration resistant Pg. 65 Simple to use-drill Corrosion resistant hole and hammer in • Available in 316 stainless steel

For seismic recognition, see ICC-ES evaluation reports.

For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

IT W Recl Head Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Anchoring Working Principles

CONCRETE ANCHORING SPECIALISTS

The Inside Story About Mechanical and Adhesive Anchors

Types, Base Materials, Installation Procedures and More

TYPES OF ANCHORS

Tension loads are transferred to the base material through a portion of the anchor that is expanded inside the drill hole.

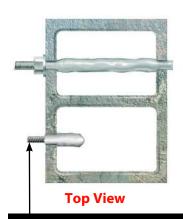
Examples: Red Head Trubolts, Dynabolts, Multi-Set II Anchors and Hammer-Sets

Adhesive Type—

Resistance to tension loads is provided by the presence of an adhesive between the threaded rod (or rebar) and the inside walls of the drill hole.

Examples: A7, C6+, G5, and S7 Adhesives

Keying Type—


Holding strength comes from a portion of an anchor that is expanded into a hollow space in a base material that contains voids such as concrete block or brick.

Examples: Adhesives used in screen tubes or umbrella insert

Mechanical Interlocking Type—

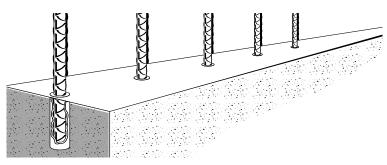
Tension loads are resisted by threads on the fastener engaging with threads cut into the base material.

Examples: LDT, Tapcon and E-Z Ancors

For attachments to single face of block, see page 50 for information on 'umbrella anchors" and "stubby screens"

HOLLOW CONCRETE BLOCK

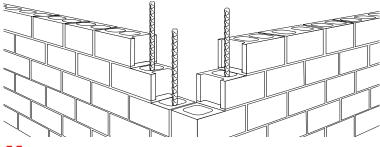
Maximum holding strength in concrete block can be obtained by fastening to both the front and back of the block using an adhesive screen tube and threaded rod.



TW **Red Head**[®] Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Anchoring Working Principles

BASE MATERIALS

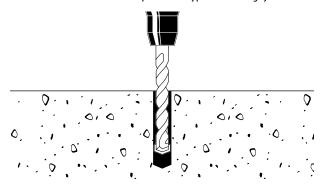

Concrete

Normal Weight Concrete is made from Portland cement, coarse and fine aggregates, water and various admixtures. The proportioning of these components controls the strength of the concrete. In the United States, concrete strength is specified by the compressive strength* of concrete test cylinders. These test cylinders measure six inches in diameter by 12 inches in length and are tested on the 28th day after they are produced.

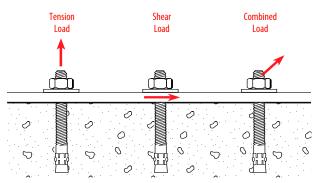
Lightweight Concrete consists of the same components (cement, coarse and fine aggregates, water and admixtures) as normal weight concrete, except it is made with lightweight aggregate. One of the most common uses of lightweight concrete has been as a structural fill of steel decking in the construction of strong, yet light floor systems.

Typical fasteners for both normal weight and lightweight concrete include Trubolt Wedge Anchors, LDT Self-Threading Anchors, Dynabolt Sleeve Anchors, Multi-Set II Drop-In Anchors, Stud Anchors and Adhesive Anchoring Systems.

* Compressive strengths shown in this catalog were the actual strengths at the time of testing. The load values listed were determined by testing in un-reinforced concrete.


Masonry

<u>Grout-Filled Concrete Block</u> consists of three components: concrete, mortar and grout. The mortar is designed to join the units into an integral structure with predictable performance properties. Typical fasteners for grout-filled block include Dynabolt Sleeve Anchors, and C6+, A7, or S7 Adhesive Anchoring Systems.


Hollow Concrete Block, Brick and Clay Tile are grouped together because they require special anchoring products that can be installed into a substrate that contains voids and still provide reliable holding values. Typical fasteners used in hollow block, brick and clay tile include Dynabolt Sleeve Anchors, Tapcon Self-Tapping Concrete Anchors, Adhesives with Screen Tubes and Adhesives used with the Umbrella Insert.

INSTALLATION PROCEDURES

Anchor drill holes are typically produced using carbide tipped drill bits and rotary hammer drills. Look at the product sections of this catalog for the correct drill hole diameter and depth of each type of anchoring system.

Careful cleaning of the anchor drill hole is important in order to obtain the best possible functioning of the anchor system. For each product in this catalog, detailed installation instructions are provided. Suggested clamping torques and curing times (for adhesive anchors) are also provided.

Loading

Holding values for the following types of loading are provided in this catalog:

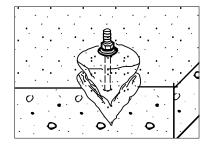
Tension loads—

when load is applied along the axis of the anchor

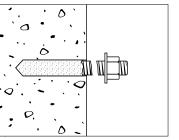
Shear loads—

when the loads are applied perpendicular to the axis of the anchor

Combined loads—


when both tension and shear loads are applied to an anchor, a combined loading equation is provided to determine the maximum loads that can be applied to the anchor at the same time

Anchoring Working Principles


MODES OF FAILURE

When anchors are loaded to their maximum capacity, several different types (modes) of failure are possible depending on the type of anchor, strength of the base material, embedment depth, location of the anchor, etc. Common modes of failure include:

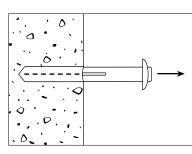
Occurs at shallow embedments where the resistance of the base material is less than the resistance of the anchor and the base material fails.

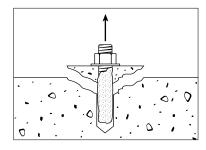
Steel Breakage—

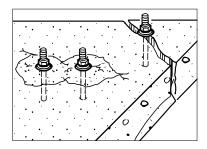
The capacity of the anchorage exceeds the tensile or shear strength of the steel anchor or rod material.

Anchor Pullout—

Base material adjacent to the extension portion of an anchor crushes, resulting in the anchor pulling out of the hole until the capacity of the spall cone is reached, at which point the concrete will spall. This type of failure happens more commonly when anchors are set with deep embedment depths.


Bond Failure—


Shear failure of the adhesive at rod-adhesive interface or adhesive-base material interface. Occurs more commonly in deep embedments using high strength steel rods.


Edge Distance and Spacing Reduction—

Reduces the holding values, when anchors are placed too close to the edge. This also occurs when two or more anchors are spaced closely together. See suggested edge distance, anchor spacing distances and reduction values in the product sections.

Because applications vary, ITW RED HEAD cannot guarantee the performance of this product. Each customer assumes all responsibility and risk for the use of this product. The safe handling and the suitability of this product for use is the sole responsibility of the customer. Specific job site conditions should be considered when selecting the proper product. Should you have any questions, please call the Technical Assistance Department at 800-848-5611.

Anchoring Selection Chart

		Ac	dhesive	Ancho	ors	Scre	Screw Anchors Expansion Anchors						Fric- tion				
	Anchor									То	orque-S	et			Hamm	ner-Set	
Anchor Selection Chart		S7	C6+	A7	G5	LDT	Tapcon	E-Z Ancor	Trubolt	Trubolt+	Dynabolt	Boa Coil	Poly-Set	Drop-In	Stud	Hammer-Set	Redi-Drive
		\$7	C6+	A7	G5	LDT	TAP		TRU	TRU+	DYNA	BOA		DROP	STUD	НАММ	REDI
	Cracked Concrete	S 7	C6+		G5					TRU+							
_							TAP		TRU	TRU+	DYNA			DROP			
teria	Lightweight Concrete on Metal Deck					LDT			TRU	TRU+				DROP			REDI
Base Material														DROP			
Bas	Grout Filled Concrete Block			A7		LDT					DYNA						REDI
				A7		LDT	TAP				DYNA						REDI
	Solid Brick			A7													
								E-Z									
suc	Oversized Holes		C6+		G5												
Hole Conditions		\$7	C6+	A7	G5	LDT	TAP		TRU	TRU+	DYNA	BOA		DROP	STUD	HAMM	REDI
Co	Water-filled Holes	\$7	C6+	A7	G5	LDT	TAP		TRU	TRU+	DYNA	BOA		DROP	STUD	HAMM	REDI
Hole	No Usia Olassian Dessadures	\$ 7	C6+	A7	G5			F 7					DOLV				
	No Hole Cleaning Procedures	\$ 7	C6+	A7	G5	LDT	ТАР	E-Z	TRU	TRU+	DYNA	BOA	POLY		STUD	НАММ	REDI
lts	Immediate Londing	5/	C0+	A/	65		ТАР	E-Z	TRU	TRU+	DYNA	BOA	POLY	DROP	STUD	HAMM	REDI
mer	Immediate Loading						TAP	E-Z	IRU	TRUT	DYNA	BOA	POLY	DROP	5100	HAMM	REDI
Application Requirements	Easy to Remove					LDT	TAP	E-Z			DTNA	BOA	POLY	DROP			REDI
ר Re	Lasy to Remove	S 7	C6+		G5		IAF	L-2		TRU+		BUA	FULI				
atio	Cyclic Loading	\$7	C6+	A7	G5				TRU	TRU+							
pplic	oyono Louunig	\$7	C6+	A7	G5	LDT	ТАР		TRU	TRU+	DYNA	BOA		DROP	STUD	НАММ	REDI
Ā	Sustained Load	\$7	C6+		G5	LDT	TAP		TRU	TRU+	DYNA	BOA		DROP			REDI
e,		\$7	C6+	A7	G5			E-Z	TRU	TRU+	DYNA	BOA	POLY	DROP	STUD	НАММ	REDI
tanc	Hot-Dipped Galvanized	\$ 7	C6+	A7	G5				TRU								
tesis	304 Stainless Steel	\$7	C6+	A7	G5				TRU		DYNA						
osion Resistance	316 Stainless Steel	S 7	C6+	A7	G5				TRU	TRU+				DROP			
rrosi	410 Stainless Steel	\$7	C6+	A7	G5	LDT	TAP										
Corr	Trade Secret Coating					LDT	TAP										
							TAP	E-Z					POLY			HAMM	REDI
	1/4"						TAP		TRU		DYNA			DROP	STUD	HAMM	REDI
							TAP				DYNA		POLY				
ters	3/8"	S 7	C6+	A7	G5	LDT			TRU	TRU+	DYNA			DROP	STUD		
Anchor Diameters		\$ 7	C6+	A7	G5	LDT			TRU	TRU+	DYNA	BOA		DROP	STUD		
or Di	5/8"	\$7	C6+	A7	G5	LDT			TRU	TRU+	DYNA	BOA		DROP	STUD		
ncho		\$7	C6+	A7	G5	LDT			TRU	TRU+	DYNA	BOA		DROP	STUD		
◄	7/8"	\$7	C6+	A7	G5				TELL								
	4 4 4 4 1	\$7	C6+	A7	G5				TRU								
	1-1/4"	\$7 #2 9 10	C6+	A7	G5												
			#3-8,10	#3-11	#3-10												
At 70°F	Working Time (minutes)	4	11	6	15												
		30	420	33	1440												

18

FREE Download at: ITWRedHead.com

TRUSPEC

Design concrete anchoring connections in minutes!

Use the tutorial to become an expert who can...

			- tot head in the second se
VIEW	Sample Use Cases for Anchor Calculation Accordance	• Tips on How to Navigate and use the Anchor Calculation Software	
DESIGN	Anchor connections in accordance	e with ACI 318 Appendix D	
MODEL	 Attachment with single or multiple anchor points Simultaneous moment forces in x-, y-, z- axis 	Minimum edge distanceMinimum anchor spacing distance	
INTERACT WITH	Real-time 3D graphic models of a	nchor connections	Difference Contraction
CALCULATE	Critical values for total strength design of anchor connections	 Values in US Customary or Metric Units 	
PREDICT	Mode of failure for anchor connect	tions	
RECOMMEND	 Most efficient anchoring method (adhesive or mechanical anchors) Most efficient anchor size 	• Specific anchoring method to achieve a desired failure mode	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
EFFECIENTLY RETRIEVE ANCHOR	DatasheetsPhotos	ESR Report(s)Specification Packages	The field near of the field near the field nea
BUILD A PRINTED OR PDF REPORT	 Including Anchor Calculation Data Detailed Calculations for Anchor Design 	 3D Image of Anchor Calculation Specification Package ESR Report(s)	 Provide a state of the state of

TW Red Head Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.ltwredhead.com</u>

RED HEAD[®] 19

Use TruSpec Anchor Calculation Software to become an expert on:

Adhesive Anchoring Solutions

Product Name	Threaded Rod Diameter	Rebar Sizes
Epcon S7	3/8", ½", 5/8", ¾", 7/8", 1", 1-1/4"	#3, #4, #5, #6, #7, #8, #10
Epcon G5	3/8", ½", 5/8", ¾", 7/8", 1", 1-1/4"	#3, #4, #5, #6, #7, #8, #10
Epcon C6+	3/8", ½", 5/8", ¾", 7/8", 1", 1-1/4"	#3, #4, #5, #6, #7, #8, #10

Mechanical Anchoring Solutions

Product Name	Hef/hmin	Diameter	Steel
RedHead Trubolt	hef=1-1/2", hmin=4"	1/4"	Carbon
RedHead Trubolt	hef=2", hmin=4"	1/4"	Carbon
RedHead Trubolt	hef=1-3/4", hmin=4"	3/8"	Carbon
RedHead Trubolt	hef=2-5/8", hmin=5"	3/8"	Carbon
RedHead Trubolt	hef=1-7/8", hmin=5"	1/2"	Carbon
RedHead Trubolt	hef=3-3/8", hmin=6"	1/2"	Carbon
RedHead Trubolt+	hef=1-5/8", hmin=4"	3/8"	Carbon
RedHead Trubolt+	hef=1-5/8", hmin=5"	3/8"	Carbon
RedHead Trubolt+	hef=2", hmin=4"	1/2"	Carbon
RedHead Trubolt+	hef=2", hmin=6"	1/2"	Carbon
RedHead Trubolt+	hef=3-1/4", hmin=6"	1/2"	Carbon
RedHead Trubolt+	hef=3-1/4", hmin=8"	1/2"	Carbon
RedHead Trubolt+	hef=2-3/4", hmin=6"	5/8"	Carbon
RedHead Trubolt+	hef=4-1/4", hmin=6-1/4"	5/8"	Carbon
RedHead Trubolt+	hef=3-3/4" hmin=7"	3/4"	Carbon
RedHead Trubolt+	hef=3-3/4" hmin=8"	3/4"	Carbon
RedHead Trubolt+ Overhead	hef=1-5/8", hmin=4"	3/8"	Carbon
RedHead Trubolt+ Overhead	hef=1-5/8", hmin=5"	3/8"	Carbon
RedHead Trubolt+	hef=2", hmin=4"	1/2"	Stainless
RedHead Trubolt+	hef=2", hmin=6"	1/2"	Stainless
RedHead Trubolt+	hef=3-1/4", hmin=6"	1/2"	Stainless
RedHead Trubolt+	hef=3-1/4", hmin=8"	1/2"	Stainless
RedHead Trubolt+	hef=2-3/4", hmin=6"	5/8"	Stainless
RedHead Trubolt+	hef=4-1/4", hmin=6-1/4"	5/8"	Stainless

Red Head TruBolt Anchor

Red Head TruBolt+ Anchor

Adhesive Anchoring Selection Guide

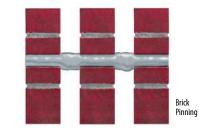
ΙΙΙ ΤΙΜΔΤΕ ΤΕΝSΙΙ Ε

Fastening to Concrete with Threaded Rod

Solid Concrete Applications

PRODUCT SYSTEMS	KEY FEATURES	PROPE	RTIES		ULTIMATI PERFORM		
S7 Fast Curing Hybrid Epoxy with ICC-ES Approval	 ICC-ESR 2308 approval for Cracked, Uncracked and all Seismic Zones Ideal for submerged conditions Use in dry, saturated, and water-filled holes 	d, BASE MATERIAL (F°/C°)	WORKING TIME	FULL CURE TIME	Certified to ANSUMSP 61		
For use in submerged and water filled holes, as well as	Fastest curing (30 min. at 70°F)	110°/ 43°	1 minute	30 minutes			
saturated and with Strength Fast	Optimal minimum edge and spacing distance	90°/ 32°	2 minutes	30 minutes			26,63
dry conditions	15 month shelf life	70°/ 21°	4 minutes	30 minutes		12,456	20,03
	No-drip formula	50°/ 10° 30°/ -1°	6 minutes	45 minutes	4,484	12,430	
10 fluid oz. (275 ml) and	Hand dispensable 10 oz. or 28-oz.	14°/ -10°	14 minutes 30 minutes	2 hours 12 hours		E /0// E . E /0//	1″ x 9″
28 fluid oz. (825 ml) cartridges (see page 23)	NSF/ANSI 61	0°/ -18°	18 minutes	24 hours	. 3/8″ x 3-3/8″	5/8" x 5-5/8"	1 X 9
A7 Fast Dispensing,	Solid or hollow base materials						
Fast Curing Acrylic	Dispenses easier and faster	BASE			(NSF.)		
Install more anchors	Use in dry, saturated, and water-filled holes	MATERIAL (F°/C°)	WORKING TIME	FULL CURE TIME	\bigcirc		
in less time	Fastest cure (35 min. at 60°F)	100°/ 38°	5 minutes	25 minutes	Certified to ANSI/NSF 61		
	Dispenses and cures faster in	80°/ 27°	5.5 minutes	30 minutes			
MADE IN USA Fast Disp	cold weather	60°/ 16°	7 minutes	35 minutes			
Fast Curi	Can be used in smaller diameter holes	40°/ 4°	15 minutes	75 minutes			48,21
5 fluid oz. (150 ml), 8 fluid oz. (235 ml)	No-drip formula	30°/-1°	25 minutes	5 hours	10.000	26,500	
10 fluid oz. (275 ml) and	Hand dispensable 28-oz. cartridge	0°/ -18°	4 hours	24 hours	10,980		
28 fluid oz. (825 ml) cartridges (see page 30)	18 month shelf life				3/8" x 3-3/8"	5/8″ x 5-5/8″	1″ x 9′
	NSF/ANSI 61						
C6+ High Strength	35% greater bond strength than the closes competition in 70°F concrete	MATERIAL ¹	WORKING	FULL	NSF.		
Epoxy for All Conditions	Better performance in dry, saturated, and	(F°/C°)	TIME ²	CURE TIME	Certified to ANSI/NSF 61		
Delivers better load	water-filled conditions	104°/ 40°	3 minutes	3 hours			
performance	Versized and Diamond cored holes	95°/ 35°	4 minutes	4 hours			
Figh Strength E far AU Conditio	Safe and durable	86°/ 30° 77°/ 25°	6 minutes 8 minutes	5 hours 6 hours			47,88
Another and a set of sectore and a set of the sectore and a set of the sectore and a set of the set of th	Approved for cracked concrete and seismic	72°/ 22°	11 minutes	7 hours	0.110	24,520	
	zones	59°/ 15°	15 minutes	8 hours	8,440		
10 fluid oz. (250 ml) cartridges 20 fluid oz. (600 ml) cartridges	24 month shelf life	50°/ 10° 40°/ 4.4°	20 minutes 20 minutes	12 hours 24 hours	3/8″ x 3-3/8″	5/8″ x 5-5/8″	1″ x 9″
(see page 41)	NSF/ANSI 61		20 million	21110415			
GE wat connects	Solid base materials				SNIZED WORLD	Internatio	
G5 High Strength	Fire rated: tested up to 4hrs FRP			(NSF.)	Fire Tested	Standard Bosistance	
Epoxy Tested to	Works in dry, damp, saturated, and underwat	ter applications]	Certified to ANSI/NSF 61	BS476	Resistance Performa	
ICC-ES AC308	ED HEAD Gives more time to install anchors	BASE	L		4 Hrs FRP		
15 min. working time; EPCC	Easier to install anchors in hot weather	MATERIAL	WORKING	FULL	• •		
24 hour cure time (Per AC308) (70°F) Approved to and A	ar Cracked Cenarste Odorless	(F°/C°)	TIME	CURE TIME			
(1 C1 1 C3 0 0) (7 0 1) + Mg/ Strong 1 + Ottomarken	Oversized and cored holes	110°/ 43°	9 minutes	24 hours			53,53
• 2127 Falabase (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Improved wet/water filled	90°/ 32°	9 minutes	24 hours		20,880	
MADE IN USA	Resist wind loads	70°/ 20°	15 minutes	24 hours	8,369		
22 fluid oz. (650 ml) cartridge	18 month shelf life				3/8″ x 3-3/8″	5/8″ x 5-5/8″	1″ x 9″
(see page 47)	100% solid (No V.O.C.)						
	NSF/ANSI 61						

¹Diameter x Embedment in 4000 psi concrete. ² All loads given in pounds.


IT W **Red Head**

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

RED HEAD 21

Hollow Base Material Applications Use the following accessories with the A7

Use the following accessories with the A7 adhesive anchoring system for all of your hollow base material applications.

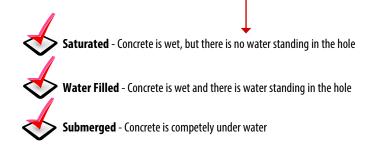
Fastening to hollow concrete block

SYSTEM ACCESSORIES	KEY FEATURES	ULTIMATE TENSILE ^{1,2} PERFORMANCE (LBS)
Nylon Screens Makes it possible to use adhesive for fastening to hollow block or brick walls (see page 56	 3/8" to 3/4" diameter sizes 30%-50% lower cost than stainless screens Special design makes screens easier to insert through block or brick Does not get bent or crushed Corrosion resistant 	A7 2,647 2,360 3/8" x 8" 3/4" x 8"
Stainless Steel Screens Makes it possible to use adhesive for fastening to hollow block or brick walls (see page 56	 1/4" to 3/4" diameter sizes Corrosion resistant Available in multiple lengths to accommodate various material thicknesses 	A7 2,647 2,360 3/8" x 8" 3/4" x 8"
Stubby Screens Makes it possible to use adhesive for fastening to the face of hollow block or tile (see page 53	 1/4", 3/8", 1/2", 5/8" diameter sizes Fasten to front face of block Anchor remains perpendicular in wall 	A7 2,543 1/2 " 5/8"
Umbrella and Umbrella Inserts	 1/4", 3/8", or 1/2" rods 3/8" internal inserts (HBU-FS) Fasten to front face of blocks Creates large bearing surface inside block to achieve high loads 	A7 3,558 3,558 3/8" 1/2"
Umbrella Insert Makes it possible to use adhesive for fastening to the face of hollow block or tile (see page 53)	

¹Testing performed in hollow concrete block. ²Diameter x Embedment.

S7

The ONLY Fast Cure ICC-ES Listed Adhesive for Water-filled Holes and Submerged Concrete


APPLICATIONS / USES

- Formulated and approved for use in water saturated concrete, water-filled holes, & submerged concrete.
- Can be installed in a variety of base material temperatures.
- Adheres threaded rod and reinforcing bar into solid concrete.

DESCRIPTION

Fast Curing Hybrid Epoxy Adhesive

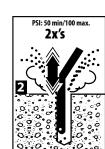
The resin and hardening agent are completely mixed as they are dispensed from the dual cartridge through a static mixing nozzle, directly into the anchor hole. S7 can be used with threaded rod or rebar. It's the "go to" adhesive on the jobsite to cover installations in **ALL WEATHER CONDITIONS!**

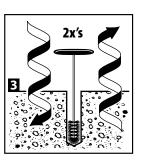
ADVANTAGES

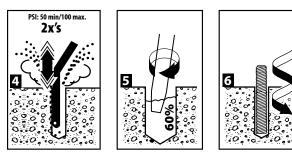
- All weather formula
- Works in damp holes and underwater applications
- Fast curing time, 30 minutes at 70°F
- ICC-ES Evaluation Report No. 2308
- NSF 61 Listed
- High flow nozzle reduces installation time
- Fast & easy dispensing, even 28 ounce cartridge can be hand dispensed
- Compatible with A7 installation tools & nozzles

Curing Times

			MADE IN USA
CONCRETE	ADHESIVE	GEL	FULL
(F°)	(F°)	TIME	CURE TIME
110	110	1 minute	30 minutes
90	90	2 minutes	30 minutes
70	70	4 minutes	30 minutes
50	50	6 minutes	45 minutes
30	30	14 minutes	2 hours
14	30	30 minutes	12 hours
0	40	18 minutes	24 hours


Spacing and Edge Distance


NOMINAL ANCHOR DIAMETER (IN.)	MINIMUM SPACING (IN.)	MINIMUM EDGE DISTANCE (IN.)
3/8	15/16	15/16
1/2	1-1/2	1-1/2
5/8	2-1/2	2-1/2
3/4	3	3
7/8	3-1/2	3-1/2
1	4	4
1-1/4	5	5


ITW Rect Head[°] Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

INSTALLATION STEPS

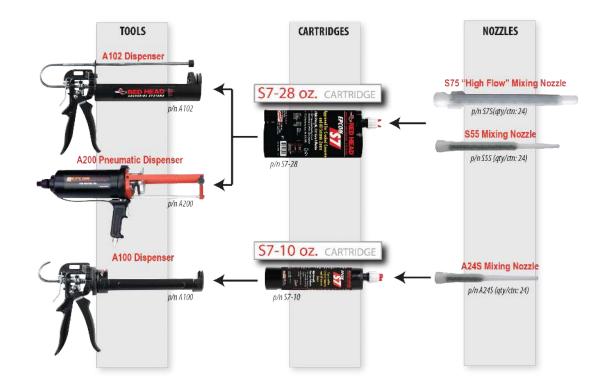
* Damp, submerged and underwater applications require 4x's air, 4x's brushing and 4x's air

APPROVALS/LISTINGS

ICC-ES ESR 2308 for Cracked, Uncracked, and all Seismic Zones Florida Building Code IBC 2006/2009/2012/2015 Compliant NSF/ANSI Standard 61 ASTM C881 Type I, II, IV & V; Grade 3, Class A, B, & C with the exception of gel time (Class C only)

For the most current approvals/listings visit: www.itw-redhead.com

APPLICATIONS


Water Treatment Facilities

The fast dispensing, fast curing properties of S7 make it ideal for repetitive installation processes.

Subway /Tunnel Systems

S7 dispenses so quickly and rebar inserts so easily that contractors find installed costs are lower than many other products including grout for doweling.

S7-28 fl. oz. Ordering Information

PART NUMBER	DESCRIPTION	BOX QTY	PART NUMBER	DESCRIPTION	BOX QTY
	27.9 Fluid Ounce Cartridge S7	4	-	Hand Dispenser for S7-28	1
S55	Mixing Nozzle for S7-28 Cartridge Nozzle diameter fits holes for 3/8″ diameter & larger anchors (overall length of nozzle 10″)	24	A102		
575	High Flow Mixing Nozzle for S7-28 Cartridge Nozzle diameter fits holes for 5/8" diameter & larger anchors (overall length of nozzle 9-1/4")	24		Pneumatic Dispenser for S7-28	1
S75EXT	High Flow Mixing Nozzle Extension for S75 (overall length of extension 9-1/4″)	24	A200		

ESTIMATING TABLE

S7 Number of Anchoring Installations per Cartridge* 28 Fluid Ounce Cartridge Using Reinforcing Bar with S7 Adhesive in Solid Concrete

REBAR	DRILL							EMBEDM	ENT DEPTH I	N INCHES (m	m)					
	HOLE DIA. INCHES	1 (25.4)	2 (50.8)	3 (76.2)	4 (101.6)	5 (127.0)	6 (152.4)	7 (177.8)	8 (203.2)	9 (228.6)	10 (254.0)	11 (279.4)	12 (304.8)	13 (330.2)	14 (355.6)	15 (381.0)
# 3	7/16	662.5	331.3	220.8	165.6	132.5	110.4	94.6	82.8	73.6	66.3	60.2	55.2	51.0	47.3	44.2
# 4	5/8	373.0	186.5	124.3	93.2	74.6	62.2	53.3	46.6	41.4	37.3	33.9	31.1	28.7	26.6	24.9
# 5	3/4	286.1	143.0	95.4	71.5	57.2	47.7	40.9	35.8	31.8	28.6	26.0	23.8	22.0	20.4	19.1
# 6	7/8	231.0	115.5	77.0	57.7	46.2	38.5	33.3	28.8	25.7	23.1	21.0	19.2	17.8	16.5	15.4
#7	1	213.4	106.7	71.1	53.3	42.7	35.6	30.5	26.7	23.7	21.3	19.4	17.8	16.4	15.2	14.2
# 8	1-1/8	177.3	88.6	59.1	44.3	35.5	29.5	25.3	22.2	19.7	17.7	16.1	14.8	13.6	12.7	11.8
# 9	1-1/4	102.8	51.4	34.3	25.7	20.6	17.1	14.7	12.8	11.4	10.3	9.3	8.6	7.9	7.3	6.9
# 10	1-3/8	84.1	42.0	28.0	21.0	16.8	14.0	12.0	10.5	9.3	8.4	7.6	7.0	6.5	6.0	5.6
# 11	1-3/4	51.4	25.7	17.1	12.8	10.3	8.6	7.3	6.4	5.7	5.1	4.7	4.3	4.0	3.7	3.4

* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste.

ESTIMATING TABLE

S7 Number of Anchoring Installations per Cartridge* 28 Fluid Ounce Cartridge Using Threaded Rod with S7 Adhesive in Solid Concrete

R	OD	DRILL							EMBEDM	ENT DEPTH	IN INCHES	(mm)					
ln. ((mm)	HOLE DIA. INCHES	1 (25.4)	2 (50.8)	3 (76.2)	4 (101.6)	5 (127.0)	6 (152.4)	7 (177.8)	8 (203.2)	9 (228.6)	10 (254.0)	11 (279.4)	12 (304.8)	13 (330.2)	14 (355.6)	15 (381.0)
1/4	(6.4)	5/16	915.5	457.7	305.2	228.9	183.1	152.8	130.8	114.4	101.7	91.5	83.2	76.3	70.4	65.4	61.0
3/8	(9.5)	7/16	530.0	265.0	176.7	132.5	106.0	88.3	75.7	66.3	58.9	53.0	48.2	44.2	40.8	37.9	35.3
1/2	(12.7)	9/16	381.4	190.7	127.1	95.4	76.3	63.6	54.5	47.7	42.4	38.1	34.7	31.8	29.3	27.2	25.4
5/8	(15.9)	11/16 3/4	273.6 195.6	136.8 97.8	91.2 65.1	68.4 48.8	54.7 39.0	45.6 32.5	39.1 27.9	34.2 24.4	30.4 21.7	27.4 19.5	24.9 17.7	22.8 16.3	21.0 15.0	19.5 13.9	18.2 13.0
3/4	(19.1)	13/16 7/8	192.9 154.4	96.5 77.2	64.3 51.5	48.2 38.6	38.6 30.9	32.2 25.7	27.6 22.1	24.1 19.3	21.4 17.2	19.3 15.4	17.5 14.0	16.1 12.9	14.8 11.9	13.8 11.0	12.9 10.3
7/8	(22.2)	15/16 1	185.1 128.0	92.6 64.0	61.7 42.8	46.3 32.0	37.0 25.6	30.9 21.4	26.8 18.3	23.1 16.0	20.6 14.2	18.5 12.8	16.8 11.6	15.4 10.7	14.2 9.9	13.2 9.2	12.3 8.5
1	(25.4)	1 -1/16 1 -1/8	158.3 105.2	79.2 52.6	52.8 35.2	39.6 26.3	31.7 21.1	26.4 17.6	22.6 15.0	19.8 13.2	17.6 11.7	15.8 10.5	14.4 9.6	13.2 8.8	12.2 8.1	11.3 7.6	10.6 7.0
1-1/4	(31.8)	1 -5/16 1 -3/8	101.3 80.0	50.7 40.0	33.8 26.6	25.3 20.0	20.3 15.9	16.9 13.3	14.5 11.4	12.7 10.0	11.3 8.9	10.1 8.0	9.2 7.2	8.4 6.6	7.8 6.1	7.2 5.7	6.8 5.3

* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste.

S7-10 fl. oz. Ordering Information

PART NUMBER	DESCRIPTION	BOX QTY
And the second s	9.3 Fluid Ounce Cartridge S7 with nozzle	6
S7-10		
A245	Additional Mixing Nozzle for S7-10 Cartridge Nozzle diameter fits holes for 3/8" diameter & larger holes (overall length of nozzle 7-3/8")	24
A100	Hand Dispenser for S7-10 (26:1 Thrust Ratio)	1

and extension tubing for deep noies

PACKAGING

- 1. Disposable, self-contained cartridge system capable of dispensing both components in the proper mixing ratio
- 2. Components dispensed through a static mixing nozzle that thoroughly mixes the material and places the material at the base of the pre-drilled hole
- 3. Cartridge markings: Include manufacturer's name, batch number and best-used-by date, mix ratio by volume, hazard classification (OSHA), and appropriate ANSI handling precautions

SUGGESTED SPECIFICATIONS

HYBRID EPOXY ADHESIVE:

Fast Cure HYBRID EPOXY ADHESIVE: USA Made, ARRA Certified

- 1. Two component hybrid epoxy adhesive, non-sag paste, moisture insensitive when cured, dark gray in color, fast cure time.
- 2. Meets NSF Standard 61, certified for use in conjunction with drinking water systems.
- 3. Works in wet, damp, submerged holes.
- 4. Shelf life: Best if used within 15 months.
- 5. All weather formula (45 min. at 50°F).
- 6. Dispenses easier and faster.
- 7. Dispenses and cures faster in cold weather, but works in hot weather.
- 8. For use in 0°F concrete with 40°F adhesive.

Number of Anchoring Installations per Cartridge* Using Reinforcing

- 9. Formula for use in solid materials.
- 11. Quick insertion time = less labor cost.

ESTIMATING TABLES

10 F	luid Oun	ce Cartr	idge Ba	r and Th	readed	Rod	d with S7	Adhesiv	e in Sol	id Conc	rete
REBAR	DRILL	E	MBEDMENT DEP	TH IN INCHES (m	m)		ROD	DRILL HOLE DIA. INCHES	EMBEDMENT DEPTH IN		
	HOLE DIA. INCHES	2 (50.8)	4 (101.6)	6 (152.4)	8 (203.2)		In (mm)		2 (50.8)	4 (101.6)	6 (152.4
# 3	7/16	110	55	37	27		3/8 (9.5)	7/16	88	44	28
# 4	5/8	63	31	20	14		1/2 (12.7)	9/16	65	31	22
# 5	3/4	48	24	16	11		5/8 (15.9)	11/16	46	22	14
# 6	7/8	39	18	13	9			3/4	33	16	11
# 7	1	35	18	11	9		3/4 (19.1)	13/16 7/8	33 26	16 13	11 9
# 8	1-1/8	29	14	9	7		7/0 (22.2)	15/16	21	14	11

The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste.

ROD	DRILL		EMBEDMENT	DEPTH IN INCH	IES (mm)	
In (mm)	HOLE DIA.	2	4	6	8	10
	INCHES	(50.8)	(101.6)	(152.4)	(203.2)	(254.0)
3/8 (9.5)	7/16	88	44	28	22	18
1/2 (12.7)	9/16	65	31	22	16	13
5/8 (15.9)	11/16	46	22	14	11	9
	3/4	33	16	11	7	6.5
3/4 (19.1)	13/16	33	16	11	7	7
	7/8	26	13	9	7	5
7/8 (22.2)	15/16	31	14	11	7	6
	1	22	11	7	5	4.5
1 (25.4)	1-1/16 1-1/8	26 18	13 9	9 5	7	5.5 3.5

S7 Hybrid Epoxy Adhesive Adhesive Anchor Bond Strength for Threaded Rod^{1,5,6}

	CHARACTERISTIC	SYMBOL	UNITS	NOMINAL ROD DIAMETER (inch)							
	CHARACTERISTIC		UNITS	3/8	1/2	5/8	3/4	7/8	1	1-1/4	
Anchor embed	Anchor embedment depth - minimum		in	1-5/8	2	2-1/2	3-1/2	3-1/2	4	5	
Anchor embedment depth - maximum		h _{ef}	in	7-1/2	10	12-1/2	15	17-1/2	20	25	
emperature Range A ²	Characteristic Bond Strength for Uncracked Concrete	t _{k,uncr}	psi	1,611	1,611	1,611	1,611	1,611	1,611	1,238	
Temperature Range A ²	Characteristic Bond Strength for Cracked Concrete	t _{k,cr}	psi	652	726	726	785	785	785	412	
Characteristic Bond Strength for Uncracked Concret		t _{k,uncr}	psi	1,544	1,544	1,544	1,544	1,544	1,544	1,186	
Temperature Range B ^{3,4}	Characteristic Bond Strength for Cracked Concrete	t _{k,cr}	psi	625	696	696	752	752	752		

¹Bond strength values correspond to concrete compressive strengths ranging from 2,500psi to 8,000psi

 $^2 Temperature range A:$ Maximum short term temperature of 130°F and maximum long term temperature of 110°F

³Temperature range B: Maximum short term temperature of 176°F and maximum long term temperature of 110°F

⁴ For load combinations consisting of only short-term loads, such as wind or seismic loads, bond strengths may be increased by 4% for Temperature Range C

⁵ Reference Table for Bond Strength Reduction Factors (table on pg. 28)

⁶Per ICC-ES ESR-2308, calculate steel, concrete breakout, and bond strength, determine the controlling resistance strength in tension.

PERFORMANCE TABLE

S7 Hybrid Epoxy Adhesive Adhesive Anchor Bond Strength for Reinforcing Bar^{1, 6, 7}

	CHARACTERISTIC		UNITS	Reinforcing Bar							
				#3	#4	#5	#6	#7	#8	#10	
Anchor embed	Anchor embedment depth - minimum		in	1-5/8	2	2-1/2	3-1/2	3-1/2	4	5	
Anchor embed	Anchor embedment depth - maximum		in	7-1/2	10	12-1/2	15	17-1/2	20	25	
Temperature Range A ³	Characteristic Bond Strength for Uncracked Concrete	t _{k,uncr}	psi	1,100	1,100	1,100	1,100	1,100	1,100	953	
Tempe Rang	Characteristic Bond Strength for Cracked Concrete	t _{k,cr}	psi	506	552	563	608	608	608	559	
Temperature Range B ^{4,5}	Characteristic Bond Strength for Uncracked Concrete		psi	1,054	1,054	1,054	1,054	1,054	1,054	913	
Tempe Rang	Characteristic Bond Strength for Cracked Concrete	t _{k,cr}	psi	484	528	539	583	583	583	535	

¹Bond strength values correspond to concrete compressive strengths ranging from 2,500psi to 8,000psi

² Per ASTM A615 Grade 60

³Temperature range A: Maximum short term temperature of 130°F and maximum long term temperature of 110°F

⁴Temperature range B: Maximum short term temperature of 176°F and maximum long term temperature of 110°F

⁵ For load combinations consisting of only short-term loads, such as wind or seismic loads, bond strengths may be increased by 4% for Temperature Range C

⁶Reference bond strength reduction factors (table on pg 25)

⁷Per ICC-ES ESR-2308, calculate steel, concrete breakout, and bond strength, determine the controlling resistance strength in tension.

PERFORMANCE TABLE

S7 Bond Strength Reduction Factors for Hybrid Epoxy Adhesive Threaded Rod & Reinforcing Bars^{1,2}

			NOMINAL ROD DIAMETER (inch)							
	CHARACTERISTIC	SYMBOL	#3 3/8	#4 1/2	#5 5/8	#6 3/4	#7 7/8	#8 1	#10 1-1/4	
ion ³	Strength Reduction Factor - Dry Concrete	Ф _{dry, ci}	0.65	0.65	0.65	0.65	0.65	0.65	0.65	
Inspect	Strength Reduction Factor - Saturated Concrete	Ф _{sat, ci}	0.55	0.55	0.55	0.65	0.65	0.65	0.65	
Continuous Inspection ³	Strength Reduction Factor - Water-Filled Holes	Ф _{wf, ci}	0.55	0.55	0.55	0.65	0.65	0.65	0.65	
Cont	Strength Reduction Factor -Submerged Concrete	$\Phi_{sub, ci}$	0.65	0.65	0.65	0.65	0.65	0.65	0.65	
n³	Strength Reduction Factor - Dry Concrete	Ф _{dry, pi}	0.65	0.65	0.65	0.65	0.65	0.65	0.65	
Periodic Inspection ³	Strength Reduction Factor - Saturated Concrete	Ф _{sat, pi}	0.45	0.45	0.45	0.65	0.65	0.65	0.65	
iodic In	Strength Reduction Factor - Water-Filled Holes	$\Phi_{\rm wf, pi}$	0.45	0.45	0.45	0.65	0.65	0.65	0.65	
Per	문 Strength Reduction Factor -Submerged Concrete		0.55	0.55	0.55	0.65	0.65	0.65	0.65	
	Reduction factor for seismic tension a _{N,seis}			0.800						

 ${}^{\scriptscriptstyle 1} \Phi$ reduction factors must be applied to calculated adhesive design loads

²For structures assigned to IBC or IRC Seismic Design Category C,D, E, or F, or UBC Seismic Zone 2B, 3, or 4, bond strength values must be multiplied by a_{N,seis}

S7

³Inspections per 2009 IBC Section 1702.1

PERFORMANCE TABLE

Hybrid Epoxy Adhesive Threaded Rod Strength Design Tension Load Estimation Table^{1,2}

THREADED ROD	EFFECTIVE EMBEDMENT	TEMPERATU	RE RANGE A ³	TEMPERATU	RE RANGE B ⁴
DIAMETER (inches)	DEPTH (IN)	UNCRACKED CONCRETE (lbf)	CRACKED CONCRETE (lbf)	UNCRACKED CONCRETE (lbf)	CRACKED CONCRETE (Ibf
	2	2,466	998	2,363	957
3/8″	4	4,932	1,996	4,727	1,913
	6	7,268	2,994	7,268	2,870
	2	2,791	1,482	2,791	1,421
1/2″	5	8,220	3,704	7,878	3,551
	10	13,305	7,409	13,305	7,103
	3	5,127	2,778	5,127	2,664
5/8″	6	12,330	5,557	11,817	5,327
	12	21,188	11,113	21,188	10,654
	3	3,354	1,634	3,214	1,566
3/4″	7	7,826	3,813	7,500	3,653
	15	16,769	8,171	16,072	7,828
	4	7,893	5,591	7,893	5,372
7/8″	9	25,893	12,617	24,817	12,087
	17	43,283	23,833	43,283	22,831
	4	7,893	5,591	7,893	5,591
1″	9	26,639	14,420	26,639	13,813
	20	56,783	32,044	56,783	30,697
	5	11,031	5,256	11,031	5,026
1-1/4″	12	37,901	12,613	36,309	12,062
	25	90,855	26,278	75,645	25,130

edge nor adjacent anchorage, not for sustained nor seismic loading, Condition B

³ Temperature Range A (maximum long term temperature 110°F, maximum short term temperature 130°F) ⁴ Temperature Range B (maximum long term temperature 110°F, maximum short term temperature 176°F)

⁵ Bond strengths are for dry concrete with continuous or periodic inspection

⁶ Concrete compressive strength of 4,000 psi

⁷ Steel tensile strength of 125,000 psi (ASTM A193 Grade B7)

PERFORMANCE TABLE

S7 Reinforcing Bar Strength Design Tension Hybrid Epoxy Adhesive Load Estimation Table^{1,2}

	EFFECTIVE EMBEDMENT	TEMPERATU	RE RANGE A ³	TEMPERAT	URE RANGE B⁴
ROD DIAMETER (inches)	DEPTH (IN)	UNCRACKED CONCRETE (Ibf)	CRACKED CONCRETE (lbf)	UNCRACKED CONCRETE (Ibf)	CRACKED CONCRETE (lbf)
	2	1,684	775	1,613	741
3/8″	4	3,368	1,549	3,227	1,482
	6	5,051	2,324	4,840	2,223
	2	2,245	1,127	2,151	1,078
1/2″	5	5,613	2,817	5,378	2,694
	10	11,226	5,633	10,756	5,388
	3	4,210	2,155	4,034	2,063
5/8″	6	8,419	4,309	8,067	4,125
	12	16,838	8,618	16,134	8,251
	3	2,290	1,266	2,194	1,214
3/4″	7	5,343	2,953	5,120	2,832
	15	11,450	6,329	10,971	6,069
	4	7,858	4,343	7,529	4,165
7/8″	9	17,680	9,772	16,941	9,370
	17	33,396	18,459	31,999	17,700
	4	7,893	4,964	7,893	4,760
1″	9	20,206	11,168	19,361	10,709
	20	44,902	24,819	43,024	23,798
	5	11,031	7,131	11,031	6,825
1 1/4″	12	29,176	17,114	27,951	16,379
	25	60,784	35,654	58,232	34,123
lated values are for estimation purposes on lated values represent design strengths per idee nor adjacent anchorage, not for sustain	ly and should not be used in design ACI 318 for a single anchor in adequate concrete red nor seismic loading, Condition B.	thickness, not near	FAILURE MODE	BOND ⁵ CONCRETE	6 STEEL ⁷

an edge nor adjaceti anchoragë, not for sustained nor seismic loåding, Condition B. ³ Temperature Range A (maximum long-term temperature 110°F, maximum short-term temperature 130°F) ⁴ Temperature Range B (maximum long-term temperature 110°F, maximum short-term temperature 130°F) ⁵ Bond strengths are for dry concrete with continuous or periodic inspection ⁶ Concrete compressive strength of 4,000 psi ⁷ Steel tensile strength of 90,000 psi (ASTM 615 Grade 60)

57 Strength Design Tension and Shear Load Estimation Table^{1, 2} Hybrid Epoxy Adhesive

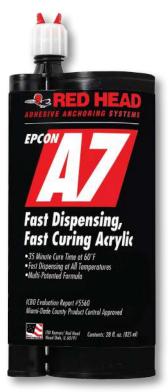
NOMINAL THREADED ROD ANCHOR DIAMETER (inches)	EFFECTIVE EMBEDMENT DEPTH (IN)	DESIGN TENSION ©N _N (LBF.)	DESIGN SHEAR ØV _N (LBF.)
	2	2,466	2,655
3/8″	4	4,932	3,149
	6	7,268	3,149
	2	2,791	3,005
1/2″	5	8,220	6,916
	10	13,305	6,916
	3	5,127	11,017
5/8″	6	12,330	11,017
	12	21,188	11,017
	3	3,354	7,224
3/4″	7	7,826	16,308
	15	16,769	16,308
	4	7,893	17,000
7/8″	9	25,893	22,509
	17	43,283	22,509
	4	7,893	17,000
1″	9	26,639	29,529
Γ	20	56,783	29,529
	5	11,031	23,759
1-1/4″	12	37,901	47,242
T T	25	90,855	47,242

KEY

BOND^{3,4}

Labulated values are tor estimation purposes only and should not be used for design
 Tabulated values represent design strengths per ACI 318 for a single anchor in adequate concrete thickness, not near an edge nor adjacent anchorage, not for sustained nor seismic loading, Uncracked Concrete, Condition B
 Temperature Range A (maximum long-term temperature 110°F, maximum short-term temperature 130°F)
 Bond strengths are for dry concrete with continuous or periodic inspection
 Concrete compressive strength of 4,000 psi
 Steel tensile strength of 125,000 psi (ASTM A193 Grade B7)

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at www.itwredhead.com


STEEL⁶

CONCRETE⁵

A7

Easy to Use— A7 Saves You Time and Money

A7-28

DESCRIPTION/SUGGESTED SPECIFICATIONS*

Fast Dispensing, Fast Curing Acrylic Adhesive

The acrylic resin and hardening agent are completely mixed as they are simultaneously dispensed from the dual cartridge through a static mixing nozzle, directly into the anchor hole. A7 can be used with threaded rod or rebar (for fastening to hollow base materials, see page 50 and 53).

How Can An Adhesive Anchor Save You Money?

- Incredibly fast dispensing and rod installation times
- Significantly faster curing times
- Easy to use (no-heating) even at freezing cold temperatures
- Requires less adhesive

ADVANTAGES

- All weather formula
- No drip, no saq, easy clean up
- Fast & easy dispensing, even 28 ounce cartridge can be hand dispensed
- Fast curing time, 35 minutes at 60°F
- NSF 61 approved
- Rods are easier to insert into the hole with

Curing Times

A7 compared with other adhesives

- Works in damp holes and underwater applications
- Requires less adhesive—can be used in 1/16" oversized or 1/8" oversized holes
- One formula for both hollow and solid base materials
- See page 53 for hollow application

uring rimes		MADE IN USA
BASE MATERIAL	WORKING	FULL
(F°/C°)	TIME	CURE TIME
100°/ 38°	5 minutes	25 minutes
80°/ 27°	5.5 minutes	30 minutes
60°/ 16°	7 minutes	35 minutes
40°/ 4°	15 minutes	75 minutes
30°/ -1°	25 minutes	5 hours
20°/ -7°	35 minutes	6 hours
0°/ -18°	4 hours	24 hours

APPLICATIONS

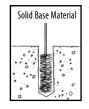
Stadium Seating

The fast dispensing, fast curing properties of A7 made it ideal for installing over 70,000 seats in this NFL football stadium and many others.

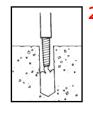
Roadway Doweling

A7 dispenses so quickly and rebar inserts so easily that contractors find installed costs are lower than many other products including grout for doweling.

Scaffolding Attachment


Fast curing adhesive in 27.9 ounce cartridges kept this project moving upwards without delays.

APPROVALS/LISTINGS


ICC Evaluation Service, Inc. – #ER-5560 DOT Approvals NSF Standard 61 Certified for Drinking Water Components

For the most current approvals/listings visit: www.itw-redhead.com

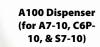
INSTALLATION STEPS

 Drill 1/16" oversize diameter holes for 1/4"-1/2" diameter threaded rods and #3 rebar. Drill 1/8" oversize diameter holes for 5/8"-1-1/4" diameter threaded rods, #4 rebar, grout filled blocks and brick pinning. Clean out hole from bottom with forced air. Complete hole preparation with brush and repeat cleaning with forced air (leave no dust or slurry).

2. When starting new cartridge or new nozzle, dispense and discard enough adhesive until uniform light grey color is achieved. Insert the nozzle into the bottom of the hole and fill to 1/2 the hole depth.

3. Insert rod slowly by hand into the bottom of the hole with a slow twisting motion. This insures adhesive fills voids and crevices and uniformly coats the anchor rod.

4. See table for working times and curing times. After the suggested cure time is met, install and tighten fixture into place.



ANCHORAGE TO SOLID CONCRETE

Threaded Rod (Carbon or Stainless Steel) or Rebar supplied by contractor; rod does not need to be chisel pointed

A7 adhesive completely fills area between rod and hole creating a stress free, high load anchorage

Pre-drilled hole in concrete; see performance tables for suggested hole sizes

TW Red Head Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

FEATURES

A7-28 fl. oz. Ordering Information

PART NUMBER	DESCRIPTION	BOX QTY	PART NUMBER	DESCRIPTION	BOX QTY
AT-28	27.9 Fluid Ounce Cartridge A7	4	E25-6	6-Foot Straight Tubing (Used when holes are deeper) (can cut to proper size) (.39 in I.D. x .43 in. 0.D.)	6
E55	Mixing Nozzle for A7-28 and G5-22 Cartridge Nozzle diameter fits 3/8" to 5/8" holes. (overall length of nozzle 14")	24			
	Largest hand dispensable cartridge— still easy to dispense Hand Dispenser for A7-28 Cartridge	1	A200	Pneumatic Dispenser for A7-28 Cartridge	1

ESTIMATING TABLE

A7 Number of Anchoring Installations per Cartridge* 28 Fluid Ounce Cartridge Using Reinforcing Bar with A7 Adhesive in Solid Concrete

REBAR DRILL **EMBEDMENT DEPTH IN INCHES (mm)** HOLE DIA 13 3 4 10 11 12 14 15 5 6 8 9 INCHES (25.4) (50.8)(76.2)(101.6) (127.0)(152.4)(177.8)(203.2)(228.6) (304.8)(381.0) (254.0)(279.4)(330.2)(355.6)7/16 331.3 220.8 73.6 60.2 51.0 47.3 #3 662.5 165.6 132.5 110.4 94.6 82.8 66.3 55.2 44.2 #4 5/8 373.0 186.5 124.3 93.2 74.6 62.2 53.3 46.6 41.4 37.3 33.9 31.1 28.7 26.6 24.9 #5 3/4 286.1 143.0 95.4 71.5 57.2 47.7 40.9 35.8 31.8 28.6 26.0 23.8 22.0 20.4 19.1 231.0 #6 7/8 115.5 77.0 57.7 46.2 38.5 33.3 28.8 25.7 23.1 21.0 19.2 17.8 16.5 15.4 #7 213.4 106.7 71.1 53.3 42.7 35.6 30.5 23.7 21.3 19.4 17.8 16.4 15.2 14.2 1 26.7 1-1/8 177.3 59.1 44.3 29.5 19.7 12.7 #8 88.6 35.5 25.3 22.2 17.7 16.1 14.8 13.6 11.8 #9 1-1/4 102.8 51.4 34.3 25.7 20.6 17.1 14.7 12.8 11.4 10.3 9.3 8.6 7.9 7.3 6.9 # 10 1-1/2 84.1 42.0 28.0 21.0 16.8 14.0 12.0 10.5 9.3 8.4 7.6 7.0 6.5 6.0 5.6 #11 1-3/4 51.4 25.7 17.1 12.8 10.3 8.6 7.3 6.4 5.7 5.1 4.7 4.3 4.0 3.7 3.4

* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste

ESTIMATING TABLE

A7 28 Fluid Ounce Cartridge 28 Fluid Ounce Cartridge

R	OD	DRILL							EMBEDM	ENT DEPTH	IN INCHES	(mm)					
In. (mm)	HOLE DIA. Inches	1 (25.4)	2 (50.8)	3 (76.2)	4 (101.6)	5 (127.0)	6 (152.4)	7 (177.8)	8 (203.2)	9 (228.6)	10 (254.0)	11 (279.4)	12 (304.8)	13 (330.2)	14 (355.6)	15 (381.0)
1/4	(6.4)	5/16	915.5	457.7	305.2	228.9	183.1	152.8	130.8	114.4	101.7	91.5	83.2	76.3	70.4	65.4	61.0
3/8	(9.5)	7/16	530.0	265.0	176.7	132.5	106.0	88.3	75.7	66.3	58.9	53.0	48.2	44.2	40.8	37.9	35.3
1/2	(12.7)	9/16	381.4	190.7	127.1	95.4	76.3	63.6	54.5	47.7	42.4	38.1	34.7	31.8	29.3	27.2	25.4
5/8	(15.9)	11/16 3/4	273.6 195.6	136.8 97.8	91.2 65.1	68.4 48.8	54.7 39.0	45.6 32.5	39.1 27.9	34.2 24.4	30.4 21.7	27.4 19.5	24.9 17.7	22.8 16.3	21.0 15.0	19.5 13.9	18.2 13.0
3/4	(19.1)	13/16 7/8	192.9 154.4	96.5 77.2	64.3 51.5	48.2 38.6	38.6 30.9	32.2 25.7	27.6 22.1	24.1 19.3	21.4 17.2	19.3 15.4	17.5 14.0	16.1 12.9	14.8 11.9	13.8 11.0	12.9 10.3
7/8	(22.2)	15/16 1	185.1 128.0	92.6 64.0	61.7 42.8	46.3 32.0	37.0 25.6	30.9 21.4	26.8 18.3	23.1 16.0	20.6 14.2	18.5 12.8	16.8 11.6	15.4 10.7	14.2 9.9	13.2 9.2	12.3 8.5
1	(25.4)	1 -1/16 1 -1/8	158.3 105.2	79.2 52.6	52.8 35.2	39.6 26.3	31.7 21.1	26.4 17.6	22.6 15.0	19.8 13.2	17.6 11.7	15.8 10.5	14.4 9.6	13.2 8.8	12.2 8.1	11.3 7.6	10.6 7.0
1-1/4	(31.8)	1 -5/16 1 -3/8	101.3 80.0	50.7 40.0	33.8 26.6	25.3 20.0	20.3 15.9	16.9 13.3	14.5 11.4	12.7 10.0	11.3 8.9	10.1 8.0	9.2 7.2	8.4 6.6	7.8 6.1	7.2 5.7	6.8 5.3

* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste.

A7–10 fl. oz. Ordering Information

PART NUMBER	DESCRIPTION	BOX QTY
A state of the sta		
A7-10	9.3 Fluid Ounce Cartridge with Nozzle	6
A245	Mixing Nozzle for A7-10 Cartridge Nozzle diameter fits 3/8" to 5/8" holes (overall length of nozzle 6-3/8")	24
A100	Hand Dispenser Designed for A7-10 Cartridge Contractor Quality 26:1 Thrust Ratio	1

Refer to page 56 for ordering information on brushes , hole plugs, and extension tubing for deep holes.

PACKAGING

- 1. Disposable, self-contained cartridge system capable of dispensing both components in the proper mixing ratio
- 2. Acrylic components dispensed through a static mixing nozzle that thoroughly mixes the material and places the material at the base of the pre-drilled hole
- 3. Cartridge markings: Include manufacturer's name, batch number and best-used-by date, mix ratio by volume, ANSI hazard classification, and appropriate ANSI handling precautions

SUGGESTED SPECIFICATIONS

ACRYLIC ADHESIVE:

High Strength ACRYLIC ADHESIVE: USA Made, ARRA Certified

- 1. Two component methyl methacrylate adhesive, non-sag paste, moisture insensitive when cured, dark gray in color, and guick gel and cure times.
- 2. Meets NSF Standard 61, certified for use in conjunction with drinking water systems.
- 3. Works in wet, damp, submerged holes.
- 4. Shelf life: Best if used within 18 months.
- 5. All weather, cure time (35 min. at 60°F).
- 6. Dispenses easier and faster.
- 7. Dispenses and cures faster in cold weather, but works in hot weather.
- 8. Pumpable at 0°F without preheating.
- 9. Formula for use in solid and hollow base materials.
- 10. Suitable for oversized and diamond cored holes with increased depths.
- 11. Ouick insertion time = less labor cost.

ESTIMATING TABLES

IUFI	ula Oun	ce Cartr	lage										
REBAR	DRILL	E	MBEDMENT DEPT	[H IN INCHES (mi	n)	ROD	DRILL	EMBEDMENT DEPTH IN INCHES (mm)					
	HOLE DIA. INCHES	2 (50.8)	4 (101.6)	6 (152.4)	8 (203.2)	In (mm)	HOLE DIA. INCHES	2 (50.8)	4 (101.6)	6 (152.4)	8 (203.2)	10 (254.0)	
# 3	7/16	110	55	37	27	3/8 (9.5)	7/16	88	44	28	22	18	
# 4	5/8	63	31	20	14	1/2 (12.7)	9/16	65	31	22	16	13	
# 5	3/4	48	24	16	11	5/8 (15.9)	11/16	46	22	14	11	9	
#6	7/8	39	18	13	9		3/4	33	16	11	7	6.5	
#7	1	35	18	11	9	3/4 (19.1)	13/16 7/8	33 26	16 13	11 9	7 7	7 5	
# 8	1-1/8	29	14	9	7	7/8 (22.2)	15/16	31	14	11	7	6	
		is based upon calcula				.,,	1	22	11	7	5	4.5	
drill bits, the nom account for waste		forcing bars and the s	stress areas of the thi	readed rods. These es	timates do not	1 (25.4)	1-1/16	26	13	9	7	5.5	

Number of Anchoring Installations per Cartridge* Using Reinforcing **A7** Bar and Threaded Rod with A7 Adhesive in Solid Concrete

1-1/8

18

ITW Red Head

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at www.itwredhead.com

3.5

A7-8 fl. oz. Ordering Information

PART NUMBER		DESCRIPTION	BOX QTY		
Ber Dispersing for Dispersing for Dispersing for Charge Acrite Search and the Charge Acrite Acrite Search and the Charge Acrit	A7-8	Fits Hilti [®] P2000 dispensing tools 8 Fluid Ounce Cartridge A7	12		
Management	Mixing Nozzle for A7-8 Cartridge Nozzle diameter fits 3/8" to 5/8" holes A245				
R	A101	Heavy Duty Hand Dispenser for A7-8 Cartridge	1		

Refer to page 56 for ordering information on brushes , hole plugs, and extension tubing for deep holes.

ESTIMATING TABLE

A / 8 Fluid Ounce Cartridge

Number of Anchoring Installations per Cartridge* Using Reinforcing Bar with A7 Adhesive in Solid Concrete

REBAR	DRILL							EMBEDM	ENT DEPTH	IN INCHES (I	mm)					
	HOLE DIA. Inches	1 (25.4)	2 (50.8)	3 (76.2)	4 (101.6)	5 (127.0)	6 (152.4)	7 (177.8)	8 (203.2)	9 (228.6)	10 (254.0)	11 (279.4)	12 (304.8)	13 (330.2)	14 (355.6)	15 (381.0)
# 3	7/16	187.8	93.9	62.6	46.9	37.6	31.3	26.8	23.5	20.9	18.8	17.1	15.6	14.4	13.4	12.5
# 4	5/8	105.7	52.9	35.2	26.4	21.1	17.6	15.1	13.2	11.7	10.6	9.6	8.8	8.1	7.6	7.0
# 5	3/4	81.1	40.5	27.0	20.3	16.2	13.5	11.6	10.1	9.0	8.1	7.4	6.8	6.2	5.8	5.4
# 6	7/8	65.5	32.7	21.8	16.4	13.1	10.9	9.4	8.2	7.3	6.5	6.0	5.5	5.0	4.7	4.4
# 7	1	60.5	30.2	20.2	15.1	12.1	10.1	8.6	7.6	6.7	6.0	5.5	5.0	4.7	4.3	4.0
# 8	1-1/8	50.2	25.1	16.7	12.6	10.0	8.4	7.2	6.3	5.6	5.0	4.6	4.2	3.9	3.6	3.3
# 9	1-1/4	29.1	14.6	9.7	7.3	5.8	4.9	4.2	3.6	3.2	2.9	2.6	2.4	2.2	2.1	1.9
# 10	1-1/2	23.8	11.9	7.9	6.0	4.8	4.0	3.4	3.0	2.6	2.4	2.2	2.0	1.8	1.7	1.6
# 11	1-3/4	14.6	7.3	4.9	3.6	2.9	2.4	2.1	1.8	1.6	1.5	1.3	1.2	1.1	1.0	1.0

* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste.

ESTIMATING TABLE

A7 Number of Anchoring Installations per Cartridge* 8 Fluid Ounce Cartridge Using Threaded Rod with A7 Adhesive in Solid Concrete

ROD	DRILL						E	MBEDMENT	DEPTH IN I	NCHES (mn	n)					
In. (mm)	HOLE DIA.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	INCHES	(25.4)	(50.8)	(76.2)	(101.6)	(127.0)	(152.4)	(177.8)	(203.2)	(228.6)	(254.0)	(279.4)	(304.8)	(330.2)	(355.6)	(381.0)
1/4 (6.4)	5/16	259.5	129.7	86.5	64.9	51.9	43.2	37.1	32.4	28.8	25.9	23.6	21.6	20.0	18.5	17.3
3/8 (9.5)	7/16	150.2	75.1	50.1	37.6	30.0	25.0	21.5	18.8	16.7	15.0	13.7	12.5	11.6	10.7	10.0
1/2 (12.7)	9/16	108.1	54.1	36.0	27.0	21.6	18.0	15.4	13.5	12.0	10.8	9.8	9.0	8.3	7.7	7.2
5/8 (15.9)	11/16	77.6	38.8	25.9	19.4	15.5	12.9	11.1	9.7	8.6	7.8	7.1	6.5	6.0	5.5	5.2
	3/4	55.4	27.7	18.4	13.8	11.1	9.2	7.9	6.9	6.1	5.5	5.0	4.6	4.3	4.0	3.7
3/4 (19.1)	13/16	54.7	27.3	18.2	13.7	10.9	9.1	7.8	6.8	6.1	5.5	5.0	4.6	4.2	3.9	3.6
	7/8	43.6	21.8	14.6	10.9	8.8	7.3	6.3	5.5	4.9	4.4	4.0	3.6	3.4	3.1	2.9
7/8 (22.2)	15/16	52.5	26.2	17.5	13.1	10.5	8.7	7.5	6.6	5.8	5.2	4.8	4.4	4.0	3.7	3.5
	1	36.4	18.2	12.2	9.1	7.3	6.1	5.2	4.5	4.0	3.6	3.3	3.0	2.8	2.6	2.4
1 (25.4)	1 -1/16	44.9	22.4	15.0	11.2	9.0	7.5	6.4	5.6	5.0	4.5	4.1	3.7	3.5	3.2	3.0
	1 -1/8	34.4	17.2	12.0	8.6	7.5	6.0	5.0	4.3	3.7	3.3	3.0	2.7	2.5	2.3	2.1
1-1/4 (31.8)	1 -5/16	28.7	14.4	9.6	7.2	5.7	4.8	4.1	3.6	3.2	2.9	2.6	2.4	2.2	2.1	1.9
	1 -3/8	22.4	11.2	7.6	5.6	4.5	3.8	3.2	2.8	2.5	2.3	2.1	1.9	1.7	1.6	1.5

* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste.

A7–5 fl. oz. Ordering Information

PART NUMBER	DESCRIPTION	BOX QTY	PART NUMBER	DESCRIPTION	BOX QTY
AT-5	5 Fluid Ounce Cartridge A7	12	A7-5	5 Fluid Ounce Cartridge A7	12
64	Reusable Plastic Dispenser	12		Convenient Dispensing Kit Packaged in a Solid Plastic Shell with	
	Convenient Dispensing Kit Packaged in a Solid Plastic Shell with (1) A500 Plastic Dispenser		A501 KIT	(1) A501 Plastic Dispenser (1) A7-5 Cartridge and (1) A24 Nozzle Nozzle diameter fits 3/8" to 5/8" holes	8
A500 KIT	(1) A7-5 Cartridge and (1) A24 Nozzle Nozzle diameter fits 3/8" to 5/8" holes	8			

AVAILABLE WITH YOUR CHOICE OF TWO, EASY DISPENSING SYSTEMS

A500 PLASTIC DISPENSER

Attaches directly to cartridge allowing for easy hand dispensing. No extra tools are required.

onto cartridge.

against back of

cartridge.

F

2. Thread nozzle onto

cartridge.

Simple Assembly and Dispensing

3. Turn lever in order to dispense adhesive.

EASY PACKAGING! A500 and A501 kits are perfect for both counter or pegboard hanging display.

A500 Kit

A501 CAULKING GUN ADAPTOR

Allows cartridge to work with most standard caulking guns (caulking gun supplied by contractor).

Simple Assembly and Dispensing

F

cartridge.

3. Place assembly in caulking gun and dispense adhesive.

A501 Kit

ESTIMATING TABLES

Number of Anchoring Installations per Cartridge* Using Reinforcing Bar and Threaded Rod with A7 Adhesive in Solid Concrete **5 Fluid Ounce Cartridge**

REBAR	DRILL	E	MBEDMENT DEP	TH IN INCHES (mi	m)
	HOLE DIA. INCHES	2 (50.8)	4 (101.6)	6 (152.4)	8 (203.2)
# 3	7/16	60	30	20	15
# 4	5/8	34	17	11	8
# 5	3/4	26	13	9	6
# 6	7/8	21	10	7	5
# 7	1	19	10	6	5
# 8	1-1/8	16	8	5	4

The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste.

ROD	DRILL		EMBEDMENT DEP	TH IN INCHES (m	m)
ln (mm)	HOLE DIA. INCHES	2 (50.8)	4 (101.6)	6 (152.4)	8 (203.2)
3/8 (9.5)	7/16	48	24	16	12
1/2 (12.7)	9/16	35	17	12	9
5/8 (15.9)	11/16 3/4	25 18	12 9	8 6	6 4
3/4 (19.1)	13/16 7/8	18 14	9 7	6 5	4 4
7/8 (22.2)	15/16 1	17 12	8 6	6 4	4 3
1 (25.4)	1-1/16 1-1/8	14 10	7	5	4

it w **Red Head**

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at www.itwredhead.com

PERFORMANCE TABLE

Average Ultimate Tension and Shear Loads ^{1,2,3} Acrylic Adhesive for Threaded Rod Installed in Solid Concrete

THREADED	DRILL HOLE	MAX. CLAMPING FORCE	EMBEDMENT	2000 PSI (13.8	MPa) CONCRETE	4000 PSI (27.6 I	4000 PSI (27.6 MPa) CONCRETE		
ROD DIA. In. (mm)	DIAMETER In. (mm)	AFTER PROPER CURE FtLbs. (Nm)	IN CONCRETE In. (mm)	ULTIMATE TENSION Lbs. (kN)	ULTIMATE SHEAR Lbs. (kN)	ULTIMATE TENSION Lbs. (kN)	ULTIMATE SHEAR Lbs. (kN)		
3/8 (9.5)	7/16 (11.1)	13 - 18 (17-24)	1-1/2 (38.1) 3-3/8 (85.7) 4-1/2 (114.3)	N/A 5,852 (26.0) 7,729 (34.4)	N/A 5,220 (23.2) 5,220 (23.2)	3,734 (16.6) 10,977 (48.8) 11,661 (51.9)	4,126 (18.3) 5,220 (23.2) 5,220 (23.2)		
1/2 (12.7)	9/16 (14.3)	22 - 25 (29-33)	2 (50.8) 4-1/2 (114.3) 6 (152.4)	N/A 10,798 (48.0) 14,210 (63.2)	N/A 8,029 (35.7) 8,029 (35.7)	6,022 (26.8) 17,162 (76.3) 17,372 (77.3)	8,029 (35.7) 8,029 (35.7) 8,029 (35.7)		
5/8 (15.9)	11/16 (17.5) or 3/4 (19.1)	55 - 80 (74-108)	2-1/2 (63.5) 5-5/8 (142.9) 7-1/2 (190.5)	N/A 16,417 (73.0) 18,747 (83.4)	N/A 15,967 (71.0) 15,967 (71.0)	7,330 (32.6) 26,504 (117.9) 29,381 (130.7)	11,256 (50.1) 15,967 (71.0) 15,967 (71.0)		
3/4 (19.1)	13/16 (20.6) or 7/8 (22.2)	106 - 160 (143-216)	3 (76.2) 6-3/4 (171.5) 9 (228.6)	N/A 18,618 (82.8) 23,934 (106.5)	N/A 20,126 (89.5) 20,126 (89.5)	8,634 (38.4) 29,727 (132.2) 37,728 (167.8)	20,126 (89.5) 20,126 (89.5) 20,126 (89.5)		
7/8 (22.2)	15/16 (23.8) or 1 (25.4)	185 - 250 (250-338)	3-1/2 (88.9) 7-7/8 (200.0) 10-1/2 (266.7)	N/A N/A 36,881 (164.1)	N/A 29,866 (132.9) 29,866 (132.9)	13,650 (60.7) 44,915 (199.8) 48,321 (215.0)	20,920 (92.9) 29,866 (132.9) 29,866 (132.9)		
1 (25.4)	1-1/16 (27.0) or 1-1/8 (28.6)	276 - 330 (374-447)	4 (101.6) 9 (228.6) 12 (304.8)	N/A 32,215 (143.3) 46,064 (204.9)	N/A 37,538 (167.0) 37,538 (167.0)	16,266 (72.2) 48,209 (214.5) 63,950 (284.5)	33,152 (147.5) 37,538 (167.0) 37,538 (167.0)		
1-1/4 (31.8)	1-5/16 (33.3) or 1-3/8 (34.9)	370 - 660 (501-894)	5 (127.0) 11-1/4 (285.8) 15 (381.0)	N/A 45,962 (204.5) 62,208 (276.7)	N/A 58,412 (259.8) 58,412 (259.8)	21,838 (97.1) 56,715 (252.3) 84,385 (375.4)	33,152 (147.5) 58,412 (259.8) 58,412 (259.8)		

1 Allowable working loads for the single installations under static loading should not exceed 25% capacity or the allowable load of the anchor rod. Divide by 4.

2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of high strength threaded rod (ASTM A193 Gr. B7). The use of lower strength rods will result in lower ultimate tension and shear loads.

3 Linear interpolation may be used for intermediate spacing and edge distances.

PERFORMANCE TABLE

Allowable Tension Loads' for Threaded Rod Acrylic Adhesive Installed in Solid Concrete

THREADED	DRILL HOLE	MIN. EMBEDMENT	ALLOWABLE TENSION LOAD BASED		ALLOWABLE TENSION LOAD BASED		
ROD DIA.	DIAMETER	DEPTH	ON ADHESIVE BOND STRENGTH		ON STEEL STRENGTH		
In. (mm)	In. (mm)	In. (mm)	2000 PSI (13.8 MPa) CONCRETE Lbs. (kN)	4000 PSI (27.6 MPa) CONCRETE Lbs. (kN)	ASTM A307 (SAE 1018) Lbs. (kN)	ASTM A193 GR. B7 (SAE 4140) Lbs. (kN)	ASTM F593 AISI 304 SS Lbs. (kN)
3/8 (9.5)	7/16 (11.1)	1-1/2 (38.1) 3-3/8 (85.7) 4-1/2 (114.3)	N/A 1,460 (6.5) 1,930 (8.6)	934 (4.2) 2,740 (12.2) 2,915 (13.0)	2,080 (9.3) 2,080 (9.3) 2,080 (9.3)	4,340 (19.3) 4,340 (19.3) 4,340 (19.3)	3,995 (17.8) 3,995 (17.8) 3,995 (17.8)
1/2 (12.7)	9/16 (14.3)	2 (50.8) 4-1/2 (114.3) 6 (152.4)	N/A 2,700 (12.0) 3,550 (15.8)	1,505 (6.7) 4,290 (19.1) 4,340 (19.3)	3,730 (16.6) 3,730 (16.6) 3,730 (16.6)	7,780 (34.6) 7,780 (34.6) 7,780 (34.6)	7,155 (31.8) 7,155 (31.8) 7,155 (31.8) 7,155 (31.8)
5/8 (15.9)	11/16 (17.5)	2-1/2 (63.5)	N/A	1,832 (8.2)	5,870 (26.1)	12,230 (54.4)	11,250 (50.0)
	or	5-5/8 (142.9)	4,100 (18.3)	6,625 (29.5)	5,870 (26.1)	12,230 (54.4)	11,250 (50.0)
	3/4 (19.1)	7-1/2 (190.5)	4,685 (20.8)	7,345 (32.7)	5,870 (26.1)	12,230 (54.4)	11,250 (50.0)
3/4 (19.1)	13/16 (20.6)	3 (76.2)	N/A	2,158 (9.6)	8,490 (37.8)	17,690 (78.7)	14,860 (66.1)
	or	6-3/4 (171.5)	4,655 (20.7)	7,430 (33.1)	8,490 (37.8)	17,690 (78.7)	14,860 (66.1)
	7/8 (22.2)	9 (228.6)	5,980 (26.6)	9,430 (42.0)	8,490 (37.8)	17,690 (78.7)	14,860 (66.1)
7/8 (22.2)	15/16 (23.8)	3-1/2 (88.9)	N/A	3,413 (15.2)	11,600 (51.6)	25,510 (113.5)	20,835 (92.7)
	or	7-7/8 (200.0)	N/A	11,230 (49.9)	11,600 (51.6)	25,510 (113.5)	20,835 (92.7)
	1 (25.4)	10-1/2 (266.7)	9,220 (41.0)	12,080 (53.7)	11,600 (51.6)	25,510 (113.5)	20,834 (92.7)
1 (25.4)	1-1/16 (27.0)	4 (101.6)	N/A	4,067 (18.1)	15,180 (67.5)	31,620 (140.7)	26,560 (118.1)
	or	9 (228.6)	8,050 (35.8)	12,050 (53.6)	15,180 (67.5)	31,620 (140.7)	26,560 (118.1)
	1-1/8 (28.6)	12 (304.8)	11,515 (51.2)	15,985 (71.1)	15,180 (67.5)	31,620 (140.7)	26,560 (118.1)
1-1/4 (31.8)	1-5/16 (33.3)	5 (127.0)	N/A	5,460 (24.3)	23,800 (105.9)	49,580 (220.6)	34,670 (154.2)
	or	11-1/4 (285.8)	11,490 (51.1)	14,175 (63.1)	23,800 (105.9)	49,580 (220.6)	34,670 (154.2)
	1-3/8 (34.9)	15 (381.0)	15,550 (69.2)	21,095 (93.8)	23,800 (105.9)	49,580 (220.6)	34,670 (154.2)

1 Use lower value of either bond or steel strength for allowable tensile load.

Allowable Shear Loads¹ for Threaded Rod Installed in Acrylic Adhesive Solid Concrete

THREADED	DRILL HOLE	MIN.	ALLOWABLE SHEA		ALLOWABLE SHEAR LOAD BASED		
ROD DIA.	DIAMETER	EMBEDMENT	ON CONCRETE		ON STEEL STRENGTH		
In. (mm)	In. (mm)	DEPTH In. (mm)	2000 PSI (13.8 MPa) CONCRETE Lbs. (kN)	4000 PSI (27.6 MPa) CONCRETE Lbs. (kN)	ASTM A307 (SAE 1018) Lbs. (kN)	ASTM A193 GR. B7 (SAE 4140) Lbs. (kN)	ASTM F593 AISI 304 SS Lbs. (kN)
3/8 (9.5)	7/16 (11.1)	1-1/2 (38.1) 3-3/8 (85.7)	N/A 1,305 (5.8)	1,031 (4.6) 1,305 (5.8)	1,040 (4.6) 1,040 (4.6)	2,170 (9.7) 2,170 (9.7)	1,995 (8.9) 1,995 (8.9)
1/2 (12.7)	9/16 (14.3)	2 (50.8) 4-1/2 (114.3)	N/A 2,005 (8.9)	2,005 (8.9) 2,005 (8.9)	1,870 (8.3) 1,870 (8.3)	3,895 (17.3) 3,895 (17.3)	3,585 (15.9) 3,585 (15.9)
5/8 (15.9)	or 11/16 (17.5)	2-1/2 (63.5)	N/A	2,814 (12.5)	2,940 (13.1)	6,125 (27.2)	5,635 (25.1)
	3/4 (19.1)	5-5/8 (142.9)	3,990 (17.8)	3,990 (17.8)	2,940 (13.1)	6,125 (27.2)	5,635 (25.1)
3/4 (19.1)	or 13/16 (20.6)	3 (76.2)	N/A	5,030 (22.4)	4,250 (18.9)	8,855 (39.4)	7,440 (33.1)
	7/8 (22.2)	6-3/4 (171.5)	5,030 (22.4)	5,030 (22.4)	4,250 (18.9)	8,855 (39.4)	7,440 (33.1)
7/8 (22.2)	or 15/16 (23.8)	3-1/2 (88.9)	N/A	5,230 (23.3)	5,800 (25.8)	12,760 (56.8)	10,730 (47.7)
	1 (25.4)	7-7/8 (200.0)	7,465 (33.2)	7,465 (33.2)	5,800 (25.8)	12,760 (56.8)	10,730 (47.7)
1 (25.4)	or 1-1/16 (27.0)	4 (101.6)	N/A	8,288 (36.9)	7,590 (33.8)	15,810 (70.3)	13,285 (59.1)
	1-1/8 (28.6)	9 (228.6)	9,385 (41.7)	9,385 (41.7)	7,590 (33.8)	15,810 (70.3)	13,285 (59.1)
1-1/4 (31.8)	or 1-5/16 (33.3)	5 (127.0)	N/A	8,288 (36.9)	11,900 (52.9)	24,790 (100.3)	18,840 (83.8)
	1-3/8 (34.9)	11-1/4 (285.8)	14,600 (64.9)	14,600 (64.9)	11,900 (52.9)	24,790 (100.3)	18,840 (83.8)

1 Use lower value of either concrete or steel strength for allowable shear load.

PERFORMANCE TABLE

A7 Average Ultimate Tension and Shear Loads^{1,2} for Threaded Acrylic Adhesive Rod Installed in Grout Filled Concrete Block

THREADED ROD DIA. In. (mm)	DRILL HOLE DIAMETER In. (mm)	EMBEDMENT DEPTH In. (mm)	ANCHOR LOCATION	ULTIMATE TENSION Lbs. (kN)	ULTIMATE SHEAR Lbs. (kN)
1/2 (12.7)	5/8 (15.9)	4-1/4 (108.0)	GROUTED CELL	5,170 (23.0)	8,500 (37.8)
5/8 (15.9)	3/4 (19.1)	5 (127.0)	GROUTED CELL	6,320 (28.1)	10,850 (48.3)
3/4 (19.1)	7/8 (22.2)	6-5/8 (168.3)	GROUTED CELL	10,910 (48.5)	17,075 (76.0)

1 Allowable working loads for the single installations should not exceed 25% (an industry standard) capacity or the allowable load of the anchor rod. Loads based upon testing with ASTM A193, Grade B7 rods.

2 The tabulated values are for anchors installed at minimum 12 inch edge distance and minimum 8 inch spacing.

3 For hollow walls, see umbrella and screen section.

PERFORMANCE TABLE

Average Ultimate Tension and Shear Loads¹ for Threaded Rod Installed Acrylic Adhesive in Grouted² Brick Masonry Constructed of Solid Red Brick Units

			· · · · · · · · · · · · · · · · · · ·		
THREADED ROD DIA. In. (mm)	DRILL HOLE DIAMETER In. (mm)	EMBEDMENT DEPTH In. (mm)	ANCHOR LOCATION	ULTIMATE TENSION Lbs. (kN)	ULTIMATE SHEAR Lbs. (kN)
1/4 (6.4)	3/8 (9.5)	3-1/2 (88.9) 6 (152.4)	CENTER OF BRICK FACE	2,130 (9.5) 3,575 (15.9)	1,165 (5.2) 1,550 (6.9)
3/8 (9.5)	1/2 (12.7)	3-1/2 (88.9) 6 (152.4)	CENTER OF BRICK FACE	2,130 (9.5) 8,875 (39.5)	4,150 (18.5) 6,950 (30.9)
1/2 (12.7)	5/8 (15.9)	3-1/2 (88.9) 6 (152.4)	CENTER OF BRICK FACE	2,130 (9.5) 12,155 (54.1)	3,090 (13.7) 7,910 (35.2)

1 Allowable working loads for the single installations should not exceed 25% (an industry standard) capacity or the allowable load of the anchor rod. Loads based upon testing with ASTM A193, Grade B7 rods.

2 Void between brick wythes was grouted solid; therefore the use of screens was not necessary.

A7 Average Ultimate Tension Loads^{1,2,3} for Reinforcing Bar Acrylic Adhesive Installed in Solid Concrete

REINFORCING	EMBEDMENT	2000 PSI (13.8 MPa)	4000 PSI (27.6 MPa)	ULTIMATE TENSILE A	ND YIELD STRENGTH	
BAR DIA.	IN CONCRETE	CONCRETE	CONCRETE	GRAD	E 60 REBAR	
ln. (mm)	ln. (mm)	ULTIMATE TENSION Lbs. (kN)	ULTIMATE TENSION Lbs. (kN)	MINIMUM YIELD STRENGTH Lbs. (kN)	MINIMUM ULTIMATE TENSILE STRENGTH Lbs. (kN)	
# 3 (9.5)	3-3/8 (85.7)	6,180 (27.5)	8,324 (37.0)	6,600 (29.4)	9,900 (44.0)	
	4-1/2 (114.3)	7,560 (33.6)	11,418 (50.8)	6,600 (29.4)	9,900 (44.0)	
# 4 (12.7)	4-1/2 (114.3)	9,949 (44.3)	16,657 (74.1)	12,000 (53.4)	18,000 (80.1)	
	6 (152.4)	15,038 (66.9)	17,828 (79.3)	12,000 (53.4)	18,000 (80.1)	
# 5 (15.9)	5-5/8 (142.9)	14,012 (62.3)	20,896 (93.0)	18,600 (82.7)	27,900 (124.1)	
	7-1/2 (190.5)	16,718 (74.4)	26,072 (116.0)	18,600 (82.7)	27,900 (124.1)	
# 6 (19.1)	6-3/4 (171.5)	21,247 (94.5)	26,691 (118.7)	26,400 (117.4)	39,600 (176.2)	
	9 (228.6)	33,325 (148.2)	37,425 (166.5)	26,400 (117.4)	39,600 (176.2)	
#7 (22.2)	7-7/8 (200.0)	N/A	40,374 (179.6)	36,000 (160.1)	54,000 (240.2)	
	10-1/2 (266.7)	38,975 (173.4)	46,050 (204.8)	36,000 (160.1)	54,000 (240.2)	
# 8 (25.4)	9 (228.6)	35,600 (158.4)	47,311 (210.5)	47,400 (210.9)	71,100 (316.3)	
	12 (304.8)	41,010 (182.4)	66,140 (294.2)	47,400 (210.9)	71,100 (316.3)	
# 9 (28.6)	10-1/8 (257.2)	N/A	57,221 (254.5)	60,000 (266.9)	90,000 (400.4)	
	13-1/2 (342.9)	N/A	79,966 (355.7)	60,000 (266.9)	90,000 (400.4)	
# 10 (31.8)	11-1/4 (285.8)	49,045 (218.2)	73,091 (325.1)	76,200 (339.0)	114,300 (508.5)	
	15 (381.0)	69,079 (307.3)	83,295 (370.5)	76,200 (339.0)	114,300 (508.5)	
# 11 (34.9)	12-3/8 (314.3)	63,397 (282.0)	75,047 (333.8)	93,600 (416.4)	140,400 (624.6)	
	16-1/2 (419.1)	81,707 (363.5)	91,989 (409.2)	93,600 (416.4)	140,400 (624.6)	

1 Allowable working loads for the single installations under static loading should not exceed 25% capacity or the allowable load of the anchor rod.

2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of minimum Grade 60 reinforcing bar. The use of lower strength rods will result in lower ultimate tension loads.

3 SHEAR DATA: Provided the distance from the rebar to the edge of the concrete member exceeds 1.25 times the embedment depth of the rebar, calculate the ultimate shear load for the rebar anchorage as 60% of the ultimate tensile strength of the rebar.

PERFORMANCE TABLE

A7 Recommended Edge Distance Requirements for Shear Acrylic Adhesive Loads Installed in Solid Concrete

ANCHOR DIAMETER In. (mm)	EMBEDMENT DEPTH In. (mm)	DEPTH EDGE DISTANCE		INTERPOLATED EDGE DISTANCE In. (mm) (50% LOAD CAPACITY)	MINIMUM EDGE DISTANCE In. (mm) (10% LOAD CAPACITY)	
3/8 (9.5)	3-3/8 (85.7)	4-3/16 (106.4)	3-7/16 (87.3)	2-5/16 (58.7)	13/16 (20.6)	
1/2 (12.7)	4-1/2 (114.3)	5-5/8 (142.9)	4-5/8 (117.5)	3-1/8 (79.4)	1-1/8 (28.6)	
5/8 (15.9)	5-5/8 (142.9)	7 (177.8)	5-3/4 (146.1)	3-1/8 (79.4)	1-3/8 (34.9)	
3/4 (19.1)	6-3/4 (171.5)	8-7/16 (214.2)	6-15/16 (176.2)	4-5/8 (117.5)	1-5/8 (41.3)	
1 (25.4)	9 (228.6)	11-1/4 (285.8)	9-1/4 (235.0)	6-1/4 (158.8)	2-1/4 (57.2)	
1-1/4 (31.8)	11-1/4 (285.8)	14-1/16 (357.2)	11-5/8 (295.3)	7-7/8 (200.0)	2-7/8 (73.0)	

Combined Tension and Shear Loading—for A7 Adhesive Anchors

Allowable loads for anchors under tension and shear loading at the same time (combined loading) will be lower than the allowable loads for anchors subjected to 100% tension or 100% shear. Use the following equation to evaluate anchors in combined loading conditions:

$\left(\frac{Na}{Ns}\right)^{5/3}$ +	$\left(\frac{Va}{2}\right)^{5/3} \leq 1$
(NS)	(Vs) ≤ I

Na = Applied Service Tension Load *Ns* = Allowable Tension Load Va = Applied Service Shear Load Vs = Allowable Shear Load

	Acrylic	Adhesiv	e Tensi	on Load	ls Install	ed in So	olid Cone	crete		
ANCHOR EMBEDMENT DIAMETER DEPTH In. (mm) In. (mm)		AMETER DEPTH EDGE DISTANCE		DISTANCE (mm)	INTERPOLATED EDGE DISTANCE In. (mm) (90% LOAD CAPACITY)		INTERPOLATED EDGE DISTANCE In. (mm) (80% LOAD CAPACITY)		MINIMUM EDGE DISTANCE In. (mm) (70% LOAD CAPACITY)	
3/8 (9.5	5) 3-3/2 4-1/2		2-1/2 3-3/8	(63.5) (85.7)	1-15/16 2-5/8	(49.2) (66.7)	1-3/8 1-7/8	(34.9) (47.6)	13/16 1-1/8	(26.2) (28.6)
1/2 (12.7	') 4-1/.	2 (114.3)	3-3/8	(85.7)	2-5/8	(66.7)	1-7/8	(47.6)	1-1/8	(28.6)
	6	(152.4)	4-1/2	(114.3)	3-1/2	(88.9)	2-1/2	(63.5)	1-1/2	(38.1)
5/8 (15.9) 5-5/ 7-1/		4-3/16 5-5/8	(106.4) (142.9)	3-1/4 4-3/8	(82.6) (111.1)	2-5/16 3-1/8	(58.7) (79.4)	1-3/8 1-7/8	(34.9) (47.6)
3/4 (19.1) 6-3/-	4 (171.5)	5-1/16	(128.6)	3-15/16	(100.0)	2-13/16	(71.4)	1-5/8	(15.9)
	9	(228.6)	6-3/4	(171.5)	5-1/4	(133.4)	3-3/4	(95.3)	2-1/4	(57.2)
1 (25.4	l) 9	(228.6)	6-3/4	(171.5)	5-1/4	(133.4)	3-3/4	(95.3)	2-1/4	(57.2)
	12	(304.8)	9	(228.6)	7	(177.8)	5	(127.0)	3	(76.2)
1-1/4 (31.8	3) 11-1/	4 (285.8)	8-7/16	(214.3)	6-9/16	(166.7)	4-3/4	(120.7)	2-7/8	(73.0)
	15	(381.0)	11-1/4	(285.8)	8-3/4	(222.2)	6-1/4	158.8)	3-3/4	(95.3)

PERFORMANCE TABLE

A7 Recommended Spacing Requirements for Tension Loads Acrylic Adhesive Installed in Concrete, Lightweight Concrete and Hollow Block

DIA	NCHOR EMBEDMENT AMETER DEPTH 1. (mm) In. (mm)		CRITICAL SPACING In. (mm) (100% LOAD CAPACITY)		In. (INTERPOLATED SPACING In. (mm) (90% LOAD CAPACITY)		SPACING nm) CAPACITY)	
3/8	(9.5)	3-3/8 4-1/2	(85.7) (114.3)	4-3/16 5-5/8	(106.4) (142.9)	2-1/2 3-3/8	(63.5) (85.7)	13/16 1-1/8	(20.6) (28.6)
1/2	(12.7)	4-1/2 6	(114.3) (152.4)	5-5/8 7-1/2	(142.9) (190.5)	3-3/8 4-1/2	(85.7) (114.3)	1-1/8 1-1/2	(28.6) (38.1)
5/8	(15.9)	5-5/8 7-1/2	(142.9) (190.5)	7 9-3/8	(177.8) (238.1)	4-3/16 5-5/8	(106.4) (142.9)	1-3/8 1-7/8	(34.9) (47.6)
3/4	(19.1)	6-3/4 9	(171.5) (228.6)	8-7/16 11-1/4	(214.3) (285.8)	5 6-3/4	(127.0) (171.5)	1-5/8 2-1/4	(41.3) (57.2)
1	(25.4)	9 12	(228.6) (304.8)	11-1/4 15	(285.8) (381.0)	6-3/4 9	(171.5) (228.6)	2-1/4 3	(57.2) (76.2)
1-1/4	(31.8)	11-1/4 15	(285.8) (381.0)	14-1/16 18-3/4	(357.2) (476.3)	8-1/2 11-1/4	(215.9) (285.8)	2-7/8 3-3/4	(73.0) (95.5)

A7 Adhesive Edge/Spacing Distance Load Factor Summary for Installation of Threaded Rod and Reinforcing Bar ^{1,2}

LOAD FACTOR	DISTANCE FROM EDGE OF CONCRETE
Critical Edge Distance—Tension	
100% Tension Load	 0.75 x Anchor Embedment
Minimum Edge Distance—Tension	
70% Tension Load	 0.25 x Anchor Embedment
Critical Edge Distance—Shear	
100% Shear Load	 1.25 x Anchor Embedment
Minimum Edge Distance—Shear	
10% Shear Load	 0.25 x Anchor Embedment
LOAD FACTOR	DISTANCE FROM ANOTHER ANCHOR
Critical Spacing—Tension	
100% Tension Load ——————	► 1.25 x Anchor Embedment
Minimum Spacing—Tension	
80% Tension Load	 0.25 x Anchor Embedment
Critical Spacing—Shear	
100% Shear Load	→ 1.25 x Anchor Embedment
Minimum Spacing—Shear	
25% Shear Load	► 0.25 x Anchor Embedment

1 Use linear interpolation for load factors at edge distances or spacing distances between critical and minimum.

2 Anchors are affected by multiple combination of spacing and/or edge distance loading and direction of the loading. Use the product of tension and shear loading factors in design.

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

A7 Adhesive for Sill Plate Attachments

PERFORMANCE TABLE

PERPENDICULAR HK - ST PARALLE

A7 Average Ultimate Tension and Shear^{1,2,3} for Threaded Rods in Acrylic Adhesive Solid Concrete Floors and Stemwalls at 1-3/4" Edge Distance

ANCHOR	DRILL HOLE	EMBEDMENT		2000PSI (13.8 MPa) CONCRETE	
DIAMETER	DIAMETER In. (mm)	In. (mm)	SHEAR LOAD DIRECTION	ULTIMATE TENSION Lbs. (kN)	ULTIMATE SHEAR Lbs. (kN)
1/2 (12.7)	9/16 (14.3)	4-1/2 (114.3)	Perpendicular	9,180 (40.8)	1,760 (7.8)
			Parallel	9,180 (40.8)	7,240 (32.2)
5/8 (15.9)	11/16 (17.5)	5-5/8 (142.9)	Perpendicular	13,620 (60.6)	2,540 (11.3)
	or		Parallel	13,620 (60.6)	8,778 (39.0)
	3/4 (19.1)	10 (254.0)	Perpendicular	20,700 (92.1)	2,540 (11.3)
			Parallel	20,700 (92.1)	8,799 (39.1)
3/4 (19.1)	13/16 (20.6) or 7/8 (22.2)	6-3/4 (171.4)	Perpendicular	15,080 (67.1)	2,080 (9.2)
7/8 (22.2)	15/16 (23.8)	15 (381.0)	Perpendicular	29,940 (133.2)	2,080 (9.2)
	or 1 (25.4)		Parallel	29,940 (133.2)	7,101 (31.6)

1 Allowable working loads for the single installations under static loading should not exceed 25% capacity or the allowable load of the anchor rod.

2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of high strength threaded rod (ASTM A193 Gr. B7). The use of lower strength rods will result in lower ultimate tension and shear loads.

3 Linear interpolation may be used for intermediate spacing and edge distances.

A7 Allowable Tension Loads¹ at 1-3/4" Edge Distance for Acrylic Adhesive Threaded Rods in Solid Concrete Floors and Stemwalls

ANCHOR DRILL HOLE DIAMETER DIAMETER		EMBEDMENT DEPTH	DEPTH ON ADHESIVE BOND STRENGTH		ALLOWABLE TENSION LOAD BASED ON STEEL STRENGTH				
In. (mm)	In. (mm)	In. (mm)	2000 PSI (13.8 MPa) CONCRETE Lbs. (kN)	ASTM A307 (SAE 1018) Lbs. (kN)	ASTM A193 GR. B7 (SAE 4140) Lbs. (kN)	ASTM F593 AISI 304 SS Lbs. (kN)			
1/2 (12.7)	9/16 (14.3)	4-1/2 (114.3)	2,295 (10.2)	3,730 (16.6)	7,780 (34.6)	7,155 (31.8)			
5/8 (15.9)	11/16 (17.5)	5-5/8 (142.9)	3,405 (10.7)	5,870 (26.1)	12,230 (54.4)	11,250 (50.0)			
	or 3/4 (19.1)	10 (254.0)	5,175 (23.0)	5,870 (26.1)	12,230 (54.4)	11,250 (50.0)			
3/4 (19.1)	13/16 (20.6) or 7/8 (22.2)	6-3/4 (171.4)	3,770 (16.8)	8,490 (37.8)	17,690 (78.7)	14,860 (66.1)			
7/8 (22.2)	15/16 (23.8) or 1 (25.4)	15 (381.0)	7,485 (33.3)	11,600 (51.6)	25,510 (113.5)	20,835 (92.7)			

1 Use lower value of either bond or steel strength for allowable tensile load. 2 Linear interpolation may be used for intermediate spacing and edge distances.

A7 Acrylic Adhesive Threaded Rods in Solid Concrete Floors and Stemwalls

ANCHOR DIAMETER	DRILL HOLE DIAMETER	EMBEDMENT DEPTH	SHEAR LOAD DIRECTION	ALLOWABLE SHEAR LOADS BASED ON CONCRETE STRENGTH	ALLOWABLE SHEAR LOAD BASED ON STEEL STRENGTH		
In. (mm)	ln. (mm)	In. (mm)		2000 PSI (13.8 MPa) CONCRETE Lbs. (kN)	ASTM A307 (SAE 1018) Lbs. (kN)	ASTM A193 GR. B7 (SAE 4140) Lbs. (kN)	ASTM F593 AISI 304 SS Lbs. (kN)
1/2 (12.7)	9/16 (14.3)	4-1/2 (114.3)	Perpendicular	440 (1.9)	1,870 (8.3)	3,895 (17.3)	3,585 (15.9)
			Parallel	1,810 (8.0)	1,870 (8.3)	3,895 (17.3)	3,585 (15.9)
5/8 (15.9)		5-5/8 (142.9)	Perpendicular	635 (2.8)	2,940 (13.1)	6,125 (27.2)	5,635 (25.1)
	11/16 (17.5)		Parallel	2,195 (9.8)	2,940 (13.1)	6,125 (27.2)	5,635 (25.1)
	or 3/4(19.1)	10 (254.0)	Perpendicular	635 (2.8)	2,940 (13.1)	6,125 (27.2)	5,635 (25.1)
			Parallel	2,200 (9.8)	2,940 (13.1)	6,125 (27.2)	5,635 (25.1)
3/4 (19.1)	13/16 (20.6) or 7/8 (22.2)	6-3/4 (171.4)	Perpendicular	600 (2.7)	4,250 (18.9)	8,855 (39.4)	7,440 (33.1)
7/8 (22.2)	15/16 (23.8)	15 (381.0)	Perpendicular	520 (2.3)	5,800 (25.8)	12,760 (56.8)	10,730 (47.7)
	or 1 (25.4)		Parallel	1,775 (7.9)	5,800 (25.8)	12,760 (56.8)	10,730 (47.7)

1 Use lower value of either concrete or steel strength for allowable shear load.

C6+

High Strength Epoxy for All Conditions

DESCRIPTION/SUGGESTED SPECIFICATIONS*

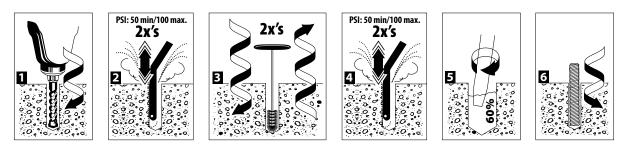
*Suggested Specifications see page 43

One product for most environmental conditions and weather conditions

Design and use with confidence with Epcon C6+ featuring 35% greater bond strength than the closest competition in 70° cracked concrete, and better performance in dry, saturated and water filled conditions.

ADVANTAGES

- Higher average bond strength than competition in cracked concrete
- Excellent performance in diamond cored and oversized holes.
- Better performance in dry, saturated, and waterfilled conditions.
- Safe & durable to use at job sites (cartridges vs. sausage packs)
- Simplifies specification process by providing a comprehensive list of 3rd-party approvals
- 24-month shelf life.


Curing Times

BASE MATERIAL (F°/C°)	WORKING TIME ²	FULL CURE TIME
104°/ 40°	3 minutes	3 hours
95°/ 35°	4 minutes	4 hours
86°/ 30°	6 minutes	5 hours
77°/ 25°	8 minutes	6 hours
72°/ 22°	11 minutes	7 hours
59°/ 15°	15 minutes	8 hours
50°/ 10°	20 minutes	12 hours
40°/ 4.4°	20 minutes	24 hours

For concrete temperatures between 40-50°F. Adhesive must be maintained at a minimum of 50°F during installation.

² Working time is max time from the end of mixing to when the insertion of the threaded rod or rebar into the adhesive shall be completed.

INSTALLATION STEPS

*Water saturated concrete and water-filled hole applications require 4x's air, 4x's brushing, and 4x's air

1

TW Red Head^{*} Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

EPCON **C6**+

Product Category	Part No.	Description	Carton Qty
Epcon C6+ Epoxy			
Epcon C6+ 20 fl. Oz cartridge	C6P-20	Epcon C6+ 20 fl. oz cartridge	6
Epcon C6+ 10 fl. Oz cartridge	C6P-10	Epcon C6+ 10 fl. oz cartridge, installs with 10oz. dispensing tool	6
Mixing Nozzles			
Mixing Nozzle	A245	Mixing Nozzle for C6P-10	24
Mixing Nozzle	S55	Mixing Nozzle for C6P-20	24
High Flow Mixing Nozzle	S75	High Flow Nozzle for C6P-20 (for 5/8" diameter hole or larger)	24
Mixing Nozzle Extension	S75EXT	Nozzle Extension For S75 High Flow Nozzle	24
Dispensing Guns			
Dispensing Gun - 10 oz.	A100	Manual Dispenser for C6P-10	1
Dispensing Gun - 20 oz.	E102-V2	Manual Dispenser for C6P-20	1
Pneumatic Dispensing Gun - 20 oz.	E202	Pneumatic Dispenser for C6P-20	1
Piston Plug			
	PL-5834	Piston Plug for 5/8" and 34" diameter anchors	10
Piston plugs for deep embedment installations greater than 10"	PL-7810	Piston Plug for 7/8" and 1" diameter anchors	10
	PL-1250	Piston Plug for 1-1/4" diameter anchors	10

Wire Brushes	Part No.	Anchor Dia.	Rebar	Drill Bit Dia.	Brush Dia.	Overall Length	Qty
3/8" Diameter Brush	SB038	3/8"	No.3	7/16"	5/8"	4-7/8"	4
1/2" Diameter Brush	SB012	1/2"	No. 4	9/16"	3/4"	4-7/8"	4
5/8" Diameter Brush	SB058	5/8"	No.5	3/4"	1"	4-7/8"	4
3/4" Diameter Brush	SB034	3/4"	No.6	7/8"	1-1/4"	4-7/8"	4
7/8" Diameter Brush	SB078	7/8"	No. 7	1"	1-1/2"	5-1/8"	4
1" Diameter Brush	SB010	1"	No.7	1-1/8"	1-5/8"	5-1/4"	4
1-1/4" Diameter Brush	SB125	1-1/4"	No. 10	1-3/8"	1-3/4"	5-1/4"	4
Brush Extension	ESDS-38	W	/ire brush 1	2" usable extension	on with SDS+ ad	laptor	1
Brush Extension	EHAN-38		Wire brush	n 12" usable exter	ision with T-Han	dle	1
Hole Plugs	Part No.			Hole Diame	eter		Qty
3/8" Diameter Hole Plug	E038			7/16"			25
1/2" Diameter Hole Plug	E012			9/16"			25
5/8" Diameter Hole Plug	E058			3/4"			20
3/4" Diameter Hole Plug	E034			7/8"			20
7/8" Diameter Hole Plug	E078			1"			10
1" Diameter Hole Plug	E010			1-1/8"			10

SB038 - 3/8" Diameter Brush

E038 - 3/8" Diameter Hole Plug

ESTIMATING TABLES

C6P-20 Number of Anchoring Installations Per Cartridge* 20 Fluid Ounce Cartridge Using Reinforcing Bar with C6+ Adhesive in Solid Concrete

REBAR	DRILL							EMBEDME	NT DEPTH IN	INCHES (mn	ı)					
	HOLE DIA. INCHES	1 (25.4)	2 (50.8)	3 (76.2)	4 (101.6)	5 (127.0)	6 (152.4)	7 (177.8)	8 (203.2)	9 (228.6)	10 (254.0)	11 (279.4)	12 (304.8)	13 (330.2)	14 (355.6)	15 (381.0)
# 3	7/16	310.8	155.4	103.6	77.7	62.2	51.8	44.4	38.8	34.5	31.1	28.3	25.9	23.9	22.2	20.7
# 4	5/8	198.9	99.5	66.3	49.7	39.8	33.2	28.4	24.9	22.1	19.9	18.1	16.6	15.3	14.2	13.3
# 5	3/4	138.1	69.1	46.0	34.5	27.6	23.0	19.7	17.3	15.3	13.8	12.6	11.5	10.6	9.9	9.2
# 6	7/8	101.5	50.7	33.8	25.4	20.3	16.9	14.5	12.7	11.3	10.1	9.2	8.5	7.8	7.2	6.8
#7	1-1/8	61.4	30.7	20.5	15.3	12.3	10.2	8.8	7.7	6.8	6.1	5.6	5.1	4.7	4.4	4.1
# 8	1-1/8	49.7	24.9	16.6	12.4	9.9	8.3	7.1	6.2	5.5	5.0	4.5	4.1	3.8	3.6	3.3
#9	1-3/8	41.1	20.5	13.7	10.3	8.2	6.8	5.9	5.1	4.6	4.1	3.7	3.4	3.2	2.9	2.7
# 10	1-1/2	43.5	17.3	11.5	8.6	6.9	5.8	4.9	4.3	3.8	3.5	3.1	2.9	2.7	2.5	2.3
# 11	1-3/4	25.4	12.7	8.5	6.3	5.1	4.2	3.6	3.2	2.8	2.5	2.3	2.1	2.0	1.8	1.7

* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste. * Oversized holes acceptable but volume of adhesive will increase.

C6P-20 Number of Anchoring Installations Per Cartridge* 20 Fluid Ounce Cartridge Using Threaded Rod with C6+ Adhesive in Solid Concrete

RC	D	DRILL						EN	BEDMENT D	EPTH IN IN	CHES (mm)						
In. (mm)	HOLE DIA. INCHES	1 (25.4)	2 (50.8)	3 (76.2)	4 (101.6)	5 (127.0)	6 (152.4)	7 (177.8)	8 (203.2)	9 (228.6)	10 (254.0)	11 (279.4)	12 (304.8)	13 (330.2)	14 (355.6)	15 (381.0)
1/4	(6.4)	5/16	795.6	397.8	265.2	198.9	159.1	132.6	113.7	99.5	88.4	79.6	72.3	66.3	61.2	56.8	53.0
3/8	(9.5)	7/16	405.9	203.0	135.3	101.5	81.2	67.7	58.0	50.7	45.1	40.6	36.9	33.8	31.2	29.0	27.1
1/2	(12.7)	9/16	245.6	122.8	81.9	61.4	49.1	40.9	35.1	30.7	27.3	24.6	22.3	20.5	18.9	17.5	16.3
5/8	(15.9)	3/4	138.1	69.1	46.0	34.5	27.6	23.0	19.7	17.3	15.3	13.8	12.6	11.5	10.6	9.9	9.2
3/4	(19.1)	7/8	101.5	50.7	33.8	25.4	20.3	16.9	14.5	12.7	11.3	10.1	9.2	8.5	7.8	7.2	6.8
7/8	(22.2)	1	77.7	38.8	25.9	19.4	15.5	12.9	11.1	9.7	8.6	7.8	7.1	6.5	6.0	5.5	5.2
1	(25.4)	1-1/8	61.4	30.7	20.5	15.3	12.3	10.2	8.8	7.7	6.8	6.1	5.6	5.1	4.7	4.4	4.1
1-1/4	(31.8)	1-3/8	41.1	20.5	13.7	10.3	8.2	6.8	5.9	5.1	4.6	4.1	3.7	3.4	3.2	2.9	2.7

* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste. * Oversized holes acceptable but volume of adhesive will increase.

C6P-10 Number of Anchoring Installations Per Cartridge* 10 Fluid Ounce Cartridge Using Reinforcing Bar with C6+ Adhesive in Solid Concrete

REBAR	DRILL							EMBEDME	NT DEPTH IN	INCHES (mm	l)					
	HOLE DIA. INCHES	1 (25.4)	2 (50.8)	3 (76.2)	4 (101.6)	5 (127.0)	6 (152.4)	7 (177.8)	8 (203.2)	9 (228.6)	10 (254.0)	11 (279.4)	12 (304.8)	13 (330.2)	14 (355.6)	15 (381.0)
# 3	7/16	129.5	64.7	43.2	32.4	25.9	21.6	18.5	16.2	14.4	12.9	11.8	10.8	10.0	9.2	8.6
# 4	5/8	82.9	41.4	27.6	20.7	16.6	13.8	11.8	10.4	9.2	8.3	7.5	6.9	6.4	5.9	5.5
# 5	3/4	56.7	28.8	19.2	14.4	11.5	9.6	8.2	7.2	6.4	5.8	5.2	4.8	4.4	4.1	3.8
#6	7/8	42.3	21.1	14.1	10.6	8.5	7.0	6.0	5.3	4.7	4.2	3.8	3.5	3.3	3.0	2.8
#7	1-1/8	25.6	12.8	8.5	6.4	5.1	4.3	3.7	3.2	2.8	2.6	2.3	2.1	2.0	1.8	1.7
# 8	1-1/8	20.7	10.4	6.9	5.2	4.1	3.5	3.0	2.6	2.3	2.1	1.9	1.7	1.6	1.5	1.4
# 9	1-3/8	17.1	8.6	5.7	4.3	3.4	2.9	2.4	2.1	1.9	1.7	1.6	1.4	1.3	1.2	1.1
# 10	1-1/2	14.4	7.2	4.8	3.6	2.9	2.4	2.1	1.8	1.6	1.4	1.3	1.2	1.1	1.0	1.0
# 11	1-3/4	10.6	5.3	3.5	2.6	2.1	1.8	1.5	1.3	1.2	1.1	1.0	0.9	0.8	0.8	0.7

* Oversized holes acceptable but volume of adhesive will increase.

C6P-10 Number of Anchoring Installations Per Cartridge* 10 Fluid Ounce Cartridge Using Threaded Rod with C6+ Adhesive in Solid Concrete

	DRILL							EMBEDM	ENT DEPTI	H IN INCHE	5 (mm)					
ROD	HOLE DIA. INCHES	1 (25.4)	2 (50.8)	3 (76.2)	4 (101.6)	5 (127.0)	6 (152.4)	7 (177.8)	8 (203.2)	9 (228.6)	10 (254.0)	11 (279.4)	12 (304.8)	13 (330.2)	14 (355.6)	15 (381.0)
1/4 (6.4)	5/16	331.5	165.7	110.5	82.9	66.3	55.2	47.4	41.4	36.8	33.1	30.1	27.6	25.5	23.7	22.1
3/8 (9.5)	7/16	169.1	84.6	27.6	42.3	33.8	28.2	24.2	21.1	18.8	16.9	15.4	14.1	13.0	12.1	11.3
1/2 (12.7)	9/16	102.3	51.2	19.2	25.6	20.5	17.1	14.6	12.8	11.4	10.2	9.3	8.5	7.9	7.3	6.8
5/8 (15.9)	3/4	57.6	28.8	14.1	14.4	11.5	9.6	8.2	7.2	6.4	5.8	5.2	4.8	4.4	4.1	3.8
3/4 (19.1)	7/8	42.3	21.1	8.5	10.6	8.5	7.0	6.0	5.3	4.7	4.2	3.8	3.5	3.3	3.0	2.8
7/8 (22.2)	1	32.4	16.2	6.9	8.1	6.5	5.4	4.6	4.0	3.6	3.2	2.9	2.7	2.5	2.3	2.2
1 (25.4)	1-1/8	25.6	12.8	5.7	6.4	5.1	4.3	3.7	3.2	2.8	2.6	2.3	2.1	2.0	1.8	1.7
1-1/4 (31.8)	1-3/8	17.1	8.6	4.8	4.3	3.4	2.9	2.4	2.1	1.9	1.7	1.6	1.4	1.3	1.2	1.1

* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste. * Oversized holes acceptable but volume of adhesive will increase.

ITW Red Head

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at www.itwredhead.com

PACKAGING

- 1. Disposable, self-contained cartridge system capable of dispensing both epoxy components in the proper mixing ratio
- Epoxy components dispensed through a static mixing nozzle that thoroughly mixes the material, and places the epoxy at the base of the pre-drilled hole
- 3. Cartridge markings: Include manufacturer's name, batch number and best-used-by date, mix ratio by volume, ANSI hazard classification, and appropriate ANSI handling precautions

SUGGESTED SPECIFICATIONS

EPOXY ADHESIVE

High Strength EPOXY ADHESIVE:

- 1. Two component resin and hardener, non-sag paste, insensitive to moisture, grey in color, suitable for extreme temperature ranges, for all conditions or substrate materials.
- 2. Meets NSF Standard 61, certified for use in conjunction with drinking water systems.
- 3. Works in wet, damp, and submerged hole.
- 4. Extended Shelf life: Best if used within 2 years.
- 5. Oversized and/or diamond cored holes permitted.

PERFORMANCE TABLE

Bond Strength Design Information For Fractional Threaded Rod^{1,7}

	-			r						
	Design Information	Cumbal	Units			lominal Th	readed Ro	od Diamete	er	
	Design Information	Symbol	UNILS	3/8″	1/2″	5/8″	3.4″	7/8″	1″	1-1/4″
	566 V. I. V. II. V. D. VI.	h	in	1-5/8″	2″	2-1/2″	3-1/2″	4	4	5
Minimu	m Effective Installation Depth	h _{ef,min}	mm	60	70	79	89	102	102	127
Mandana		h,	in	7-1/2	10	12-1/2	15	17-1/2	20	25
Maximu	m Effective Installation Depth	h _{ef,max}	mm	191	254	318	381	445	508	635
are 25	Characteristic Bond Strength in	τι	psi				1,350			
eratı Je A,	Uncracked Concrete	τ _{k,uncr}	N/mm ²				9.3			
Temperature Range A, ^{2,5}	Characteristic Bond Strength in	_	psi	1,150	1,090	1,025	965	900	840	715
-	Cracked Concrete	τ _{k,cr}	N/mm ²	7.9	7.5	7.1	5.1	4.7	4.4	3.8
e č	Characteristic Bond Strength in		psi				1,030			
Temperature Range B, ^{3,5}	Uncracked Concrete	τ _{k,uncr}	N/mm ²				7.1			
emp (Rang	Characteristic Bond Strength in		psi	875	830	780	735	685	640	545
<u> </u>	Cracked Concrete	Tk,cr	N/mm ²	6.1	5.7	5.4	5.1	4.7	4.4	3.8
٩	Characteristic Bond Strength in		psi				725			
lemperature Range C, ^{4,5}	Uncracked Concrete	τ _{k,uncr}	N/mm ²				5.0			
empi	Characteristic Bond Strength in		psi	620	620	620	620	620	620	620
	Cracked Concrete	Tk,cr	N/mm ²	4.3	4.3	4.3	4.3	4.3	4.3	4.3
١S ⁶	Dry Concrete	Фd	=				0.65			
lition	Water-saturated Concrete	Øws	Periodic Inspection		0.55			0.0	65	
Conc	Water-filled Hole	Øwf	Per Insp				0.65			
tion	Submerged Concrete	Φsub				0.	65			0.55
stalli	Dry Concrete	Φd		0.65						
ble In	Water-saturated Concrete	Øws	rtion							
Permissible Installation Conditions 6	Water-filled Hole	Øwf	Continuous Inspection				0.65			
Pen	Submerged Concrete	Фsub	0-				0.65			

For SI: 1 inch= 25.4 mm, 1 in.² = 645.16 mm², 1 lb = 0.004448 kN

- ¹ Bond strength values correspond to concrete compressive strength f c = 2,500 psi. Bond strength values must not be increased for increased concrete compressive strength.
- ² Temperature Range A= Maximum Long Term Temperature: 110°F (43°C); Maximum Short Term Temperature: 130°F (55°C)
- 3 Temperature Range B= Maximum Long Term Temperature: 110°F (43°C); Maximum Short Term Temperature: 162°F (72°C)
- ⁴ Temperature Range C = Maximum Long Term Temperature: 110°F (43°C); Maximum Short Term Temperature: 176°F (80°C)5Short-term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long-term concrete temperatures are roughly constant over significant periods of time.
- ⁶ The tabulated value of capplies when the load combinations of Section 1605.2 of the IBC, or ACI 318 Section 9.2 are used in accordance with ACI 318 D.4.3. If the load combinations of ACI 318 Appendix Care used, the appropriate value of Φ must be determined in accordance with ACI318 D.4.4.
- ⁷ For sustained loads, bond strengths must be multiplied by 0.73.
- $^{\rm 8}\,$ See ICC-ES ESR 3577 for further design information in accordance with ACI 318 $\,$

Bond Strength Design Information For Fractional Reinforcing Bar^{1,7}

						Nominal Th	readed Ba	ar Diamete	r	
	Design Information	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 10
	5%	h	in	1-5/8″	2″	2-1/2″	3-1/2″	4	4	5
Minimu	m Effective Installation Depth	h _{ef,min}	mm	60	70	79	89	102	102	127
Mavimu	m Effective Installation Donth	h c	in	7-1/2	10	12-1/2	15	17-1/2	20	25
IVIdXIIIIU	m Effective Installation Depth	h _{ef,max}	mm	191	254	318	381	445	508	635
ure 25	Characteristic Bond Strength in	τι	psi				1,350			
eratı Je A,	Uncracked Concrete	τ _{k,uncr}	N/mm ²		r	r	9.3			
Temperature Range A, ^{2,5}	Characteristic Bond Strength in	_	psi	1,150	1,090	1,025	965	900	840	715
<u> </u>	Cracked Concrete	т _{к,сг}	N/mm ²	7.9	7.5	7.1	5.1	4.7	4.4	3.8
e č	Characteristic Bond Strength in		psi				1,030			
Temperature Range B, ^{3,5}	Uncracked Concrete	τ _{k,uncr}	N/mm ²				7.1			
empi	Characteristic Bond Strength in		psi	875	830	780	735	685	640	545
	Cracked Concrete	Tk,cr	N/mm ²	6.1	5.7	5.4	5.1	4.7	4.4	3.8
e S	Characteristic Bond Strength in		psi				725			
Temperature Range C, ^{4,5}	Uncracked Concrete	τ _{k,uncr}	N/mm ²				5.0			
empi Rang	Characteristic Bond Strength in		psi	620	620	620	620	620	620	620
-	Cracked Concrete	Tk,cr	N/mm ²	4.3	4.3	4.3	4.3	4.3	4.3	4.3
٦S	Dry Concrete	Фd	=				0.65			
ditio	Water-saturated Concrete	Øws	Periodic Inspection		0.55			0.	65	
Con	Water-filled Hole	Øwf	PeI Insp				0.65			
ition	Submerged Concrete	Фsub				0.	65			0.55
stalla	Dry Concrete	Фd					0.65			
ole In	Water-saturated Concrete	Øws	uous ction							
Permissible Installation Conditions 6	Water-filled Hole	Øwf	Continuous Inspection				0.65			
Per	Submerged Concrete	Фsub	0 =				0.65			

- For 51: 1 inch= 25.4 mm, 1 in. 2 = 645.16 mm 2 , 1 lb = 0.004448 kN
- 1 Bond strength values correspond to concrete compressive strength f c = 2,500 psi. Bond strength values must not be increased for increased concrete compressive strength.
- ² Temperature Range A= Maximum Long Term Temperature: 110' F (43 ' C); Maximum Short Term Temperature: 130'F (55' C)
- ³ Temperature Range B =Maximum Long Term Temperature: 110'F (43 ' C); Maximum Short Term Temperature: 162'F (72'C)
- $^4\,$ Temperature Range C =Maximum Long Term Temperature: 110'F (43'C); Maximum Short Term Temperature: 176' F (80' C)
- ⁵ Short-term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long-term concrete temperatures are roughly constant over significant periods of time.
- ⁶ The tabulated value of ¢ applies when the load combinations of Section 1605.2 of the IBC, or ACI 318 Section 9.2 are used in accordance with ACI 318 D.4.3. If the load combinations of ACI 318 Appendix Care used, the appropriate value of *Φ* must be determined in accordance with ACI 318 D.4.4.
- ⁷ For sustained loads, bond strengths must be multiplied by 0.73.
- ⁸ See ICC-ES ESR 3577 for further design information in accordance with ACI 318

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

C6+ Epoxy Adhesive Average Ultimate Tension and Shear Loads^{1,2,3} for Threaded Rod Installed in Grout Filled Concrete Block

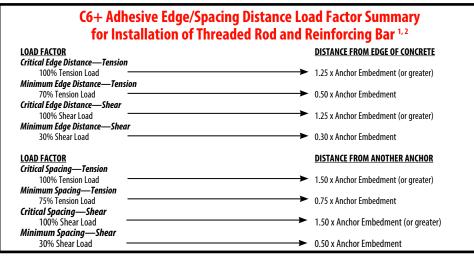
THREADED ROD DIA.	DRILL HOLE DIAMETER In. (mm)	EMBEDMENT DEPTH In. (mm)	ANCHOR LOCATION In. (mm)	ULTIMATE TENSION Lbs. (kN)	ULTIMATE SHEAR Lbs. (kN)
3/8 (9.5)	7/16 (11.1)	3 (76.2)	GROUTED CELL	4,862 (21.6)	N/A
1/2 (12.7)	5/8 (15.9)	3 (76.2)	GROUTED CELL	4,953 (22.0)	N/A
1/2 (12.7)	5/8 (15.9)	6 (152.4)	GROUTED CELL	8,214 (36.5)	N/A
5/8 (15.9)	3/4 (19.1)	5 (127.0)	GROUTED CELL	7,355 (32.7)	N/A
3/4 (19.1)	7/8 (22.2)	6 (152.4)	Note 1	17,404 (77.4)	19,588 (87.1)
3/4 (19.1)	7/8 (22.2)	6 (152.4)	Note 2	17,404 (77.4)	8,668 (38.6)

1 Anchor can be located in grouted cell, "T" joint, or bed joint.

2 Anchor can be located in first grouted cell from edge.

3 Allowable working loads for the single installations under static loading should not exceed 25% (an industry standard) capacity or the allowable load of the anchor rod. Loads based upon testing with ASTM A193, Grade B7 rods.

PERFORMANCE TABLE


C6+ Allowable Tension Loads^{1,2,3} for Threaded Rod Installed Epoxy Adhesive in Solid Concrete

THREADED ROD DIA.		EDMENT EPTH			ALLOWABLE TEN ON ADHESIVE					AL	LOWABLE TEI ON STEE	NSION LOAD L STRENGTH	BASED	
ln. (mm)	In.	(mm)	CON	(13.8 MPa) CRETE . (kN)	4000 PSI (2 CONCI Lbs. (RETE	IN CO	(41.4 MPa) NCRETE . (kN)	(SAE	A A307 1018) . (kN)	(SAE 4140)		AISI 3	1 F593 804 SS . (kN)
3/8 (9.5)	3-3/8	(85.7)	1,800	(8.0)	2,110	(9.4)	2,655	(11.8)	2,080	(9.3)	4,340	(19.3)	3,995	(17.8)
	4-1/2	(114.3)	2,080	(9.2)	2,505	(11.1)	2,655	(11.8)	2,080	(9.3)	4,340	(19.3)	3,995	(17.8)
1/2 (12.7)	4-1/2	(114.3)	3,315	(14.8)	4,420	(19.7)	4,420	(19.7)	3,730	(16.6)	7,780	(34.6)	7,155	(31.8)
	6	(152.4)	4,780	(21.3)	4,900	(21.8)	4,900	(21.8)	3,730	(16.6)	7,780	(34.6)	7,155	(31.8)
5/8 (15.9)	5-5/8	(142.9)	4,425	(19.7)	6,130	(27.3)	6,130	(27.3)	5,870	(26.1)	12,230	(54.4)	11,250	(50.0)
	7-1/2	(190.5)	5,660	(25.2)	7,190	(32.0)	7,364	(32.8)	5,870	(26.1)	12,230	(54.4)	11,250	(50.0)
3/4 (19.1)	6-3/4	(171.5)	7,195	(32.0)	7,885	(35.1)	8,440	(37.5)	8,490	(37.8)	17,690	(78.7)	14,860	(66.1)
	9	(228.6)	7,940	(35.3)	10,345	(46.0)	10,345	(46.0)	8,490	(37.8)	17,690	(78.7)	14,860	(66.1)
7/8 (22.2)	7-7/8	(200.0)	8,810	(39.2)	9,430	(41.9)	10,260	(45.6)	11,600	(51.6)	25,510	(113.5)	20,835	(92.7)
	10-1/2	(266.7)	N/	′A	12,080	(57.0)	12,805	(57.0)	11,600	(51.6)	25,510	(113.5)	20,835	(92.7)
1 (25.4)	9	(228.6)	10,085	(44.9)	11,970	(53.3)	11,970	(53.0)	15,180	(67.5)	31,620	(140.7)	26,560	(118.1)
	12	(304.8)	12,180	(54.2)	15,545	(69.2)	15,760	(70.1)	15,180	(67.5)	31,620	(140.7)	26,560	(118.1)
1-1/4(31.8)	11-1/4	(285.8)	13,915	(61.9)	14,245	(63.4)	14,245	(63.4)	23,800	(105.9)	49,580	(220.6)	34,670	(154.2)
	15	(381.0)	16,340	(72.7)	19,930	(88.7)	19,930	(88.7)	23,800	(105.9)	49,580	(220.6)	34,670	(154.2)

1 Use lower value of either bond or steel strength for allowable tensile load.

2 Allowable loads taken from ICC Evaluation Report #4285 (formerly ICBO).

3 Linear interpolation may be used for intermediate spacing and edge distances (see below).

1 Use linear interpolation for load factors at edge distances or spacing distances between critical and minimum.

2 Anchors are affected by multiple combination of spacing and/or edge distance loading and direction of the loading. Use the product of tension and shear loading factors in design.

ITW **Red Head**

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

C6+ Epoxy Adhesive Allowable Shear Loads^{1,2,3} for Threaded Rod Installed in Solid Concrete

THREADED ROD DIA.	MINIMUM EMBEDMENT		ALLOWABLE SHEAR LOAD BA ON CONCRETE STRENGTH		AI	LLOWABLE SHEAR LOAD B ON STEEL STRENGTH	ASED
In. (mm)	DEPTH In. (mm)	2000 PSI (13.8 MPa) CONCRETE Lbs. (kN)	4000 PSI (27.6 MPa) CONCRETE Lbs. (kN)	6000 PSI (41.4 MPa) CONCRETE Lbs. (kN)	ASTM A307 (SAE 1018) Lbs. (kN)	ASTM A193 GR. B7 (SAE 4140) Lbs. (kN)	ASTM F593 AISI 304 SS Lbs. (kN)
3/8 (9.5)	3-3/8 (85.7)	1,300 (5.8)	1,465 (6.5)	1,500 (6.7)	1,040 (4.6)	2,170 (9.7)	1,995 (8.9)
1/2 (12.7)	4-1/2 (114.3)	2,855 (12.7)	3,145 (14.0)	3,145 (14.0)	1,870 (8.3)	3,895 (17.3)	3,585 (15.9)
5/8 (15.9)	5-5/8 (142.9)	4,575 (20.3)	4,950 (22.0)	4,950 (22.0)	2,940 (13.1)	6,125 (27.2)	5,635 (25.1)
3/4 (19.1)	6-3/4 (171.5)	6,430 (28.6)	6,430 (28.6)	6,430 (28.6)	4,250 (18.9)	8,855 (39.4)	7,440 (33.1)
7/8 (22.2)	7-7/8 (200.0)	N/A	7,575 (33.7)	8,140 (36.2)	5,800 (25.8)	12,760 (56.8)	10,730 (47.7)
1 (25.4)	9 (228.6)	9,630 (42.8)	10,085 (44.9)	11,600 (51.6)	7,590 (33.8)	15,810 (70.3)	13,285 (59.1)
1-1/4 (31.8)	11-1/4 (285.8)	16,270 (72.4)	16,270 (72.4)	16,270 (72.4)	11,900 (52.9)	24,790 (110.3)	18,840 (83.8)

1 Use lower value of either concrete or steel strength for allowable shear load.

2 Allowable loads taken from ICC Evaluation Report #4285 (formerly ICBO).

3 Linear interpolation may be used for intermediate spacing and edge distances.

PERFORMANCE TABLE

C6+ Epoxy Adhesive Installed in Solid Concrete

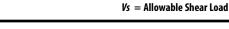
REIN	NFORCING BAR		BEDMENT ONCRETE		(13.8 MPa) CRETE	4000 PSI (CONC	(27.6 MPa) CRETE	ULTIM		ND YIELD STRENGT 60 REBAR	ſĦ
In	n. (mm)	In	. (mm)	ULTIMATI Lbs.	E TENSION (kN)				MINIMUM U TENSILE ST Lbs. (I	RENGTH	
# 3	(9.5)	3-3/8	(85.7)	7,020	(31.2)	9,200	(40.9)	6,600	(29.4)	9,900	(44.0)
		4-1/2	(114.3)	9,000	(40.1)	11,540	(51.3)	6,600	(29.4)	9,900	(44.0)
# 4	(12.7)	4-1/2	(114.3)	11,940	(53.1)	15,140	(67.3)	12,000	(53.4)	18,000	(80.1)
		6	(152.4)	16,703	(74.3)	18,880	(84.0)	12,000	(53.4)	18,000	(80.1)
# 5	(15.9)	5-5/8	(142.9)	14,120	(62.8)	27,740	(123.4)	18,600	(82.7)	27,900	(124.1)
		7-1/2	(190.5)	20,040	(89.1)	30,727	(136.7)	18,600	(82.7)	27,900	(124.1)
# 6	(19.1)	6-3/4	(171.5)	17,940	(79.8)	29,200	(129.9)	26,400	(117.4)	39,600	(176.2)
		9	(228.6)	25,520	(113.5)	41,640	(185.2)	26,400	(117.4)	39,600	(176.2)
		10	(254.0)	N	A/A	45,000	(200.2)	26,400	(117.4)	39,600	(176.2)
# 7	(22.2)	7-7/8	(200.0)	N/	Ά	45,850	(204.0)	36,000	(160.1)	54,000	(240.2)
		10-1/2	(266.7)	N	A/A	60,375	(268.6)	36,000	(160.1)	54,000	(240.2)
		13	(330.2)	N	A/A	65,300	(290.5)	36,000	(160.1)	54,000	(240.2)
# 8	(25.4)	9	(228.6)	30,960	(137.7)	54,180	(241.1)	47,400	(210.9)	71,100	(316.3)
		12	(304.8)	30,960	(137.7)	65,420	(291.0)	47,400	(210.9)	71,100	(316.3)
		16	(406.4)	N	/A	86,700	(385.7)	47,400	(210.9)	71,100	(316.3)
# 9	(28.6)	10-1/8	(257.2)	N	A/A	61,530	(273.7)	60,000	(266.9)	90,000	(400.4)
		13-1/2	(342.9)	N	A/A	81,240	(361.4)	60,000	(266.9)	90,000	(400.4)
		19	(482.6)	N	A/A	108,000	(480.4)	60,000	(266.9)	90,000	(400.4)
# 10	(31.8)	11-1/4	(285.8)	44,600	(198.4)	76,500	(340.3)	76,200	(339.0)	114,300	(508.5)
		15	(381.0)	49,220	(218.9)	82,320	(366.2)	76,200	(339.0)	114,300	(508.5)
		19	(482.6)		N/A	120,000	(533.8)	76,200	(339.0)	114,300	(508.5)

1 Allowable working loads for the single installations under static loading should not exceed 25% ultimate capacity or the allowable load of the anchor rod.

2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on minimum Grade 60 reinforcing bar. The use of lower strength rods will result in lower ultimate tension and shear loads.

3 SHEAR DATA: Provided the distance from the rebar to the edge of the concrete member exceeds 1.25 times the embedment depth of the rebar, calculate the ultimate shear load for the rebar anchorage as 60% of the ultimate tensile strength of the rebar.

Combined Tension and Shear Loading—for Adhesive Anchors


Allowable loads for anchors under tension and shear loading at the same time (combined loading) will be lower than the allowable loads for anchors subjected to 100% tension or 100% shear. Use the following equation to evaluate anchors in combined loading conditions:

 $\left(\frac{Na}{Ns}\right)^{5/3} + \left(\frac{Va}{Vs}\right)^{5/3} \le 1$

Na = Applied Service Tension Load

Va = Applied Service Shear Load

Ns = Allowable Tension Load

TW Reci Head^{*} Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

G5

High Strength Epoxy Tested in Accordance with **ICC-ES AC308**

DESCRIPTION/SUGGESTED SPECIFICAT 'IONS*

*Suggested Specifications see pages 47

The epoxy resin and hardener are completely mixed as they are dispensed from the dual cartridge through a static mixing nozzle, directly into the anchor hole.

See Appendix A (see pages 102-105) for strength design performance values.

Compliant with 2015 IBC. Category 1 performance rating. For use in uncracked, cracked concrete and seismic applications.

ADVANTAGES

FORMULATED FOR HOT OR WARM WEATHER

- Fire rated: tested up to 4hrs FRP
- High strength Epoxy
- 15 minute nozzle life at 70° degrees F

Easy to open, snap-off tip, no cutting required

International Standard **Fire Resistance** Performance

NON-OFFENSIVE ODOR

Virtually odorless, can be used indoors

Curina Times

		MADE IN USA
BASE MATERIAL	WORKING	FULL
(F°/C°)	TIME	CURE TIME
110°/ 43°	9 minutes	24 hours
90°/ 32°	9 minutes	24 hours
70°/ 20°	15 minutes	24 hours

ITW **Red Head** Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at www.itwredhead.com

APPLICATIONS

Anchoring a concrete traffic barrier wall to concrete bridge deck.

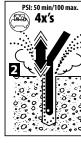
APPROVALS/LISTINGS

ICC -ES Evaluation Report No. ESR-1137

Conforms to ASTM C881-10; Type II & III, Grade 2, Class C with exception of gel time and elongation

U.S. Department of Transportation Approvals

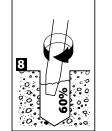
Cola RR-25940

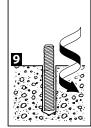

Certified to ANSI/NSF61

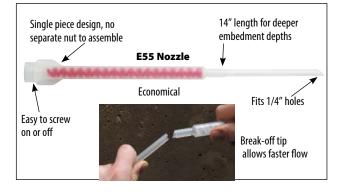

Florida Building Code Approved

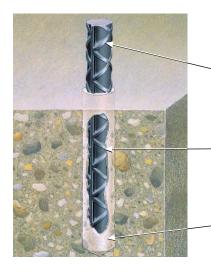
For the most current approvals/listings visit: www.itw-redhead.com

INSTALLATION STEPS









Steel column anchoring with threaded rod

FEATURES

ANCHORAGE TO SOLID CONCRETE

Rebar (shown) or Threaded Rod (carbon or stainless steel) supplied by contractor

G5 adhesive completely fills area between rod and hole creating a stress-free, high load anchorage

Pre-drilled hole in concrete; see performance tables for suggested hole sizes

TW Rec Head Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

G5-22 fl. oz. Ordering Information

PART NUMBER	DESCRIPTION	BOX QTY	PART NUMBER	DESCRIPTION	BOX QTY
	G5 Adhesive, 22 Fl. 0z. Cartridge	6			
	Mixing Nozzle for G5-22 Cartridge	•	1		
SARAHAMAN AND AND AND AND AND AND AND AND AND A	Nozzle diameter fits 3/8" to 5/8" holes		E202	Pneumatic Tool for G5-22 Cartridge	1
E55	(overall length of nozzle 14")	24			
****	Hand Dispenser for G5-22 Cartridges	1			
E102v2	Dispenses both 18 oz. and 22 oz. Cartridges				

Refer to page 56 for ordering information on brushes , hole plugs, and extension tubing for deep holes.

ESTIMATING TABLE

G5 22 Fluid Ounce Cartridge

Number of Anchoring Installations Per Cartridge* Using Reinforcing Bar with G5 Adhesive in Concrete

REBAR	DRILL		EMBEDMENT DEPTH IN INCHES (mm)													
	HOLE DIA. INCHES	1 (25.4)	2 (50.8)	3 (76.2)	4 (101.6)	5 (127.0)	6 (152.4)	7 (177.8)	8 (203.2)	9 (228.6)	10 (254.0)	11 (279.4)	12 (304.8)	13 (330.2)	14 (355.6)	15 (381.0)
# 3	1/2	388.9	194.5	129.6	97.2	77.8	64.8	55.6	48.6	43.2	38.9	35.4	32.4	29.9	27.8	25.9
# 4	5/8	293.8	146.9	97.9	73.5	58.5	49.0	42.0	36.7	32.6	29.4	26.7	24.5	22.6	21.0	19.6
# 5	3/4	225.4	112.7	75.1	56.3	45.1	37.6	32.2	28.2	25.0	22.5	20.5	18.8	17.3	16.1	15.0
# 6	7/8	182.0	91.0	60.7	45.5	36.4	30.3	26.0	22.7	20.2	18.2	16.5	15.2	14.0	13.0	12.1
#7	1-1/8	87.2	43.6	29.1	21.8	17.4	14.5	12.5	10.9	9.7	8.7	7.9	7.3	6.7	6.2	5.8
# 8	1-1/4	77.6	38.8	25.9	19.4	15.5	12.9	11.1	9.7	8.6	7.8	7.1	6.5	6.0	5.5	5.2
# 9	1-3/8	81.0	40.5	27.0	20.2	16.2	13.5	11.6	10.1	9.0	8.1	7.4	6.7	6.2	5.8	5.4
# 10	1-1/2	66.2	33.1	22.1	16.6	13.2	11.0	9.5	8.3	7.4	6.6	6.0	5.5	5.1	4.7	4.4
# 11	1-3/4	40.5	20.2	13.5	10.1	8.1	6.7	5.8	5.1	4.5	4.0	3.7	3.4	3.1	2.9	2.7

* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste. * Oversized holes acceptable but volume of adhesive will increase.

ESTIMATING TABLE

G5 22 Fluid Ounce Cartridge Using Threaded Rod with G5 Adhesive in Concrete

R	מנ	DRILL		EMBEDMENT DEPTH IN INCHES (mm)													
	(mm)	HOLE DIA. Inches	1 (25.4)	2 (50.8)	3 (76.2)	4 (101.6)	5 (127.0)	6 (152.4)	7 (177.8)	8 (203.2)	9 (228.6)	10 (254.0)	11 (279.4)	12 (304.8)	13 (330.2)	14 (355.6)	15 (381.0)
1/4	(6.4)	5/16	721.2	360.6	240.4	180.3	144.2	120.2	103.0	90.2	80.1	72.1	65.6	60.1	55.5	51.5	48.1
3/8	(9.5)	7/16	417.6	208.8	139.2	104.4	83.5	69.6	59.7	52.2	46.4	41.8	38.0	34.8	32.1	29.8	27.8
1/2	(12.7)	9/16	300.5	150.3	100.2	75.1	60.1	50.1	42.9	37.6	33.4	30.1	27.3	25.0	23.1	21.5	20.0
5/8	(15.9)	3/4	153.8	76.9	51.3	38.4	30.8	25.6	22.0	19.2	17.1	15.4	14.0	12.8	11.8	11.0	10.3
3/4	(19.1)	7/8	121.7	60.8	40.6	30.4	24.3	20.3	17.4	15.2	13.5	12.2	11.1	10.1	9.4	8.7	8.1
7/8	(22.2)	1	100.9	50.5	33.6	25.2	20.2	16.8	14.4	12.6	11.2	10.1	9.2	8.4	7.8	7.2	6.7
1	(25.4)	1-1/8	83.0	41.5	27.7	20.7	16.6	13.8	11.9	10.4	9.2	8.3	7.5	6.9	6.4	5.9	5.5
1-1/4	(31.8)	1-3/8	62.8	31.4	20.9	15.7	12.6	10.5	9.0	7.8	7.0	6.3	5.7	5.2	4.8	4.5	4.2

* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste. * Oversized holes acceptable but volume of adhesive will increase.

PACKAGING

- 1. Disposable, self-contained 22 ounce cartridge system capable of dispensing both epoxy components in the proper mixing ratio
- 2. Epoxy components dispensed through a static mixing nozzle that thoroughly mixes the material and places the epoxy at the base of the pre-drilled hole
- 3. Cartridge markings: Include manufacturer's name, batch number and best-used-by date, mix ratio by volume, ANSI hazard classification, and appropriate ANSI handling precautions

SUGGESTED SPECIFICATIONS

EPOXY ADHESIVE:

High Strength EPOXY ADHESIVE: USA Made, ARRA Certified

- 1. Odorless, two component resin and hardener, 100% solids (containing no solvents or VOC's), non-sag paste, insensitive to moisture, grey in color, extended working time.
- 2. Works in wet, damp, or submerged holes.
- 3. Conforms to ASTM C881-10; Type II & III, Grade 2, Class C with exception of gel time and elongation.
- 4. Compressive Strength, ASTM D695-02: 14,797 psi minimum.

G5 Average Ultimate Tension and Shear Loads^{1,2,3} for

- 5. Heat Deflection Temperature; 200°F minimum.
- 6. Shelf life: Best if used within 18 months.
- 7. Formulated for use in concrete.
- 8. Oversized and/or Core drilled holes permitted.
- 9. Fire-Resistance Performance of 4 Hours

PERFORMANCE TABLE

THREADED	MAX. CLA	MPING FORCE	EMBE	DMENT		2000 PSI (13.8	MPa) CONCRET	4000 PSI (27.6 MPa) CONCRETE				
ROD DIA. In. (mm)	AFTER PROPER CURE FtLbs. (Nm)		CONCRETE In. (mm)		TENS	ULTIMATE TENSION Lbs. (kN)		ULTIMATE SHEAR Lbs. (kN)		NATE ION (kn)	ULTIMATE SHEAR Lbs. (kN)	
3/8 (9.5)	9	(12.2)	3-3/8	(85.7)	5,060	(22.5)	6,227	(27.7)	8,396	(37.3)	6,227	(27.7)
			4-1/2	(114.3)	6,465	(28.8)	6,227	(27.7)	10,490	(46.7)	6,227	(27.7)
1/2 (12.7)	16	(21.6)	4-1/2	(114.3)	10,484	(46.6)	12,016	(53.5)	13,476	(59.9)	12,016	(53.5)
			6	(152.4)	12,392	(55.1)	12,016	(53.5)	19,166	(85.3)	12,016	(53.5)
			7-1/2	(190.5)	N/	A	12,016	(53.5)	20,572	(91.5)	12,016	(53.5)
5/8 (15.9)	47	(63.5)	5-5/8	(142.9)	14,634	(65.1)	17,547	(78.1)	20,880	(92.9)	17,547	(78.1)
			7-1/2	(190.5)	20,182	(89.8)	17,547	(78.1)	27,939	(124.3)	17,547	(78.1)
			9-3/8	(238.1)	N/#	A Contraction of the second seco	17,547	(78.1)	32,249	(143.5)	17,547	(78.1)
3/4 (19.1)	90	(121.5)	6-3/4	(171.5)	18,966	(84.4)	24,918	(110.8)	29,019	(129.1)	24,918	(110.8)
			9	(228.6)	25,988	(115.6)	24,918	(110.8)	43,812	(194.9)	24,918	(110.8)
			11-1/4	(285.8)	N/A	4	24,918	(110.8)	47,927	(213.2)	24,918	(110.8)
1 (25.4)	276	(372.6)	9	(228.6)	43,804	(194.9)	43,648	(194.2)	53,531	(238.1)	43,648	(194.2)
			12	(304.8)	45,351	(201.6)	43,648	(194.2)	64,022	(284.8)	43,648	(194.2)
			15	(381.0)	N/#	1	43,648	(194.2)	82,547	(367.2)	43,648	(194.2)

1 Allowable working loads for the single installations under static loading should not exceed 25% (an industry standard) capacity or the allowable load of the anchor rod.

2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of high strength threaded rod (ASTM A193 Gr. B7). The use of lower strength rods will result in lower ultimate tension and shear loads.

3 Linear interpolation may be used for intermediate spacing and edge distances.

G5 Allowable Tension Loads¹ for Threaded Rod Installed in Epoxy Adhesive Solid Concrete

THREADED ROD DIA.	MIN. EMBEDMENT		TENSION LOAD BASED BOND STRENGTH	ALLOWABLE TENSION LOAD BASED ON STEEL STRENGTH						
ln. (mm)	DEPTH In. (mm)	2000 PSI (13.8 MPa) CONCRETE Lbs. (kN)	4000 PSI (27.6 MPa) CONCRETE Lbs. (kN)	ASTM A307 (SAE 1018) Lbs. (kN)	ASTM A193 GR. B7 (SAE 4140) Lbs. (kN)	ASTM F593 AISI 304 SS Lbs. (kN)				
3/8 (9.5)	3-3/8 (85.7)	1,265 (5.6)	2,092 (9.3)	2,080 (9.3)	4,340 (19.3)	3,995 (17.8)				
	4-1/2 (114.3)	1,616 (7.2)	2,622 (11.7)	2,080 (9.3)	4,340 (19.3)	3,995 (17.8)				
1/2 (12.7)	4-1/2 (114.3)	3,004 (13.4)	3,369 (15.0)	3,730 (16.6)	7,780 (34.6)	7,155 (31.8)				
	6 (152.4)	3,098 (13.8)	4,791 (21.3)	3,730 (16.6)	7,780 (34.6)	7,155 (31.8)				
5/8 (15.9)	5-5/8 (142.9)	3,659 (16.3)	5,220 (23.2)	5,870 (26.1)	12,230 (54.4)	11,250 (50.0)				
	7-1/2 (190.5)	5,046 (22.4)	6,985 (31.1)	5,870 (26.1)	12,230 (54.4)	11,250 (50.0)				
3/4 (19.1)	6-3/4 (171.5)	4,742 (21.1)	7,255 (32.3)	8,490 (37.8)	17,690 (78.7)	14,860 (66.1)				
	9 (228.6)	6,497 (28.9)	10,057 (44.7)	8,490 (37.8)	17,690 (78.7)	14,860 (66.1)				
1 (25.4)	9 (228.6)	10,951 (48.7)	11,209 (49.9)	15,180 (67.5)	31,620 (140.6)	26,560 (118.1)				
	12 (304.8)	11,338 (50.4)	15,923 (70.8)	15,180 (67.5)	31,620 (140.6)	26,560 (118.1)				

1 Use lower value of either bond or steel strength for allowable tensile load.

2 Linear interpolation may be used for intermediate spacing and edge distances.

PERFORMANCE TABLE

G5 Allowable Shear Loads^{1,2} for Threaded Rod Installed in Epoxy Adhesive Solid Concrete

THREADED ROD DIA. In. (mm)	MIN. EMBEDMENT DEPTH In. (mm)		EAR LOAD BASED TE STRENGTH 4000 PSI (27.6 MPa) CONCRETE Lbs. (kN)	ASTM A307 (SAE 1018) Lbs. (kN)	LLOWABLE SHEAR LOAD BASI ON STEEL STRENGTH ASTM A193 GR. B7 (SAE 4140) Lbs. (kN)	ED ASTM F593 AISI 304 SS Lbs. (kN)
3/8 (9.5)	3-3/8 (85.7)	1,557 (6.9)	1,557 (6.9)	1,040 (4.6)	2,170 (9.7)	1,995 (8.9)
1/2 (12.7)	4-1/2 (114.3)	3,004 (13.4)	3,004 (13.4)	1,870 (8.3)	3,895 (17.3)	3,585 (15.9)
5/8 (15.9)	5-5/8 (142.9)	4,387 (19.5)	4,387 (19.5)	2,940 (13.1)	6,125 (27.2)	5,635 (25.1)
3/4 (19.1)	6-3/4 (171.5)	6,230 (27.7)	6,230 (27.7)	4,250 (18.9)	8,855 (39.4)	7,440 (33.1)
1 (25.4)	9 (228.6)	10,912 (48.5)	10,912 (48.5)	7,590 (33.8)	15,810 (70.3)	13,285 (59.1)

1 Use lower value of either concrete or steel strength for allowable shear load.

 $\binom{Na}{Ns}$

2 Linear interpolation may be used for intermediate spacing and edge distances. (See page 49)

Combined Tension and Shear Loading—for G5 Adhesive Anchors

Allowable loads for anchors under tension and shear loading at the same time (combined loading) will be lower than the allowable loads for anchors subjected to 100% tension or 100% shear. Use the following equation to evaluate anchors in combined loading conditions:

\v_/	Ns = Allowable Tension Load	<i>Vs</i> = Allowable Shear Load
$+\left(\frac{Va}{Vs}\right) \leq 1$	<i>Na</i> = Applied Service Tension Load	<i>Va</i> = Applied Service Shear Load

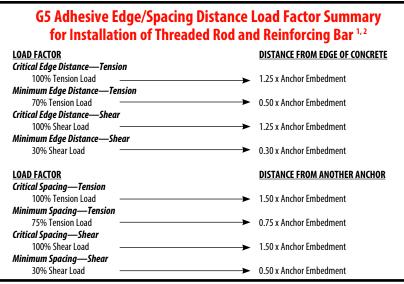
G5 Average Ultimate Tension Loads^{1,2,3} for Reinforcing Bar

Epoxy Adhesive	Installed in Solid Concrete

				Joina	CONCIC					
REINFORCING BAR In. (mm)	IN CO	DMENT NCRETE (mm)	IN CO ULTIMA	2000 PSI (13.8 MPa) 4000 PSI (27.6 MPa) ULTIMA IN CONCRETE IN CONCRETE ULTIMATE TENSION ULTIMATE TENSION ULTIMATE TENSION MINIMUM YI Lbs. (kN) Lbs. (kN) STRENGT		<u>GRADE 6</u> M YIELD NGTH	E AND YIELD STRE 50 REBAR MINIMUM U TENSILE ST Lbs. (ILTIMATE RENGTH		
# 3 (9.5)	3-3/8	(85.7)	7,480	(33.3)	8,090	(35.9)	6,600	(29.4)	9,900	(44.0)
	4-1/2	(114.3)	N	'A	10,488	(46.6)	6,600	(29.4)	9,900	(44.0)
# 4 (12.7)	4-1/2	(114.3)	N	/A	14,471	(64.4)	12,000	(53.4)	18,000	(80.1)
	6	(152.4)	11,235	(50.0)	20,396	(90.7)	12,000	(53.4)	18,000	(80.1)
# 5 (15.9)	5-5/8	(142.9)	N	'A	21,273	(94.6)	18,600	(82.7)	27,900	(124.1)
	7-1/2	(190.5)	18,108	(80.6)	31,863	(141.7)	18,600	(82.7)	27,900	(124.1)
#6 (19.1)	6-3/4	(171.5)	N	/A	27,677	(123.1)	26,400	(117.4)	39,600	(176.2)
	9	(228.6)	29,338	(130.5)	47,879	(212.9)	26,400	(117.4)	39,600	(176.2)
#7 (22.2)	7-7/8	(200.0)	N	Ϋ́Α	43,905	(195.3)	36,000	(160.1)	54,000	(240.2)
	10-1/2	(266.7)	N	A	52,046	(231.5)	36,000	(160.1)	54,000	(240.2)
# 8 (25.4)	9	(228.6)	N	'A	55,676	(247.7)	47,400	(210.9)	71,100	(316.3)
	12	(304.8)	48,000	(213.5)	77,358	(344.1)	47,400	(210.9)	71,100	(316.3)
# 9 (28.6)	10-1/8	(257.2)	N	A	62,443	(277.8)	60,000	(266.9)	90,000	(400.4)
	13-1/2	(342.9)	N	A	71,959	(320.1)	60,000	(266.9)	90,000	(400.4)
# 10 (31.8)	11-1/4	(285.8)	N	A	70,165	(312.1)	76,200	(339.0)	114,300	(508.5)
	15	(381.0)	N	A	78,545	(349.4)	76,200	(339.0)	114,300	(508.5)

1 Allowable working loads for the single installations under static loading should not exceed 25% ultimate capacity or the allowable load of the anchor rod.

2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of minimum Grade 60 reinforcing bar. The use of lower strength rods will result in lower ultimate tension and shear loads.


3 SHEAR DATA: Provided the distance from the rebar to the edge of the concrete member exceeds 1.25 times the embedment depth of the rebar, calculate the ultimate shear load for the rebar anchorage as 60% of the ultimate tensile strength of the rebar.

G5 Average Ultimate Tension Loads^{1,2} for Threaded Rod Epoxy Adhesive Installed in Solid Concrete

THREADED ROD In. (mm)	HOLE DIAMETER In. (mm)	EMBEDMENT IN CONCRETE In. (mm)	≥ 3000 PSI (13.8 MPa) IN CONCRETE ULTIMATE TENSION Lbs. (kN)		
1-1/2 (38.1)	1-3/4 (44.5)	13 (330.2) 17 (431.8) 19 (482.6)	100,250 (490.4) 143,600 (638.8) 150,000 (667.3)		
2 (50.8)	2-1/4 (57.2)	16 (406.4) 17 (431.8)	150,000 (667.3) 169,700 (754.9)		

1 Allowable working loads for the single installations under static loading should not exceed 25% ultimate capacity or the allowable load of the anchor rod.

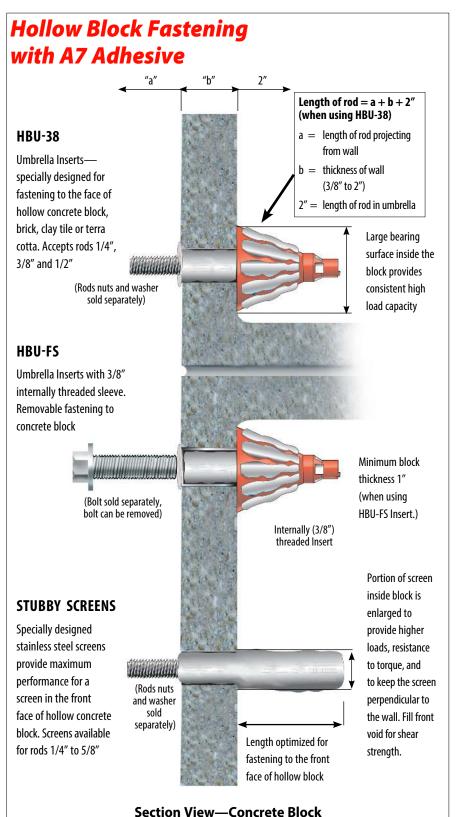
2 Ultimate load values are ≥ 3000 psi in stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of high strength threaded rod (ASTM A193 Gr. B7). The use of lower strength rods will result in lower ultimate tension loads. See chart below.

1 Use linear interpolation for load factors at edge distances or spacing distances between critical and minimum.

2 Anchors are affected by multiple combination of spacing and/or edge distance loading and direction of the loading. Use the product of tension and shear loading factors in design.

Umbrella Inserts and Stubby Screens

High Performance Adhesive Systems for Fastening to Hollow Base Materials



HBU-FS

IT W Red Head Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

DESCRIPTION/ADVANTAGES

Umbrella Inserts and Screens

<image>

- Drill 3/4" diameter hole, 3-3/4" deep using rotation only drilling mode and carbide tipped drill bit. Clean out hole with forced air. Complete hole preparation with use of a brush and repeat cleaning with compressed air (leave no dust or slurry).
- Place umbrella on piece of threaded rod, stretch umbrella over the rod by pulling the white collar back approximately 1". Squeeze orange portion of umbrella and push umbrella into hole.
- Push umbrella body through the hole and completely into void. Remove threaded rod. (Do not use in solid base materials. For anchoring into block web, ends and mortar joints, use screens.)
- 4. Dispense and discard a sufficient amount of adhesive from new cartridge until a uniform adhesive mix is achieved. Inject approximately 1-1/2 fl. oz. of adhesive into umbrella (7 to 8 pumps using manual dispenser) to completely fill umbrella.
- **5.** 3/8" rod uses a centering ring (supplied with inserts) to keep rod perpendicular to the wall.
- 6. Insert rod into the filled umbrella using a slow, soft twisting motion until it contacts the back of umbrella.
- **7.** Wait for appropriate temperature/cure time before tightening fixture to the recommended torque of 10 ft./lbs.

Installation instructions for stubby screens provided on page 56.

SELECTION CHART	2	
Umbrella Inse	rts	
DESCRIPTION	PART NO.	BOX CONTENTS
Umbrella Anchor	HBU-38	20 Umbrellas 20 Centering Rings
3/8" Internally Threaded Insert with Umbrella	HBU-FS	10 Umbrellas 10 Flush Sleeve Insert

SELECTION CHART

Stubby Screens

PART NO.	DESCRIP	QTY/BOX	
HB 14-2	1/4″ x 2″	Stainless Screen	100
HB 38-312	3/8″ x 3-1/2″	Stainless Screen	100
HB 12-312	1/2″ x 3-1/2″	Stainless Screen	50
HB 58-412	5/8″ x 4-1/2″	Stainless Screen	50

ESTIMATING TABLE

Umbrella Using Threaded Rod and Umbrella Inserts with A7

ROD In (mm)	DRILL HOLE DIA. INCHES	VOLUME OF CARTRIDGE		UMBRELLA INSERT WITH EMBEDMENT OF 3-3/4"
3/8 (9.5)	3/4	A7	5 fluid oz.	3
		A7	8 fluid oz.	5
		A7	10 fluid oz.	6
		A7	28 fluid oz.	17

* These estimates do not account for waste.

ESTIMATING TABLE

Stubby Number of Anchoring Installations Per Cartridge* Using Threaded Rod and Screens Stubby Screens with A7

ROD	DRILL HOLE DIA.	VOLUME OF	S	NCHES)	
ln (mm)	INCHES	CARTRIDGE	2″	3-1/2″	4-1/2″
1/4 (6.4)	3/8	A7 8 fluid oz.	39		
		A7 10 fluid oz.	48		
		A7 28 fluid oz.	135		
3/8 (9.5)	1/2	A7 8 fluid oz.		17	
		A7 10 fluid oz.		21	
		A7 28 fluid oz.		62	
1/2 (12.7)	5/8	A7 8 fluid oz.		12	
		A7 10 fluid oz.		15	
		A7 28 fluid oz.		43	
5/8 (15.9)	3/4	A7 8 fluid oz.			7
		A7 10 fluid oz.			11
		A7 28 fluid oz.			24

*These estimates do not account for waste.

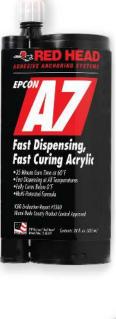
PERFORMANCE TABLE

Load Values^{1, 2} Using A7 in Hollow Concrete Block

ROD DIA. In. (mm)		MAX CLAMPING FORCE AFTER PROPER CURE FtLbs. (Nm)	DRILL HOLE DIA. In. (mm)	EMBEDMENT (SCREEN LENGTH) In. (mm)	ULTIMATE TENSION Lbs. (Kn)	ULTIMATE SHEAR Lbs. (Kn)
Umbrella	3/8 (9.5)	10 (13)	3/4 (19.1)	3-3/4 (95.3)	3,558 (15.8)	3,109 (13.8)
	1/4 (6.4)	4 (5)	3/8 (9.5)	2 -1/4 (57.1)	1,550 (6.9)	1,900 (8.5)
Stubby Screens	3/8 (9.5)	7 (9)	1/2 (12.7)	3-7/8 (98.4)	1,661 (7.4)	2,071 (9.2)
Stubby Screens	1/2 (12.7)	10 (13)	5/8 (15.9)	4 (101.6)	2,458 (10.9)	4,467 (19.9)
	5/8 (15.9)	13 (17)	3/4 (19.1)	5-1/8 (130.2)	2,543 (10.9)	5,047 (22.4)

1 Allowable working loads should not exceed 25% ultimate capacity. Based upon testing using ASTM A193, Grade B7 rod. Divide by 4.

2 The tabulated values are for anchors installed at a minimum 12 inch edge distance and minimum 8 inch spacing.



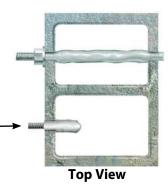
Screen Tubes

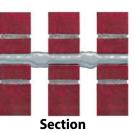
Quality Adhesive Systems for **Fastening Through Block and for Brick Pinning Applications**

Nylon Screens Stainless Screens

DESCRIPTION/SUGGESTED SPECIFICATIONS

Screens Used with A7


HOLLOW CONCRETE BLOCK


Maximum holding strength in concrete block can be obtained by fastening to both the front and back of the block using an adhesive screen tube and threaded rod.

For attachments to single face of block, see page 53 for information on "umbrella anchors" and "stubby screens"

BRICK WALL

Systems designed for Seismic Retrofit, Brick Pinning or fastening to brick various lengths and diameters available to accommodate site conditions.

HB SERIES—**STAINLESS SCREENS**

Special version, "dosage control" available for overhead and underwater installations

the hole (subflush).

Available in 1/4" to 3/4" diameters

The no-drip feature of A7 adhesive makes it particularly well suited for brick pinning applications.

ADVANTAGES

HBP SERIES—NYLON SCREENS

- 30%-50% savings from stainless steel screens
- Comparable performance values
- Easier to insert and span across voids
- Flexible material is less susceptible to damage from crushing

INSTALLATION STEPS

1. Drill hole to the length of the screen plus 1 diameter, using rotation-only drilling mode. Clean out hole with forced air. Complete hole preparation with use of a brush and repeat cleaning with forced air (leave no dust or slurry).

When starting new cartridge or new nozzle, dispense and discard enough adhesive until uniform adhesive mix is achieved. Insert the nozzle into the bottom of the screen and fill screen completely full (use extension tube if needed to reach bottom of screen).

Corrosion resistant

While holding the tab of the screen against the wall, hand insert the selected rod slowly into the screen tube with a slow twisting motion. Pull screen flush to face and coat with adhesive. Wait for appropriate cure time before torquing fixture in place.

56

RED HEAD

A7-28

Screen Tubes

SELECTION CHART Screen Tubes HB Stainless Screen HBP Nylon Screen STAINLESS STEEL SCREENS NYLON SCREENS ROD DIA. SCREEN LENGTH In. (mm) ln. (mm) PART NO. QTY/BOX PART NO. QTY/BOX 1/4 (6.4) 6 (152.4) HB 14-6 100 N/A N/A 8 100 N/A N/A 1/4 (6.4) (203.2) HB 14-8 1/4 (6.4) 10 (254.0) HB 14-10 100 N/A N/A 3/8 HB 38-6 50 HBP 38-6 50 (9.5) 6 (152.4) 3/8 (9.5) 8 (203.2) HB 38-8 25 HBP 38-8 25 10 (254.0) 25 25 HB 38-10 3/8 (9.5) HBP 38-10 (12.7) HB 12-6 50 HBP 12-6 50 1/2 6 (152.4) 25 25 1/2 (12.7) 8 (203.2) HB 12-8 HBP 12-8 HB 12-10 25 HBP 12-10 25 1/2 (12.7) 10 (254.0) 5/8 (15.9) 6 (152.4) HB 58-6 25 HBP 58-6 40 5/8 (15.9) 8 (203.2) HB 58-8 20 HBP 58-8 40 5/8 (15.9) 10 (254.0) HB 58-10 20 HBP 58-10 40 20 N/A 8 HB 34-8 N/A 3/4 (19.1) (203.2) 3/4 (19.1) 10 (254.0) HB 34-10 10 HBP 34-10 20 10 HB 34-13 HBP 34-13 20 3/4 (19.1) 13 (330.2)

*Not available in standard strength nylon screens. Longer screens available through specials.

ESTIMATING TABLE

ROD	DRILL HOLE DIA.	VOLUME OF		SCREEN LE	NGTH (INCHES)	
ln (mm)	INCHES	CARTRIDGE	6″	8″	10″	13″
1/4 (6.4)	3/8	A7 8 fluid oz.	13	10	8	
		A7 10 fluid oz.	16	12	10	
		A7 28 fluid oz.	45	35	28	
3/8 (9.5)	1/2	A7 8 fluid oz.	10	8	6	
		A7 10 fluid oz.	12	10	7.5	
		A7 28 fluid oz.	37	29	23	
1/2 (12.7)	5/8	A7 8 fluid oz.	7	5	4	
		A7 10 fluid oz.	9	6	5	
		A7 28 fluid oz.	26	18	14	
5/8 (15.9)	3/4	A7 8 fluid oz.	5	4	3	
		A7 10 fluid oz.	6	5	4	
		A7 28 fluid oz.	18	14	10	
3/4 (19.1)	7/8	A7 8 fluid oz.		2.5	2	1
		A7 10 fluid oz.		3	2.5	1.75
		A7 28 fluid oz.		9	6	5

* These estimates do not account for waste.

Screen Tubes

PERFORMANCE TABLE

Load Values Average Ultimate Loads for HBP (nylon) or HB (stainless) Screens Used with A7 in Hollow Concrete Block¹

ROD DIA. In. (mm)	DRILL HOLE DIA. In. (mm)	MAX CLAMPING FORCE AFTER PROPER CURE FtLbs. (Nm)	SCREEN EMBEDMENT (LENGTH) In. (mm)	ULTIMATE TENSION Lbs. (kN)	ULTIMATE SHEAR Lbs. (kN)
1/4 (6.4)	3/8 (9.5)	5 (6)	8 (203.2)	2,072 (9.2)	2,264 (10.1)
3/8 (9.5)	1/2 (12.7)	12 (16)	8 (203.2)	2,360 (10.5)	2,668 (11.9)
1/2 (12.7)	5/8 (15.9)	19 (25)	8 (203.2)	2,647 (11.8)	2,668 (11.9)
5/8 (15.9)	3/4 (19.1)	26 (35)	8 (203.2)	2,647 (11.8)	3,578 (15.9)
3/4 (19.1)	7/8 (22.2)	28 (37)	8 (203.2)	2,647 (11.8)	4,573 (20.3)

1 Allowable working loads should not exceed 25% of ultimate capacity. Loads based upon testing with ASTM A193, Grade B7 rods. Divide by 4.

For grout filled, concrete block or solid red brick units, see page 37.

Accessories

DESCRIPTION/ADVANTAGES

Hole Plugs	Special plugs make overhead installations easier, centers rod in hole, and keeps adhesive off threads				
	ROD DIAMETER	HOLE DIAMETER	PART #	QTY	
	3/8″	7/16″	E038	25	
	1/2″	9/16″	E012	25	
	5/8″	3/4″	E058	20	
	3/4″	7/8″	E034	20	
	7/8″	1″	E078	10	
	1″	1-1/8″	E010	10	
	1-1/4″	1-3/8″	E114	10	

Nylon Brushes

Proper hole cleaning using a brush is essential to achieve optimum performance

PART No.	ANCHOR DIA.	REBAR DIA.	DRILL BIT Dia.	OVERALL LENGTH	BRUSH DIA.	QTY/BAG
B012	3/8 or 1/2	No. 3	7/16 or 9/16	8-1/2	1/2	1
B034	5/8 or 3/4	No. 4 and 5	3/4 or 7/8	8-1/2	3/4	1
B100	7/8 or 1	No. 6 and 7	1 or 1-1/8	12	1.00	1
B114	1-1/4	No. 8 and 9	1-3/8	13	1.25	1
B112	1-1/2	No. 10	1-1/2	17	1.50	1

Match rod diameter with hold size.

Proper hole cleaning using a brush is essential to achieve optimum performance

	PART No.	ANCHOR DIA.	REBAR DIA.	DRILL BIT Dia.	OVERALL LENGTH	BRUSH DIA.	QTY/BAG
	SB038	3/8	No. 3	7/16	4-7/8	5/8	4
	SB012	1/2	No. 4	5/8	4-7/8	3/4	4
	SB058	5/8	No. 5	3/4	4-7/8	1.0	4
(SB034	3/4	No. 6	7/8	4-7/8	1-1/4	4
	SB078	7/8	No. 7	1	5-1/8	1-1/2	4
	SB010	1	No. 8	1-1/8	5-1/4	1-5/8	4
	SB125	1-1/4	No. 10	1-3/8	5-1/4	1-3/4	4
	ESDS-38 Wire brush 12" usable extension with SDS+ adaptor						1
	EHAN-38	W	ire brush 12″ ι	ısable extensio	n with T-Hand	dle	1

* Proper hole cleaning using a wire brush is essential to achieve optimum performance. Brush may be used up to 50 holes depending on concrete strength. Brushes required for installation of No. 4, No. 8 rebar and larger are available with lead time.

Plastic A Extension Tubing in

Attaches to Adhesive System nozzles for deep hole installations

DESCRIPTION	PART #	QTY
6-Foot Straight Tubing can cut to proper size		
(.39 in I.D. x .43 in. 0.D.)	E25-6	6

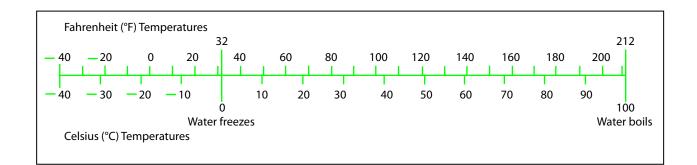
Blow Pump

DESCRIPTION	PART #	QTY/BAG
Blow Pump	BP-10	1
Minimum hole 7/16″.		•

Wire Brush Extensions

GOOD FOR ALL HOLES EXCEPT 7/16" DIAMETER

#TW Red Head®


Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Conversion Table (soft)

6.35 mm=	1/4″	50 mm =	2″
9.5 mm =	3/8″	98 mm =	3-7/8″
10 mm =	3/8″	100 mm =	4″
12 mm =	1/2″	130 mm =	5-1/8″
16 mm =	5/8″	153 mm =	6″
20 mm =	3/4″	156 mm =	6-1/8″
22 mm =	7/8″	178 mm =	7″
24 mm =	1″	183 mm =	7-1/4″
25 mm =	1″	190 mm =	7-1/2″
30 mm =	1-3/16″	200 mm =	7-7/8″
35 mm =	1-3/8″	213 mm =	8-3/8″
40 mm =	1-1/2″	250 mm =	9-7/8″

CONCRETE ANCHORING SPECIALISTS

Selection Guide Anchors for Concrete Applications

	Alteriors	or concrete App	
ANCHOR TYPE		KEY FEATURES	SIZE RANGE (Inches)
	Trubolt [®] Wedge Anchors (see page 65)	 2015 IBC Compliant Seismic zone (A-B) approved Fully-threaded Length ID head stamped Stainless steel clip Through-fixture fastening 	Diameter: 1/4 – 1 Length: 1-3/4 – 12
	Trubolt*+ Seismic Wedge Anchors ID STAMP (see page 71)	 2015 IBC Compliant All seismic zone (A-F) and cracked concrete approved Fully-threaded Length ID head stamped Through-fixture fastening 	Diameter: 3/8, 1/2, 5/8 & 3/4 Length: 3 – 8-1/2
	Trubolt *+ SS Seismic Wedge Anchors	 2015 IBC Compliant ICC-ES ESR 2427 for Cracked and Uncracked Concrete Patented grooved clip design Meets ductility requirements of ACI 318 D.3 3 Fully threaded Anchor body and clip are Made in the U.S. 	Diameter: 1/2 and 5/8 Length: 3-3/4 - 7 A.
	Large Diameter Tapcon (LDT) and LDT Self-Threading Anchor	Anti-rotation serrated washer Extra large hex washer head Length ID head stamped Through-fixture fastening	LDT with Zinc Plating Diameter: $3/8 - 3/4$ Length: $1-3/4 - 6-1/4$ LDTX with EnvireX Coating Diameter: $3/8 \& 1/2$ Length: $3 - 5$
	Boa [™] Coil Expansion Anchors	 Heavy-Duty, Reusable Fastening Easy installation Removable High shear strength Zinc plated carbon steel to ASTM B633, SC1, Type III 	Diameter: 1/2 – 3/4 Length: 3 – 6
	Multi-Set II [®] Drop-In Anchors	 RM: Flanged body to keep anchor flush with surface of concrete RL: Non-flanged body for recessed setting RX: Designed for hollow core and post tension concrete CL: Designed for one-sided forming, accepts coil rod 	Diameter: $1/4 - 3/4$ Length: $1 - 3-3/16$ Diameter: $1/4 - 3/4$ Length: $1 - 3-3/16$ Diameter: $3/8 \& 1/2$ Length: $3/4 - 1$ Diameter: $1/2 \& 3/4$ Length: $2 \& 3-3/16$
	Dynabolt [®] Masonry Sleeve Anchors (see page 84) For both Hollow and Solid Concrete	 Concrete, block and brick Many choices of head styles Through-fixture fastening Available in 304 stainless steel 	Diameter: 1/4 – 3/4 Length: 5/8 – 6-1/4

TW Red Head[°] Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Selection Guide

	CO	RROSION RESISTANCE	PERFORMANCE	HEAD STYLES	APPROVALS/LISTINGS
Trubolt cont'd		Zinc-plated carbon steel to ASTM B633, SC1, Type III Hot dipped galvanized to ASTM A-153 Type 304 and 316 stainless steel	Ultimate Pullout Performance in 4000 psi Concrete up to 26,540 lbs. (1″ diameter)	Hex nut Tie-Wire version	ICC Evaluation Service, Inc. ESR-2251 Underwriters Laboratories Factory Mutual Caltrans Meets or exceeds U.S. Government G.S.A. Specification A-A-1923A Type 4 (formerly GSA: FF-S-325 Group II, Type 4, Class 1)
Trubolt+ conťd	-	Zinc-plated carbon steel to ASTM B633, SC1, Type III	Pullout strength of 4,980 lbs in 2,500 psi Cracked Concrete (1/2" diameter).	Hex nut	ICC Evaluation Service, Inc. # ESR-2427 -Category 1 performance rating -2015 IBC compliant -Meets ACI 318 ductility requirements -Tested in accordance with ACI 355.2 & ICC-ES AC193 -Listed for use in seismic zones A, B, C, D, E, & F -3/8", 1/2", 5/8" and 3/4" diameter anchors listed in ESR-2427 City of Los Angeles - #RR25867 Florida Building Code (FBC)
Trubolt+ SS	-	Stainless Steel AISI 316	Pullout strength of 4,980 lbs in 2,500 psi Cracked Concrete (1/2" diameter).	Hex nut	ICC-ES ESR 2427 for cracked and uncracked concrete Apprroved for use in ALL SEISMIC ZONES (A-F) 2015 International Building Code (IBC) 2015 International Residential Code (IRC) Florida Building Code (FBC)
LDT cont'd	-	Zinc-plated carbon steel to ASTM B695 & B633 Type 410 stainless steel	Ultimate Pullout Performance in 4,000 psi Concrete up to 23,266 lbs. (3/4" diameter)	Finished bolt style	
	-	Envire Approved for use in ACQ and MCQ I *Excessive content of copper in the	umber*	t the anchor finish.	1,000 hours salt spray ASTM B117
Boa Coil cont'd	-	Zinc plated carbon steel to ASTM B633, SC1, Type III	Ultimate Pullout Performance in 4000 psi Concrete up to 38,500 lbs. (3/4" diameter)	Finished bolt style	
Multi-Set II Drop-In cont'd		Zinc-plated carbon steel to ASTM B633, SC1, Type III Type 304 and 316 stainless steel	Ultimate Pullout Performance in 4000 psi Concrete up to 9,480 lbs. (3/4" diameter)	RM: Flanged body RL: Non-flanged body Use any bolt or threaded rod	GSA: A-A-55614 Type 1 (Formerly GSA: FF-S-325 Group VIII) Underwriters Laboratories Factory Mutual Caltrans
Dynabolt cont'd		Zinc-plated carbon steel to ASTM B633, SC1, Type III Type 304 stainless steel	Ultimate Pullout Performance in 4000 psi Concrete up to 8,900 lbs. (3/4" diameter)	Flat head Hex nut Acorn nut Tie-Wire Round head Threshold flat head	GSA: A-A-1922A (Formerly GSA: FF-S-325 Group II, Type 3, Class 3) Factory Mutual

TW **Red Head**

62

Anchors for Concrete Applications

continued from pages 50-51

ANCHOR TYPE			KEY FEATURES		SIZE RANGE (Inches)
Tapcon[®] Concrete Anchors with Advanced Threadform Technology™					
	Original (see page 90)	Maxi-Set (see page 91)	SCOTS (see page 93)	XL (see page 95)	StormGuard (see page 97)
SAMMYS®			Original Tapcon with Blue Clima	1/4″ dia. anchor seal™	Diameter: 1/4
Hurricane Protection An	chor page 99)		Quick and easy installations		Length: 1-1/4 – 6
Hammer-S	ot™		Easy installation	1	Diameter: 3/16 & 1/4
Nail-drive Anchors		Community of the second	Low profile hea	d	Length: 7/8 – 2
(see	page 100)		,	2	
Poly-Set [®]		Nicolastic Constanting	Unique twisting		Diameter: 3/16 – 1/4
All-purpose plastic			Resistant to mo atmospheric col	isture, chemicals and nditions	Length: 1-1/4 – 1-7/16 3/16 " uses #6 – 8 screw
plug anchors	Page 101) For Concrete,	Hollow and Drywall	Available in pre		1/4 " uses #10 – 12 screw

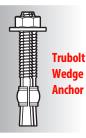
Selection Guide cont'd

	CORROSION RESISTANCE	PERFORMANCE	HEAD STYLES	APPROVALS/LISTINGS
Tapcon cont'd	 Patented Trade Secret Climaseal[®] coating Type 410 stainless steel The above is for the Original and 410 SS Tap For data on other Tapcon products see their Tapcon Maxi-Set on page 94, Tapcon SCOTS Tapcon StormGuard on page 100. 	product pages as follows:	Hex head Phillips flat head	Blue Climaseal [™] ICC Evaluation Service, Inc.— ESR-1671 ICC Evaluation Service, Inc.— ESR-2202 Miami-Dade County Florida Building Code 410 Stainless Steel Miami-Dade County Florida Building Code
SAMMYS Anchor cont'd	■ Blue Climaseal [™]	Ultimate Pullout Performance in 4000 psi Concrete at 3,100 lbs. (2-1/4" Embedment)	Threaded Cap	Miami Dade County
Hammer- Set cont'd	Zinc alloy	Ultimate Pullout Performance in 4000 psi Concrete up to 793 lbs.	Mushroom head	GSA: A-A-1925A Type 1 (zinc mushroom) (Formerly GSA: FF-S-325 Group V, Type 2, Class 3)
Poly-Set cont'd	Polyethylene Anchor (accepts corrosion resistant screw of your choice)		Kit comes with phillips head screw (accepts scr style of your choice)	

Because applications vary, ITW RED HEAD cannot guarantee the performance of this product. Each customer assumes all responsibility and risk for the use of this product. The safe handling and the suitability of this product for use is the sole responsibility of the customer. Specific job site conditions should be considered when selecting the proper product. Should you have any questions, please call the Technical Assistance Department at 800-848-5611.

Trubolt[®] Wedge Anchors

Dependable, Heavy-Duty, Inspectable, Wedge Type **Expansion** Anchor


2015 IBC

DESCRIPTION/SUGGESTED SPECIFICATIONS

Wedge Type Anchors—

SPECIFIED FOR ANCHORAGE INTO CONCRETE

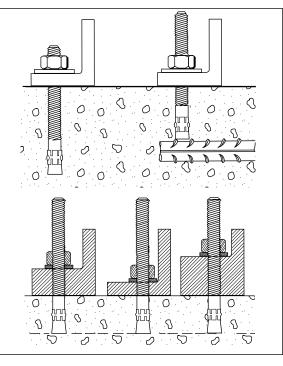
Trubolt Wedge anchors feature a stainless steel expansion clip, threaded stud body, nut and washer. Anchor bodies are made of plated carbon steel, hot-dipped galvanized carbon steel, type 304 stainless steel or type 316 stainless steel as identified in the drawings or other notations.

The exposed end of the anchor is stamped to identify anchor length. Stampings should be preserved during installation for any subsequent embedment verification.

Use carbide tipped hammer drill bits made in accordance with ANSI B212.15-1994 to install anchors.

Anchors are tested to ACI 355.2 and ICC-ES AC193. Anchors are listed by the following agencies as required by the local building code: ICC-ES, UL, FM, City of Los Angeles, California State Fire Marshal and Caltrans.

See Appendix B (pages 106-107) for performance values in accordance to 2015 IBC.


ADVANTAGES

- 2015 International Building Code (IBC) Compliant for 1/4" through 1/2" diameters-carbon steel
- Versatile fully threaded design is standard on sizes up to 3/4" diameter and 10" length
- Anchor diameter equals hole diameter
- Standard carbon and stainless steel anchors
- Non bottom-bearing, may be used in hole depth exceeding anchor length
- Can be installed through the work fixture, eliminating hole spotting
- Inspectable torque values, indicating proper installation

Compliant Fully Threaded Advantage

Trubolt's fully threaded feature eliminates subsurface obstruction problems.

Fully threaded design accommodates various material thicknesses at the same embedment. One anchor length saves time and money.

ITW **Red Head** Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at www.itwredhead.com

Trubolt[®]

Wedge Ancho

Trubolt Anchors

APPLICATIONS

Anchoring machinery and conveyors is a common wedge anchor application. The Trubolt is fully threaded to allow a large range of embedment and fixture thickness.

Length ID Head Stamp—provides for

embedment inspection after installation

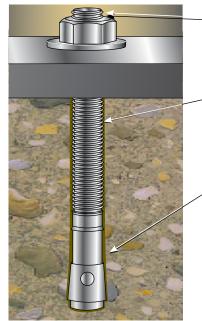
Cold-Formed—manufacturing process

Stainless steel split expansion ring

Anchor Body—available in zinc-plated steel, hot-dipped galvanized steel, 304

stainless steel and 316 stainless steel

Fully Threaded Design


adds strength

LENGTH INDICATION CODE*

CODE	LENGTI	H OF ANCHOR	CODE	LENGTH OF ANCHO				
A	1-1/2 < 2 (38.1 < 50.8)		К	6-1/2 < 7	(165.1 < 177.8)			
В	2 < 2-1/2	(50.8 < 63.5)	L	7 < 7-1/2	(177.8 < 190.5)			
C	2-1/2 < 3	(63.5 < 76.2)	М	7-1/2 < 8	(190.5 < 203.2)			
D	3 < 3-1/2	(76.2 < 88.9)	Ν	8 < 8-1/2	(203.2 < 215.9)			
E	3-1/2 < 4	(88.9 < 101.6)	0	8-1/2 < 9	(215.9 < 228.6)			
F	4 < 4-1/2	(101.6 < 114.3)	Р	9 < 9-1/2	(228.6 < 241.3)			
G	4-1/2 < 5	(114.3 < 127.0)	Q	9-1/2 < 10	(241.3 < 254.0)			
Н	5 < 5-1/2	(127.0 < 139.7)	R	10 < 11	(254.0 < 279.4)			
I	5-1/2 < 6	(139.7 < 152.4)	S	11 < 12	(279.4 < 304.8)			
J	6 < 6-1/2	(152.4 < 165.1)	T	12 < 13	(304.8 < 330.2)			

*Located on top of anchor for easy inspection.

FEATURES

TRUBOLT° WEDGE ANCHOR

APPROVALS/LISTINGS

Trubolt®

Wedge Anchors

ICC Evaluation Service, Inc. ESR-2251

- Category 1 performance rating
- 2015 IBC compliant
- Meets ACI 318 ductility requirements
- Tested in accordance with ACI 355.2 and ICC-ES AC193
- For use in seismic zones A & B
- 1/4", 3/8" & 1/2" diameter anchors listed in ESR-2251
- **Underwriters** Laboratories

Factory Mutual

Caltrans

Meets or exceeds U.S. Government G.S.A. Specification A-A-1923A Type 4 (formerly GSA: FF-S-325 Group II, Type 4, Class 1)

Made in USA

INSTALLATION STEPS

- Select a carbide drill bit with a diameter equal to the anchor diameter. Drill hole to any depth exceeding the desired embedment. See chart for minimum recommended embedment.
- **2.** Clean hole or continue drilling additional depth to accommodate drill fines.
- Assemble washer and nut, leaving top of stud exposed through nut. Drive anchor through material to be fastened until washer is flush to surface of material.
- Expand anchor by tightening nut 3-5 turns past the hand tight position, or to the specified torque requirement.
- ** ONLY FOR USE IN CONCRETE**

SELECTION CHARTS

Trubolt Carbon Steel with Zinc Plating

Typical Applications—

PART

NUMBER

TW-1400

N/A

THREAD

LENGTH

O

Meets ASTM B633 SC1, Type III specifications for electroplating of 5um = .0002" thickness. This material is well suited for non-corrosive environments.

OVERALL

LENGTH

MAX. THICKNESS

OF MATERIAL

ANCHOR DIA.

& DRILL BIT

	Structural Columns, Machinery, Equipment, etc.		In. (mm)	SIZE (THREADS) PER INCH	In. (mm)	TO BE FASTENED In. (mm)	lbs.
Sectore and		WS-1416	3/4 (19.1)	1/4″ - 20	1-3/4 (44.5)	3/8 (9.5)	100/ 3.1
	Environment—Interior	WS-1422	1-1/4 (31.8)		2-1/4 (57.2)	7/8 (22.2)	100/ 3.6
	(non-corrosive)	WS-1432	2-1/4 (57.2)		3-1/4 (82.6)	1-7/8 (47.6)	100/ 4.7
	Level of Corrosion—Low	WS-3822	1-1/8 (28.6)	3/8″ - 16	2-1/4 (57.2)	3/8 (9.5)	50/ 4.1
		WS-3826	1-5/8 (41.3)		2-3/4 (69.9)	7/8 (22.2)	50/ 4.7
		WS-3830	1-3/4 (44.5)		3 (76.2)	1-1/8 (28.6)	50/ 5.0
Tio Wiro Wo	dge for hanging	WS-3836	2-1/2 (63.5)		3-3/4 (95.3)	1-7/8 (47.6)	50/ 5.9
		WS-3850	3-3/4 (95.2)		5 (127.0)	3-1/8 (79.4)	50/ 7.4
🔬 suspen	ded ceiling	WS-3870	3-7/8 (98.4)		7 (177.8)	5-1/8 (130.2)	50/ 10.4
a and a suspen	-	WS-1226	1-1/4 (31.8)	1/2″ - 13	2-3/4 (69.9)	1/8 (3.2)	25/ 4.6
AN	R	WS-1236	2-1/4 (57.2)		3-3/4 (95.3)	1 (25.4)	25/ 5.7
	ă I	WS-1242	2-3/4 (69.9)		4-1/4 (108.0)	1-1/2 (38.1)	25/ 6.2
1 6	<u>a</u>	WS-1244	3 (76.2)		4-1/2 (114.3)	1-3/4 (44.5)	25/ 6.5
		WS-1254	4 (101.6)		5-1/2 (139.7)	2-3/4 (69.9)	25/ 7.7
1	1	WS-1270	5-1/2 (139.7)		7 (177.8)	4-1/4 (108.0)	25/ 9.3
		WS-5834	1-3/4 (44.5)	5/8" - 11	3-1/2 (88.9)	1/8 (3.2)	10/ 3.6
		WS-5842	2-1/2 (63.5)		4-1/4 (108.0)	7/8 (22.2)	10/ 4.1
		WS-5850	3-1/4 (82.6)		5 (127.0)	1-5/8 (41.3)	10/ 4.7
		WS-5860	4-1/4 (107.9)		6 (152.4)	2-5/8 (66.7)	10/ 5.4
		WS-5870	5-1/4 (133.4)		7 (177.8)	3-5/8 (92.1)	10/ 6.2
		WS-5884	5-3/4 (146.0)		8-1/2 (215.9)	5-1/8 (130.2)	10/ 8.0
		WS-58100	5-3/4 (146.0)		10 (254.0)	6-5/8 (168.3)	10/ 9.4
	0 0	WS-3442	2-3/8 (60.3)	3/4" - 10	4-1/4 (108.0)	1/4 (31.8)	10/ 6.8
		WS-3446	2-7/8 (73.0)		4-3/4 (120.7)	3/4 (19.1)	10/ 7.4
		WS-3454	3-5/8 (92.1)		5-1/2 (139.7)	1-1/2 (38.1)	10/ 8.1
		WS-3462	4-3/8 (111.1)		6-1/4 (158.8)	2-1/4 (57.2)	10/ 9.1
		WS-3470	5-1/8 (130.2)		7 (177.8)	3 (76.2)	10/ 9.7
		WS-3484	5-3/4 (146.0)		8-1/2 (215.9)	4-1/2 (114.3)	10/ 12.3
		WS-34100	5-3/4 (146.0)		10 (254.0)	6 (152.4)	10/ 14.0
		WS-34120	1-3/4 (44.5)		12 (304.8)	8 (203.2)	10/ 16.6
		WS-7860	2-1/2 (63.5)	7/8″- 9	6 (152.4)	1-3/8 (34.9)	5/ 6.3
		WS-7880	2-1/2 (63.5)		8 (203.2)	3-3/8 (85.7)	5/ 8.1
		WS-78100	2-1/2 (63.5)		10 (254.0)	5-3/8 (136.5)	5/ 9.8
		WS-10060	2-1/2 (63.5)	1″ - 8	6 (152.4)	1/2 (12.7)	5/ 8.3
		WS-10090	2-1/2 (63.5)		9 (228.6)	3-1/2 (88.9)	5/ 11.6
		WS-100120	2-1/2 (63.5)		12 (304.8)	6-1/2 (165.1)	5/ 15.0
		TIE WIRE					
		TW-1400	N/A	1/4″	2-1/8 (54.0)	9/32-hole (7.1)	100/ 3.6
		THU 4 400 V	N1 / A		2 4 /0 /54 0		DUUK

SELECTION CHARTS

Trubolt Carbon Steel with Hot-Dipped Galvanizing

Meets ASTM A153 Class specifications for hot-dipped galvanizing > 45um = .002". It is highly recommended for damp, humid environments near coastal regions. Hot-dipped galvanized Trubolts have a coating thickness of zinc that is almost 10 times as thick as electroplating. This creates greater corrosion resistance at a minimal cost.

2-1/8 (54.0)

9/32-hole

(7.1)

Typical Applications — Railings, Signage, Awnings, etc.	PART NUMBER	THREAD LENGTH In. (mm)	ANCHOR DIA. & DRILL BIT SIZE (THREADS) PER INCH	OVERALL LENGTH In. (mm)	MAX. THICKNESS OF MATERIAL TO BE FASTENED In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
Environment—Rural/	WS-1226G	1-1/4 (31.8)	1/2″ - 13	2-3/4 (69.9)	1/8 (3.2)	25/ 4.8	200/ 39
Suburban (exterior environ-	WS-1242G	2-3/4 (69.9)		4-1/4 (108.0)	1-1/2 (38.1)	25/ 6.7	150/ 41
ment—	WS-1254G	4 (101.6)		5-1/2 (139.7)	2-3/4 (69.9)	25/ 8.0	150/ 49
essentially unpolluted areas)	WS-1270G	5-1/2 (139.7)		7 (177.8)	4-1/4 (108.0)	25/ 9.7	150/ 59
Level of Corrosion—	WS-5834G	1-3/4 (44.5)	5/8″ - 11	3-1/2 (88.9)	1/8 (3.2)	10/ 3.7	100/ 38
Low to Medium	WS-5860G	4-1/4 (107.9)		6 (152.4)	2-5/8 (66.7)	10/ 5.6	50/ 29
	WS-3446G WS-3454G WS-3484G	2-7/8 (73.0) 3-5/8 (92.1) 5-3/4 (146.0)	3/4″ - 10	4-3/4 (120.7) 5-1/2 (139.7) 8-1/2 (215.9)	3/4 (19.1) 1-1/2 (38.1) 4-1/2 (114.3)	10/ 7.5 10/ 8.4 10/ 12.5	60/ 46 50/ 42 30/ 38

QTY/WT

PER MASTER

CARTON

lbs.

1000/ 32

1000/ 37

800/ 39

500/41

400/ 39

400/41

300/ 36

250/ 38

250/ 53

200/ 38

150/35

150/ 38

150/39

150/47

150/ 57

100/ 37 100/42

100/ 48

50/ 28

30/ 19

30/ 25

30/29

60/42 60/45

50/41 30/28

30/ 30

30/ 38

30/43

30/ 51

25/32

15/ 25

15/ 30

25/43

15/ 36

15/46

1000/ 36

1500/73

BULK

QTY/WT

PER BOX

SELECTION CHARTS

Trubolt Type 304 **Stainless Steel**

Serves many applications well. It withstands rusting in architectural and food processing environments and resists organic chemicals, dye stuffs and many inorganic chemicals.

Typical Applications— Cladding, Stadium Seating, etc. Environment—Urban (slight to moderate degree of pollution) Level of Corrosion—Medium

PART NUMBER	THREAD LENGTH In. (mm)	ANCHOR DIA. & DRILL BIT SIZE (THREADS) PER INCH	OVERALL LENGTH In. (mm)	MAX. THICKNESS OF MATERIAL TO BE FASTENED In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
WW-1416	3/4 (19.1)	1/4″ - 20	1-3/4 (44.5)	3/8 (9.5)	100/ 3.2	1000/ 32
WW-1422	1-1/4 (31.8)		2-1/4 (57.2)	7/8 (22.2)	100/ 3.7	1000/ 37
WW-1432	2-1/4 (57.2)		3-1/4 (82.6)	1-7/8 (47.6)	100/ 4.8	800/ 39
WW-3822	1-1/8 (28.6)	3/8″ - 16	2-1/4 (57.2)	3/8 (9.5)	50/ 4.1	500/ 41
WW-3826	1-5/8 (41.3)		2-3/4 (69.9)	7/8 (22.2)	50/ 4.8	400/ 39
WW-3830	1-3/4 (44.5)		3 (76.2)	1-1/8 (28.6)	50/ 5.1	400/ 42
WW-3836	2-1/2 (63.5)		3-3/4 (95.3)	1-7/8 (47.6)	50/ 6.0	300/ 37
WW-3850	3-3/4 (95.3)		5 (127.0)	3-1/8 (79.4)	50/ 7.5	250/ 39
WW-1226 WW-1236 WW-1242 WW-1254 WW-1270	$\begin{array}{c} 1-1/4 & (31.8) \\ 2-1/4 & (57.2) \\ 2-3/4 & (69.9) \\ 3 & (76.2) \\ 3-1/2 & (88.9) \end{array}$	1/2″ - 13	2-3/4 (69.9) 3-3/4 (95.3) 4-1/4 (108.0) 5-1/2 (139.7) 7 (177.8)	$\begin{array}{c} 1/8 & (3.2) \\ 1 & (25.4) \\ 1-1/2 & (38.1) \\ 2-3/4 & (69.9) \\ 4-1/4 & (108.0) \end{array}$	25/ 4.7 25/ 5.8 25/ 6.3 25/ 7.7 25/ 9.4	200/ 38 150/ 36 150/ 39 150/ 47 150/ 57
WW-5834	1-3/4 (44.5)	5/8″ - 11	3-1/2 (88.9)	1/8 (3.2)	10/ 3.6	100/ 37
WW-5842	2-1/2 (63.5)		4-1/4 (108.0)	7/8 (22.2)	10/ 4.2	100/ 43
WW-5850	3-1/4 (82.6)		5 (127.0)	1-5/8 (41.3)	10/ 4.8	100/ 49
WW-5860	4-1/4 (107.9)		6 (152.4)	2-5/8 (66.7)	10/ 5.5	50/ 28
WW-5870	3-1/2 (88.9)		7 (177.8)	3-5/8 (92.1)	10/ 6.2	30/ 20
WW-5884	3-1/2 (88.9)		8-1/2 (215.9)	5-1/8 (130.2)	10/ 8.0	30/ 25
WW-3446	2-7/8 (73.0)	3/4″ - 10	4-3/4 (120.7)	3/4 (19.1)	10/ 6.7	60/ 41
WW-3454	3-5/8 (92.1)		5-1/2 (139.7)	1-1/2 (38.1)	10/ 7.5	50/ 38
WW-3470	3-1/2 (88.9)		7 (177.8)	3 (76.2)	10/ 9.2	30/ 28
WW-3484	3-1/2 (88.9)		8-1/2 (215.9)	4-1/2 (114.3)	10/ 12.3	30/ 38
WW-34100	1-3/4 (44.5)		10 (254.0)	6 (152.4)	10/ 13.5	30/ 42
WW-10060	2-1/2 (63.5)	1″ - 8	6 (152.4)	1/2 (12.7)	5/ 8.3	25/ 43
WW-10090	2-1/2 (63.5)		9 (228.6)	3-1/2 (88.9)	5/ 11.4	15/ 35

* For continuous extreme low temperature applications, use stainless steel.

SELECTION CHARTS

Trubolt Type 316 Stainless Steel Typical Applications— Pumps, Diffusers, Gates, Weir Plates, etc. Environment—Industria (moderate to heavy

Typical Applications— Tunnels, Dams, Tiles, Lighting Fixtures, etc. Environment— Marine (heavy atmospheri pollution) Level of Corrosion—High

Contains more nickel and chromium than Type 304, and 2%-3% molybdenum, which gives it better
corrosion resistance. It is especially more effective in chloride environments that tend to cause pitting

_	PART NUMBER	THREAD LENGTH In. (mm)	ANCHOR DIA. & DRILL BIT SIZE (THREADS) PER INCH	DRILL BIT LENGTH THICKNESS PER B(E (THREADS) In. (mm) OF MATERIAL Ibs.		QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
rial	SWW-1422 SWW-1432	1-1/4 (31.8) 2-1/4 (57.2)	1/4″ - 20	2-1/4 (57.2) 3-1/4 (82.6)	7/8 (22.2) 1-1/8 (28.6)	100/ 3.7 100/ 4.8	1000/ 37 1000/ 39
	SWW-3822 SWW-3826 SWW-3830 SWW-3836 SWW-3850	1-1/8 (28.6) 1-5/8 (41.3) 1-3/4 (44.5) 2-1/2 (63.5) 3-3/4 (95.3)	3/8" - 16	2-1/4 (57.2) 2-3/4 (69.9) 3 (76.2) 3-3/4 (95.5) 5 (127.0)	3/8 (9.5) 7/8 (22.2) 1-1/8 (28.6) 1-7/8 (47.6) 3-1/8 (79.4)	50/ 4.1 50/ 4.8 50/ 5.2 50/ 6.0 50/ 7.5	500/ 41 400/ 39 400/ 42 300/ 37 250/ 39
_	SWW-1226 SWW-1236 SWW-1242 SWW-1254	1-1/4 (31.8) 2-1/4 (57.2) 2-3/4 (69.9) 3 (76.2)	1/2″ - 13	2-3/4 (69.9) 3-3/4 (95.3) 4-1/4 (108.0) 5-1/2 (139.7)	1/8 (3.2) 1 (25.4) 1-1/2 (38.1) 2-3/4 (69.9)	25/ 4.7 25/ 5.8 25/ 6.5 25/ 7.8	200/ 39 150/ 36 150/ 40 150/ 48
eric	SWW-5842 SWW-5850 SWW-5870	2-1/2 (63.5) 3-1/4 (82.6) 3-1/2 (88.9)	5/8" - 11	4-1/4 (108.0) 5 (127.0) 7 (177.8)	7/8 (22.2) 1-5/8 (41.3) 3-5/8 (92.1)	10/ 4.2 10/ 4.8 10/ 6.7	100/ 43 100/ 49 30/ 21

* For continuous extreme low temperature applications, use stainless steel.

Trubolt

Anchors Ultimate Tension and Shear Values (Lbs/kN) in Concrete*

	weage Anchors Offimate Tension and Sh				iear values (LOS/KN) în Concrete"										
ANCHOR	INSTALLATION	EMBEDMENT	ANCHOR TYPE	f	f'c = 2000 PSI (13.8 MPa)			fc	= 4000 PS	5I (27.6 MP	a)	fc	= 6000 P	SI (41.4 M	IPa)
DIA. In. (mm)	TORQUE Ft. Lbs. (Nm)	DEPTH In. (mm)		TENSION Lbs. (kN)			EAR (kN)	TENSION Lbs. (kN)		SHEAR Lbs. (kN)		TENSION Lbs. (kN)		SHEAR Lbs. (kN)	
1/4 (6.4)	4 (5.4)	1-1/8 (28.6) 1-15/16 (49.2) 2-1/8 (54.0)		1,180 2,100 2,260	(5.2) (9.3) (10.1)	1,400 1,680 1,680	(6.2) (7.5) (7.5)	1,780 3,300 3,300	(7.9) (14.7) (14.7)	1,400 1,680 1,680	(6.2) (7.5) (7.5)	1,900 3,300 3,300	(8.5) (14.7) (14.7)	1,400 1,680 1,680	(6.2) (7.5) (7.5)
3/8 (9.5)	25 (33.9)	1-1/2 (38.1) 3 (76.2) 4 (101.6)		1,620 3,480 4,800	(7.5) (15.5) (21.4)	2,320 4,000 4,000	(10.3) (17.8) (17.8)	2,240 5,940 5,940	(10.0) (26.4) (26.4)	2,620 4,140 4,140	(11.7) (18.4) (18.4)	2,840 6,120 6,120	(12.6) (27.2) (27.2)	3,160 4,500 4,500	(14.1) (20.0) (20.0)
1/2 (12.7)	55 (74.6)	2-1/4 (57.2) 4-1/8 (104.8) 6 (152.4)	WS-Carbon or WS-G	3,455 4,660 5,340	(20.7) (20.7) (23.8)	4,760 7,240 7,240	(21.2) (32.2) (32.2)	4,920 9,640 9,640	(22.7) (42.9) (42.9)	4,760 7,240 7,240	(21.2) (32.2) (32.2)	6,025 10,820 10,820	(31.3) (48.1) (48.1)	7,040 8,160 8,160	(31.3) (36.3) (36.3)
5/8 (15.9)	90 (122.0)	2-3/4 (69.9) 5-1/8 (130.2) 7-1/2 (190.5)	Hot-Dipped Galvanized or WW-304 S.S.	5,185 6,580 7,060	(29.3) (29.3) (31.4)	7,120 9,600 9,600	(31.7) (42.7) (42.7)	7,180 14,920 15,020	(31.9) (66.4) (66.8)	7,120 11,900 11,900	(31.7) (52.9) (52.9)	9,225 16,380 16,380	(43.2) (72.9) (72.9)	9,616 12,520 12,520	(42.8 (55.7) (55.7)
3/4 (19.1)	110 (149.2)	3-1/4 (82.6) 6-5/8 (168.3) 10 (254.0)	or SWW-316 S.S.	6,765 10,980 10,980	(31.7) (48.8) (48.8)	10,120 20,320 20,320	(45.0) (90.4) (90.4)	10,840 17,700 17,880	(48.2) (78.7) (79.5)	13,720 23,740 23,740	(61.0) (105.6) (105.6)	13,300 20,260 23,580	(59.2) (90.1) (104.9)	15,980 23,740 23,740	(71.1) (105.6) (105.6)
7/8 (22.2)	250 (339.0)	3-3/4 (95.3) 6-1/4 (158.8) 8 (203.2)		9,290 14,660 14,660	(42.3) (65.2) (65.2)	13,160 20,880 20,880	(58.5) (92.9) (92.9)	14,740 20,940 20,940	(65.6) (93.1) (93.1)	16,580 28,800 28,800	(73.8) (128.1) (128.1)	17,420 24,360 24,360	(77.5) (108.4) (108.4)	19,160 28,800 28,800	(85.2) (128.1) (128.1)
1 (25.4)	300 (406.7)	4-1/2 (114.3) 7-3/8 (187.3) 9-1/2 (241.3)		11,770 14,600 18,700	(62.0) (64.9) (83.2)	16,080 28,680 28,680	(71.5) (127.6) (127.6)	19,245 23,980 26,540	(89.8) (106.7) (118.1)	22,820 37,940 37,940	(101.5) (168.8) (168.8)	21,180 33,260 33,260	(94.2) (148.0) (148.0)	24,480 38,080 38,080	(108.9) (169.4) (169.4)

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

* For Tie-Wire Wedge Anchor, TW-1400, use tension data from 1/4" diameter with 1-1/8" embedment.

* For continuous extreme low temperature applications, use stainless steel.

PERFORMANCE TABLE

Trubolt Ultimate Tension and Shear Values (Lbs/kN) in Wedge Anchors Lightweight Concrete*

ANCHOR DIA. In. (mm)	INSTALLATION TORQUE Ft. Lbs. (Nm)	EMBEDMENT DEPTH In. (mm)	DEPTH TYPE		IT CONCRETE SI (20.7 MPa)	LOWER FLUTE OF STEEL DECK WITH LIGHTWEIGHT CONCRETE FILL f'c = 3000 PSI (20.7 MPa)		
				TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
3/8 (9.5)	25 (33.9)	1-1/2 (38.1) 3 (76.2)	WS-Carbon or	1,175 (5.2) 2,825 (12.6)	1,480 (6.6) 2,440 (10.9)	1,900 (8.5) 2,840 (12.6)	3,160 (14.1) 4,000 (17.8)	
1/2 (12.7)	55 (74.6)	2-1/4 (57.2) 3 (76.2) 4 (101.6)	WS-G Hot-Dipped Galvanized	2,925 (13.0) 3,470 (15.4) 4,290 (19.1)	2,855 (12.7) 3,450 (15.3) 3,450 (15.3)	3,400 (15.1) 4,480 (19.9) 4,800 (21.4)	5,380 (23.9) 6,620 (29.4) 6,440 (28.6)	
5/8 (15.9)	90 (122.0)	3 (76.2) 5 (127.0)	or WW-304 S.S. or	4,375 (19.5) 6,350 (28.2)	4,360 (19.4) 6,335 (28.2)	4,720 (21.0) 6,580 (29.3)	5,500 (24.5) 9,140 (40.7)	
3/4 (19.1)	110 (149.2)	3-1/4 (82.6) 5-1/4 (133.4)	SWW-316 S.S.	5,390 (24.0) 7,295 (32.5)	7,150 (31.8) 10,750 (47.8)	5,840 (26.0) 7,040 (31.3)	8,880 (39.5) N/A	

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

		ubolt Anchors			nded E Loads*		nd Spacing D)istanc	e Req	uirem	ents
ANCHOR DIA. In. (mm)	EMBEDMENT DEPTH In. (mm)	ANCHOR TYPE	EDGE DI REQUIF OBTAIN WORKIN In. (r	RED TO I MAX. G LOAD	MIN. I DISTANCE THE LOAD APPLIEE In. (r	AT WHICH FACTOR) = .60	MIN. EDGE DISTANCE AT WHICH THE LOAD FACTOR APPLIED = .20 In. (mm)	SPAC REQUIR OBTAIN WORKIN In. (r	ED TO I MAX. G LOAD	MIN. ALLC SPACING B ANCHORS LOAD FA APPLIED	ETWEEN In. (mm) ACTOR
1/4 (6.4)	1-1/8 (28.6) 1-15/16 (49.2)		2 1-15/16	(50.8) (49.2)	1-5/16 1	(33.3) (25.4)	N/A N/A	3-15/16 3-7/8	(100.0) (98.4)	2 1-15/16	(50.8) (49.2)
3/8 (9.5)	1-1/2 (38.1) 3 (76.2)	WS-Carbon	2-5/8 3-3/4	(66.7) (95.3)	1-3/4 3	(44.5) (76.2)	N/A 1-1/2 (38.1)	5-1/4 6	(133.4) (152.4)	2-5/8 3	(66.7) (76.2)
1/2 (12.7)	2-1/4 (57.2) 4-1/8 (104.8)	or WS-G	3-15/16 5-3/16	(100.0) (131.8)	2-9/16 3-1/8	(65.1) (79.4)	N/A 1-9/16 (39.7)	7-7/8 6-3/16	(200.0) (157.2)	3-15/16 3-1/8	(100.0) (79.4)
5/8 (15.9)	2-3/4 (69.9) 5-1/8 (130.2)	Hot-Dipped Galvanized	4-13/16 6-7/16	(122.2) (163.5)	3-1/8 3-7/8	(79.4) (98.4)	N/A 1-15/16 (49.2)	9-5/8 7-11/16	(244.5) (195.3)	4-13/16 3-7/8	(122.2) (98.4)
3/4 (19.1)	3-1/4 (82.6) 6-5/8 (168.3)	or WW-304 S.S.	5-11/16 6-5/16	(144.5) (160.3)	3-3/4 5	(95.3) (127.0)	N/A 2-1/2 (63.5)	11-3/8 9-15/16	(288.9) (252.4)	5-11/16 5	(144.5) (127.0)
7/8 (22.2)	3-3/4 (95.3) 6-1/4 (158.8)	or SWW-316 S.S.	6-9/16 8-1/2	(166.7) (215.9)	4-5/16 6-1/4	(109.5) (158.8)	N/A 3-1/8 (79.4)	13-1/8 12-1/2	(333.4) (317.5)	6-9/16 6-1/4	(166.7) (158.8)
1 (25.4)	4-1/4 (108.0) 7-3/8 (187.3)	1	7-7/8 10-1/16	(200.0) (255.6)	5-1/8 7-3/8	(130.2) (187.3)	N/A 3-11/16 (93.7)	15-3/4 14-3/4	(400.1) (374.7)	7-7/8 7-3/8	(200.0) (187.3)

* Spacing and edge distances shall be divided by 0.75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.

PERFORMANCE TABLE

Trubolt *Recommended Edge and Spacing Distance Requirements Wedge Anchors for Tension Loads**

ANCHOR DIA. In. (mm)	EMBEDMENT DEPTH In. (mm)	ANCHOR Type	EDGE DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)	MIN. ALLOWABLE EDGE DISTANCE AT WHICH THE LOAD FACTOR APPLIED = .65 In. (mm)	SPACING REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)	MIN. ALLOWABLE SPACING AT WHICH THE LOAD FACTOR APPLIED = .70 In. (mm)	
1/4 (6.4)	1-1/8 (28.6) 1-15/16 (49.2) 2-1/8 (54.0)		2 (50.8) 1-15/16 (49.2) 1-5/8 (41.3)	1 (25.4) 1 (25.4) 13/16 (20.6)	3-15/16 (100.0) 3-7/8 (98.4) 3-3/16 (81.0)	2 (50.8) 1-15/16 (49.2) 1-5/8 (41.3)	
3/8 (9.5)	1-1/2 (38.1) 3 (76.2) 4 (101.6)		2-5/8 (66.7) 3 (76.2) 3 (76.2)	1-5/16 (33.3) 1-1/2 (38.1) 1-1/2 (38.1)	5-1/4 (133.4) 6 (152.4) 6 (152.4)	2-5/8 (66.7) 3 (76.2) 3 (76.2)	
1/2 (12.7)	2-1/4 (57.2) 4-1/8 (104.8) 6 (152.4)	WS-Carbon or WS-G	3-15/16 (100.0) 3-1/8 (79.4) 4-1/2 (114.3)	2 (50.8) 1-9/16 (39.7) 2-1/4 (57.2)	7-7/8 (200.0) 6-3/16 (157.2) 9 (228.6)	3-15/16 (100.0) 3-1/8 (79.4) 4-1/2 (114.3)	
5/8 (15.9)	2-3/4 (69.9) 5-1/8 (130.2) 7-1/2 (190.5)	Hot-Dipped Galvanized or	4-13/16 (122.2) 3-7/8 (98.4) 5-5/8 (142.9)	2-7/16 (61.9) 1-15/16 (49.2) 2-13/16 (71.4)	9-5/8 (244.5) 7-1/16 (195.3) 11-1/4 (285.8)	4-13/16 (122.2) 3-7/8 (98.4) 5-5/8 (142.9)	
3/4 (19.1)	3-1/4 (82.6) 6-5/8 (168.3) 10 (254.0)	WW-304 S.S. or SWW-316 S.S.	5-11/16 (144.5) 5 (127.0) 7-1/2 (190.5)	2-7/8 (73.0) 2-1/2 (63.5) 3-3/4 (95.3)	11-3/8 (288.9) 9-15/16 (252.4) 15 (381.0)	5-11/16 (144.5) 5 (127.0) 7-1/2 (190.5)	
7/8 (22.2)	3-3/4 (95.3) 6-1/4 (158.8) 8 (203.2)		6-9/16 (166.7) 6-1/4 (158.8) 6 (152.4)	3-5/16 (84.1) 3-1/8 (79.4) 3 (76.2)	13-1/8 (333.4) 12-1/2 (317.5) 12 (304.8)	6-9/16 (166.7) 6-1/4 (158.8) 6 (152.4)	
1 (25.4)	4-1/2 (114.3) 7-3/8 (187.3) 9-1/2 (241.3)		7-7/8 (200.0) 7-3/8 (187.3) 7-1/8 (181.0)	3-15/16 (100.0) 3-11/16 (93.7) 3-9/16 (90.5)	15-3/4 (400.1) 14-3/4 (374.7) 14-1/4 (362.0)	7-7/8 (200.0) 7-3/8 (187.3) 7-1/8 (181.0)	

* Spacing and edge distances shall be divided by 0.75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.

Combined Tension and Shear Loading—for Trubolt Anchors

Allowable loads for anchors subjected to combined shear and tension forces are determined by the following equation:

 $(Ps/Pt)^{5/3} + (Vs/Vt)^{5/3} \le 1$

Ps = Applied tension load Vs = Applied shear load Pt = Allowable tension load Vt = Allowable shear load

Trubolt®+ Seismic Wedge Anchors

DESCRIPTION/SUGGESTED SPECIFICATIONS

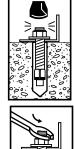
Seismic Wedge Type Anchors—

Trubolt+ Wedge anchors consist of a high-strength threaded stud body, expansion clip, nut and washer. Anchor bodies are made of plated carbon steel. The expansion clip consists of a split cylindrical ring with undercutting grooves.

The exposed end of the anchor is stamped to identify anchor length. Stampings should be preserved during installation for any subsequent embedment verification.

Use carbide tipped hammer drill bits made in accordance with ANSI B212.15-1994 to install anchors.

Anchors are tested to ACI 355.2 and ICC-ES AC193. Anchors are listed by the following agencies as required by the local building code: ICC-ES, and City of Los Angeles.


See Appendix C (pages 108-109) for performance values in accordance with 2015 IBC.

INSTALLATION STEPS

 Select a carbide drill bit with a diameter equal to the anchor diameter. Drill hole to any depth exceeding the desired embedment. See chart for minimum recommended embedment.

2. Clean hole or continue drilling additional depth to accommodate drill fines

- Assemble washer and nut, leaving top of stud exposed through nut. Drive anchor through material to be fastened until washer is flush to surface of material.
- Expand anchor by tightening nut 3-5 turns past the hand tight position, or to the specified torgue requirement.

SELECTION CHART

Seismic Wedge Anchors	Meets ASTM B633 SC1, Type III specifications for electroplating of 5um = .0002″ thickness. This coating is well suited for non-
Carbon Steel with Zinc Plating	corrosive environments.

Carbon Steel with Zinc Plating corrosive environments.							
PART NUMBER	THREAD LENGTH In. (mm)	ANCHOR DIA. & DRILL BIT SIZE (THREADS) PER INCH	OVERALL LENGTH In. (mm)	MAX. THICKNESS OF MATERIAL TO BE FASTENED In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.	
CWS-3830	1-5/8 (41.3)	3/8″ - 16	3 (76.2)	5/8 (15.9)	50/ 5.3	400/42	
CWS-3836	2-3/8 (60.3)	3/8″ - 16	3-3/4 (95.3)	1-3/8 (34.9)	50/ 5.9	300/ 35	
CWS-3850	3-5/8 (92.1)	3/8″ - 16	5 (127.0)	2-5/8 (66.7)	50/ 7.3	250/37	
CWS-1236	2-1/8 (54.0)	1/2″ - 13	3-3/4 (95.3)	3/4 (19.1)	25/ 5.7	150/34	
CWS-1244	2-7/8 (73.0)	1/2" - 13	4-1/2 (114.3)	1-1/2 (38.1)	25/ 7.0	150/40	
CWS-1254	3-7/8 (98.4)	1/2″ - 13	5-1/2 (139.7)	2-1/2 (63.5)	25/ 8.0	150/49	
CWS-1270	5-3/8 (136.5)	1/2″ - 13	7 (177.8)	4 (101.6)	25/ 9.2	150/55	
CWS-5850	3-3/16 (81.0)	5/8″ - 11	5 (127.0)	1-1/8 (28.6)	10/ 4.7	100/ 48	
CWS-5860	4-3/16 (106.4)	5/8″ - 11	6 (152.4)	2-1/8 (54.0)	10/ 5.4	50/28	
CWS-5870	5-3/16 (131.8)	5/8" - 11	7 (177.8)	3-1/8 (79.4)	10/ 6.2	30/ 19	
CWS-5884	5-3/4 (146.0)	5/8" - 11	8-1/2 (215.9)	4-5/8 (117.5)	10/ 8.0	30/ 25	
CWS-3454	3-5/8 (92.1)	3/4" - 10	5-1/2 (139.7)	1-1/2 (38.1)	50/ 7.6	30/38	
CWS-3462	4-3/8 (111.1)	3/4" - 10	6-1/4 (158.8)	2-1/4 (57.2)	10/ 8.5	30/26	
CWS-3470	5-1/8 (130.2)	3/4" - 10	7 (177.8)	3 (76.2)	10/ 9.0	30/ 27	
CWS-3484	5-3/4 (146.0)	3/4" - 10	8-1/2 (215.9)	4-1/2 (114.3)	10/10.5	30/32	
CWS-34100	5-3/4 (146.0)	3/4" - 10	10 (254.0)	6 (152.4)	10/11.9	30/36	

APPROVALS/LISTINGS

- ICC Evaluation Service, Inc. # ESR-2427 -Category 1 performance rating
 - -2015 IBC Compliant
 - -Meets ACI 318 ductility requirements
 - -Tested in accordance with ACI 355.2 and ICC-ES AC193
 - -Listed for use in seismic zones A, B, C, D, E, & F
 - -3/8", 1/2", 5/8" and 3/4" diameter anchors listed in ESR-2427
- City of Los Angeles #RR25867 Florida Building Code

Fiorida building Code

LENGTH INDICATION CODE*

CODE	LENGTH OF ANCHOR	CODE	LENGTH OF ANCHOR
Α	1-1/2 < 2 (38.1 < 50.8)	K	6-1/2 < 7 (165.1 < 177.8)
В	2 < 2-1/2 (50.8 < 63.5)	L	7 < 7-1/2 (177.8 < 190.5)
C	2-1/2 < 3 (63.5 < 76.2)	Μ	7-1/2 < 8 (190.5 < 203.2)
D	3 < 3-1/2 (76.2 < 88.9)	Ν	8 < 8-1/2 (203.2 < 215.9)
E	3-1/2 < 4 (88.9 < 101.6)	0	8-1/2 < 9 (215.9 < 228.6)
F	4 < 4-1/2 (101.6 < 114.3)	Р	9 < 9-1/2 (228.6 < 241.3)
G	4-1/2 < 5 (114.3 < 127.0)	Q	9-1/2 < 10 (241.3 < 254.0)
Н	5 < 5-1/2 (127.0 < 139.7)	R	10 < 11 (254.0 < 279.4)
Ι	5-1/2 < 6 (139.7 < 152.4)	S	11 < 12 (279.4 < 304.8)
J	6 < 6-1/2 (152.4 < 165.1)	T	12 < 13 (304.8 < 330.2)

*Located on top of anchor for easy inspection.

IT W **Red Head**

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Trubolt[®]+ 316 Stainless Steel

DESCRIPTION/SUGGESTED SPECIFICATIONS Seismic Wedge Type Anchors—

The Trubolt+ Wedge Anchor consists of a high-strength threaded anchor body, expansion clip, hex nut and washer. The anchor body is cold-formed from AISI Type 316 stainless steel materials. The expansion clip is fabricated from Type 316 stainless steel materials. The expansion clip consists of a split cylindrical ring with under cutting grooves at the bottom end.

The exposed end of the anchor is stamped to identify anchor length. Stampings should be preserved during installation for any subsequent embedment verification.

Use carbide tipped hammer drill bits made in accordance with ANSI B212.15-1994 to install anchors.

Anchors are tested to ACI 355.2 and ICC-ES AC193. Anchors are listed by the following agencies as required by the local building code: ICC-ES, and City of Los Angeles.

See Appendix C (page 110) for performance values in accordance with 2015 IBC.

INSTALLATION STEPS

Select a carbide drill bit with a diameter equal to the anchor diameter. Drill hole to any depth exceeding the desired embedment. See chart for minimum recommended embedment.

Clean hole or continue

drilling additional depth to

accommodate drill fines.

 Assemble washer and nut, leaving top of stud exposed through nut. Drive anchor through material to be fastened until washer is flush to surface of material.

Expand anchor by tightening nut 3-5 turns past the hand tight position, or to the specified torque requirement.

APPROVALS/LISTINGS

ICC Evaluation Service, Inc. #ESR-2427

- Category 1 performance rating
- -2015 IBC Compliant
- Meets ACI 318 ductility requirements
- Tested in accordance with ACI 355.2 and ICC-ES AC193
- Listed for use in Seismic zones A, B, C, D, E &F
- 1/2" and 5/8" diameter anchors listed in ESR-2427

City of Los Angeles - #RR25867

LENGTH INDICATION CODE*

CODE	LENGTH OF ANCHOR	CODE	LENGTH OF ANCHOR
Α	1-1/2 < 2 (38.1 < 50.8)	K	6-1/2 < 7 (165.1 < 177.8)
В	2 < 2-1/2 (50.8 < 63.5)	L	7 < 7-1/2 (177.8 < 190.5)
C	2-1/2 < 3 (63.5 < 76.2)	M	7-1/2 < 8 (190.5 < 203.2)
D	3 < 3-1/2 (76.2 < 88.9)	N	8 < 8-1/2 (203.2 < 215.9)
E	3-1/2 < 4 (88.9 < 101.6)	0	8-1/2 < 9 (215.9 < 228.6)
F	4 < 4-1/2 (101.6 < 114.3)	Р	9 < 9-1/2 (228.6 < 241.3)
G	4-1/2 < 5 (114.3 < 127.0)	Q	9-1/2 < 10 (241.3 < 254.0)
Н	5 < 5-1/2 (127.0 < 139.7)	R	10 < 11 (254.0 < 279.4)
Ι	5-1/2 < 6 (139.7 < 152.4)	S	11 < 12 (279.4 < 304.8)
J	6 < 6-1/2 (152.4 < 165.1)	T	12 < 13 (304.8 < 330.2)

*Located on top of anchor for easy inspection

SELECTION CHART

	TruboltMeets ASTM B633 SC1, Type III specifications for electroplating of 5um = .0002" thickness. This coating is well suited for non- corrosive environments.316 Stainless Steelor supervision of superv									
	PART NUMBER	THREAD LENGTH In (mm)	ANCHOR DIA. & DRILL BIT SIZE (THREADS) PER INCH	OVERALL LENGTH In. (mm)	MAX. THICKNESS OF MATERIAL TO BE FASTENED In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.			
1	CSWW-1236	2-1/8 (54.0)	1/2"-13	3-3/4 (95.3)	3/4 (19.1)	25/5.8	150/35			
4	CSWW-1244	2-7/8 (73.0)	1/2"-13	4-1/2 (114.3)	1-1/2 (38.1)	25/6.6	150/40			
	CSWW-1254	3-7/8 (98.4)	1/2"-13	5-1/2 (139.7)	2-1/2 (63.5)	25/7.9	150/48			
	CSWW-1270	5-3/8 (136.5)	1/2"-13	7 (177.8)	4 (101.6)	25/9.5	150/57			
	CSWW-5842	2-7/16 (61.9)	5/8"-11	4-1/2 (114.3)	3/8 (9.5)	10/4.2	100/42			
	CSWW-5850	3-3/16 (81.0)	5/8"-11	5 (127.0)	1-1/8 (28.6)	10/4.8	100/48			

Large Diameter Tapcon (LDT) Anchors

Finished head, Removable Anchor

(3/8" & 1/2") (5/8" & 3/4") Sawtooth" 3/8" and 1/2" are available with *Envire* coating

> Uses standard drill bits no special drill bits to purchase or lose!

Self-threading Anchors —

SPECIFIED FOR ANCHORAGE INTO CONCRETE

The LDT anchor is a high performance anchor that cuts its own threads into concrete.

Anchor bodies are made of hardened carbon steel and zinc plated, Grade 5.

The anchors shall have a finished hex washer head with anti-rotation serrations to prevent anchor back-out. The head of the anchor is stamped with a length identification code for easy inspection.

The anchor shall be installed with carbide tipped hammer drill bits made in accordance to ANSI B212.15-1994.

ADVANTAGES

SAVE TIME

EASILY INSTALLED

- Installs in less than half the time of wedge anchors or adhesive anchors
- Simply drill a pilot hole and drive the LDT anchor by hand or impact

EASILY REMOVED

No torching or grinding required to remove anchors

SAVE MONEY

LOWER DRILL BIT COSTS

- Use standard ANSI bits instead of proprietary bits
- Single piece design, no nut and washer to assemble

USE STANDARD ANSI BITS

- No special proprietary bits to purchase or lose
- Reduce chances for anchor failure due to incorrect bit usage

Sawtooth Threads[™] diameters available on 5/8″ and 3/4″

IMPROVEDPERFORMANCEINLARGE DIAMETER HOLES

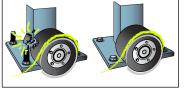
- Superior performance to wedge anchor
- Higher loads in shallow embedments
- Closer edge/spacing distance than mechanical anchors
- More threads for better thread engagement and higher pullout resistance
- Durable induction-hardened tip

EASY INSTALLATION

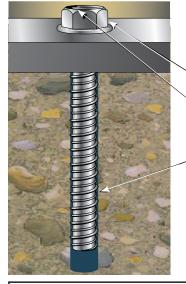
- Easy 2-step installation, simply drill a pilot hole and drive
- Installs in less than half the time of a wedge anchor
- Efficient thread cutting
- Use standard drill bit sizes
- Single piece design—no nut and washer assembly
- Easily removed

LDT Anchors

APPLICATIONS


Racking, shelving and conveyors are just a few high volume applications ideal for Large Diameter Tapcon (LDT[™]). The ease and speed of installation of the LDT can reduce installation time to less than half the time of typical systems used today.

For installation speed, high performance and easy removability, LDT is the anchor of choice.


The LDT's finished head and lack of exposed

threads virtually eliminates tire damage on

fork lift trucks.

EATURE

Easy Installation Installs into concrete by hand or impact wrench

 Prevents anchor back-out **Extra Large Hex Washer Head** - With increased bearing surface

Anti-rotation Serrated Washer

- Length Identification Head Stamp For embedment inspection after installation
- **Hi-Lo Threads** Cuts its own threads into concrete for greater pull-out resistance

LDT 3/8" and 1/2" are available with *Envire* coating 1,000 hours salt spray ASTM B117. Approved for use in ACQ and MCQ lumber* *Excessive content of copper in the ACQ and MCQ lumber may affect the anchor finish.

Selection Chart

LDT Size	ANSI Standard	(A) Anchor Head	Washer Diameter	B Minimum	© Hole	USE IN		
	Drill Bit	(Socket Size)		Embedment	Depth			MU
	Diameter	Diameter				Concrete	Hollow	Grout-filled
LDT 3/8"	5/16″	9/16″	13/16″	1-1/2″	2-1/2″	YES	YES	YES
LDT 1/2"	7/16″	3/4″	1″	2-1/2"	3-1/2″	YES	NO	YES
LDT 5/8"	1/2″	13/16″	1-3/16″	2-3/4″	3-3/4″	YES	NO	YES
LDT 3/4"	5/8″	15/16″	1-5/16″	3-1/4″	4-1/4″	YES	NO	YES

INSTALLATION STEPS

Installation Steps for Concrete, Lightweight Concrete and Metal Deck

- embedment. "" 2. Using an electric impact wrench, or socket wrench

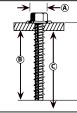
drill "a pilot hole at least 1" deeper than anchor

(hand install) insert anchor into hole and tighten anchor until fully seated. (see chart for socket size) (do not over tighten).

Installation Steps for Hollow or Grout-Filled CMU

(3/8" and 1/2" diameter)

1. Using a 5/16" (for 3/8" LDT) or 7/16" (for 1/2" LDT) carbide tipped bit, drill a pilot hole at least 1" deeper than anchor embedment. "


2. Using a socket wrench insert anchor into hole and hand tighten anchor until fully seated. (9/16" socket for 3/8" and 3/4" socket for 1/2") (do not over tighten).

LDT's can be installed by hand or with an impact wrench

Installation by hand—is easy, simply using a socket wrench

Installation by impact wrench—is recommended for faster installations or for high volume projects. Installation with impact wrench—is *not* recommended for hollow block.

See page 75 for effective lengths and length indication code.

it w **Red Head**

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at www.itwredhead.com

SELECTION CHART

Carbon Steel with Zinc Plating: Meets ASTM B695 and B633 specifications for zinc plating of 5um = .0002" thickness. This coating is well suited for non-corrosive interior environments.

LDT Carbon and **Stainless Steel**

Carbon Steel with EnvireX Coating: Provides additional corrosion protection for outdoor applications.

	PART NUMBER CARBON STEEL ZINC PLATED	PART NUMBER CARBON STEEL Envire COATING	PART NUMBER FOR 410 STAINLESS STEEL	ANCH DIA In. (m			L BIT A. mm)	LEN In. (CTIVE GTH mm) il on left)	OF MA TO BE F	IICKNESS TERIAL ASTENED mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
	LDT-3816	——	SLDT-3816	3/8	(9.5)	5/16	(7.9)	1-3/4	(44.5)	1/4	(6.4)	50/ 3.0	400/24.0
	LDT-3824		SLDT-3824	3/8	(9.5)	5/16	(7.9)	2-1/2	(63.5)	1	(25.4)	50/ 4.5	400/ 34.0
	LDT-3830	LDT-3830 X	SLDT-3830	3/8	(9.5)	5/16	(7.9)	3	(76.2)	1-1/2	(38.1)	50/ 5.0	400/ 40.0
	LDT-3840	LDT-3840 X	SLDT-3840	3/8	(9.5)	5/16	(7.9)	4	(101.6)	2-1/2	(63.5)	50/ 6.5	400/ 52.0
	LDT-3850		SLDT-3850	3/8	(9.5)	5/16	(7.9)	5	(127.0)	3-1/2	(89.0)	40/ 7.5	320/ 60.0
	LDT-1230		SLDT-1230	1/2 (12.7)	7/16	(11.1)	3	(76.2)	1/2	(12.7)	25/ 4.5	150/ 27.0
	LDT-1240	LDT-1240 X	SLDT-1240	1/2 (12.7)	7/16	(11.1)	4	(101.6)	1-1/2	(38.1)	25/ 6.0	150/36.6
Effective	LDT-1250	LDT-1250 X	SLDT-1250	1/2 (12.7)	7/16	(11.1)	5	(127.0)	2-1/2	(63.5)	25/ 7.6	150/45.6
← Length →	LDT-1260			1/2 (12.7)	7/16	(11.1)	6	(152.4)	4	(101.6)	20/ 9.0	120/ 54.0
	LDT-5830			5/8 (15.9)	1/2	(12.7)	3	(76.2)	1/4	(6.4)	10/3.5	100 / 35.0
	LDT-5840	——		5/8 (15.9)	1/2	(12.7)	4	(101.6)	1-1/4	(31.8)	10 / 4.0	100 / 40.0
	LDT-5850			5/8 (15.9)	1/2	(12.7)	5	(127.0)	2-1/4	(57.1)	10 / 4.7	100 / 47.0
	LDT-5860			5/8 (15.9)	1/2	(12.7)	6	(152.4)	3-1/4	(82.6)	10 / 5.4	50 / 27.0
	LDT-3444	——		3/4 (19.1)	5/8	(15.9)	4-1/2	(114.3)	1-1/4	(31.8)	10/7.4	50 / 37.0
	LDT-3454			3/4 (19.1)	5/8	(15.9)	5-1/2	(139.7)	2-1/4	(57.1)	10/8.1	50 / 40.5
	LDT-3462			3/4 (19.1)	5/8	(15.9)	6-1/4	(158.8)	3	(76.2)	10/9.1	30 / 27.3

* The stainless steel LDT's will be gold in color in order to differentiate them from the carbon steel anchors.

DESIGN GUIDE

For proper selection of anchor diameters based upon predrilled holes in base plates and fixtures.

HOLE DIAMETER IN FIXTURE In. (mm)	SUGGESTED LDT DIAMETER In. (mm)
7/16 (11.1)	3/8 (9.5)
1/2 (12.7)	3/8 (9.5)
9/16 (14.3)	1/2 (12.7)
5/8 (15.9)	1/2 (12.7)
3/4 (19.1)	5/8 (15.9)
7/8 (22.2)	3/4 (19.1)

LENGTH INDICATION CODE*

	CODE	LENGTH C In. (m	OF ANCHOR im)
	A	1-1/2 < 2	(38.1 < 50.8)
	В	2 < 2-1/2	(50.8 < 63.5)
	C	2-1/2 < 3	(63.5 < 76.2)
	D	3 < 3-1/2	(76.2 < 88.9)
	E	3-1/2 < 4	(88.9 < 101.6)
X denotes	F	4 < 4-1/2	(101.6 < 114.3)
	G	4-1/2 < 5	(114.3 < 127.0)
available with	Н	5 < 5-1/2	(127.0 < 139.7)
Envire coating	I	5-1/2 < 6	(139.7 < 152.4)
× •	J	6 < 6-1/2	(152.4 < 165.1)

* Located on top of anchor for easy inspection.

PERFORMANCE TABLE

LDT Anchors Ultimate Tension and Shear Values (Lbs/kN) in Concrete

				<i>K</i> . 2000				#. 2000 D	(1/20 7 MD-)		1	<i>4.</i> 4000 I		
ANCHOR		DMENT	TEN		PSI (13.8 MPa)			f'c = 3000 Ps	<u>, ` </u>				PSI (27.6 MPa)	
DIA. In. (mm)	DEPTH In. (mm)		TENSION Lbs. (kN)		SHEAR Lbs. (kN)			TENSION Lbs. (kN)		SHEAR Lbs. (kN)		SION . (kN)	SHE Lbs.	
. ,		. ,		. ,		. ,		. ,		. ,		. ,		. ,
3/8 (9.5)	1-1/2	(38.1)	1,336	(5.9)	2,108	(9.4)	1,652	(7.3)	2,764	(12.3)	1,968	(8.8)	3,416	(15.2)
	2	(50.8)	1,492	(6.6)	3,036	(13.5)	2,024	(9.0)	3,228	(14.4)	2,552	(11.4)	3,420	(15.2)
	2-1/2	(63.5)	3,732	(16.6)	3,312	(14.7)	3,748	(16.7)	3,364	(15.0)	3,760	(16.7)	3,424	(15.2)
	3-1/2	(88.9)	5,396	(24.0)	3,312	(14.7)	6,624	(29.5)	3,368	(15.0)	7,852	(34.9)	3,428	(15.2)
1/2 (12.7)	2	(50.8)	3,580	(15.9)	5,644	(25.1)	3,908	(17.4)	6,512	(29.0)	4,236	(18.8)	7,380	(32.8)
	3-1/2	(88.9)	7,252	(32.3)	6,436	(28.6)	8,044	(35.8)	7,288	(32.4)	8,836	(39.3)	8,140	(36.2)
	4-1/2	(114.3)	10,176	(45.3)	7,384	(32.8)	10,332	(46.0)	7,968	(35.4)	10,488	(46.7)	8,552	(38.0)
5/8 (15.9)	2-3/4	(69.9)	5,276	(23.5)	8,656	(38.5)	6,560	(29.2)	11,064	(49.2)	7,844	(34.8)	13,476	(59.9)
	3-1/2	(88.9)	7,972	(35.5)	10,224	(45.5)	9,848	(43.8)	12,144	(54.0)	11,724	(52.2)	14,060	(62.5)
	4-1/2	(114.3)	11,568	(51.5)	12,316	(54.8)	13,432	(59.8)	13,580	(60.4)	16,892	(75.1)	14,840	(66.0)
3/4 (19.1)	3-1/4	(82.6)	6,876	(30.6)	7,140	(31.8)	9,756	(43.4)	10,728	(47.7)	12,636	(56.2)	14,316	(63.6)
	4-1/2	(114.3)	10,304	(45.8)	13,120	(58.4)	14,424	(64.2)	16,868	(75.0)	18,540	(82.5)	20,612	(91.7)
	5-1/2	(139.7)	13,048	(58.0)	17,908	(79.7)	18,156	(80.8)	21,718	(96.9)	23,268	(130.5)	25,652	(114.1)

PERFORMANCE TABLE

LDT Anchors Allowable Tension and Shear Values* (Lbs/kN) in Concrete Carbon and Stainless Steel

ANCHOR	EMR	EDMENT		f′c = 2000	PSI (13.8 MPa)			f'c = 3000 P	SI (20.7 MPa)			f′c = 4000 P	5I (27.6 MPa)	
DIA. In. (mm)	D	EPTH (mm)	TENS Lbs.			IEAR . (kN)		ISION . (kN)		EAR (kN)	TENS Lbs.		SHI Lbs.	EAR (kN)
3/8 (9.5)	1-1/2	(38.1)	334	(1.5)	527	(2.3)	413	(1.8)	691	(3.1)	492	(2.1)	854	(3.8)
	2	(50.8)	373	(1.7)	759	(3.4)	506	(2.2)	807	(3.6)	638	(2.8)	855	(3.8)
	2-1/2	(63.5)	933	(4.2)	828	(3.7)	937	(4.2)	841	(3.7)	940	(4.2)	856	(3.8)
	3-1/2	(88.9)	1,349	(6.0)	828	(3.7)	1,656	(7.4)	842	(3.7)	1,963	(8.7)	857	(3.8)
1/2 (12.7)	2	(50.8)	895	(4.0)	1,411	(6.3)	977	(4.3)	1,628	(7.2)	1,059	(4.7)	1,845	(8.2)
	3-1/2	(88.9)	1,813	(8.0)	1,609	(7.2)	2,011	(8.9)	1,822	(8.1)	2,209	(9.8)	2,035	(9.0)
	4-1/2	(114.3)	2,544	(11.3)	1,846	(8.2)	2,583	(11.5)	1,992	(8.9)	2,622	(11.7)	2,138	(9.5)
5/8 (15.9)	2-3/4	(69.9)	1,319	(5.9)	2,164	(9.7)	1,640	(7.3)	2,766	(12.3)	1,961	(8.7)	3,369	(15.0)
	3-1/2	(88.9)	1,993	(8.9)	2,556	(11.4)	2,462	(10.9)	3,036	(13.5)	2,931	(13.0)	3,515	(15.6)
	4-1/2	(114.3)	2,892	(12.9)	3,079	(13.7)	3,358	(14.9)	3,395	(15.1)	4,223	(18.8)	3,710	(16.5)
3/4 (19.1)	3-1/4	(82.6)	1,719	(7.6)	1,785	(7.9)	2,439	(10.8)	2,682	(11.9)	3,159	(14.0)	3,579	(15.9)
	4-1/2	(114.3)	2,576	(11.5)	3,280	(14.6)	3,606	(16.0)	4,217	(18.7)	4,635	(20.6)	5,153	(22.9)
	5-1/2	(139.7)	3,262	(14.5)	4,477	(19.9)	4,539	(20.2)	5,445	(24.2)	5,817	(25.9)	6,413	(28.5)

* Allowable values are based upon a 4 to 1 safety factor. (Ultimate/4)

PERFORMANCE TABLE

LDT Anchors Recommended Edge & Spacing Requirements for Tension Loads* Carbon and Stainless Steel

ANCHOR DIA. In. (mm)		DMENT DEPTH n. (mm)	REQUIRE MAX. WO	DISTANCE D TO OBTAIN PRKING LOAD . (mm)	LOAD FACTOR APPLIED AT MIN. EDGE DISTANCE 1-3/4 Inches (44mm)	SPACING DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)		LOAD FACTOR APPLIED AT MIN. SPACING DISTANCE 3 Inches (76mm)
3/8 (9.5)	1-1/2	(38.1)	2	(50.8)	70%	6	(152.4)	44%
	2	(50.8)	2	(50.8)	70%	6	(152.4)	44%
	2-1/2	(63.5)	3	(76.2)	70%	6	(152.4)	44%
	3-1/2	(88.9)	4	(101.6)	70%	6	(152.4)	44%
1/2 (12.7)	2	(50.8)	2-1/4	(57.2)	65%	8	(203.2)	27%
	3-1/2	(88.9)	3	(76.2)	65%	8	(203.2)	27%
	4-1/2	(114.3)	4	(101.6)	65%	8	(203.2)	27%

* Edge and spacing distance shall be divided by .75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.

For 5/8" and 3/4" LDT Anchors, the critical edge distance for these anchors is 10 times the anchor diameter. The edge distance of these anchors may be reduced to 1-3/4" provided a 0.65 load factor is used for tension loads, a 0.15 load factor is used for shear loads applied parallel to the edge. Linear interpolation may be used for intermediate edge distances.

PERFORMANCE TABLE

LDT Anchors Recommended Edge & Spacing Requirements for Shear Loads* Carbon and Stainless Steel

ANCHOR DIA. In. (mm)	EMBEDMENT DEPTH In. (mm)	EDGE DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)	LOAD FACTOR APPLIED AT MIN. EDGE DISTANCE 1-3/4 Inches (44mm)	SPACING DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)	LOAD FACTOR APPLIED AT MIN. SPACING DISTANCE 3 Inches (76mm)
3/8 (9.5)	1-1/2 (38.1)	3 (76.2)	25%	6 (152.4)	57%
	2 (50.8)	4 (101.6)	25%	6 (152.4)	57%
	2-1/2 (63.5)	5 (127.0)	25%	6 (152.4)	57%
	3-1/2 (88.9)	5 (127.0)	25%	6 (152.4)	57%
1/2 (12.7)	2 (50.8)	5 (127.0)	25%	8 (203.2)	60%
	3-1/2 (88.9)	5 (127.0)	25%	8 (203.2)	60%
	4-1/2 (114.3)	5-1/2 (139.7)	25%	8 (203.2)	60%

* Edge and spacing distances shall be divided by .75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.

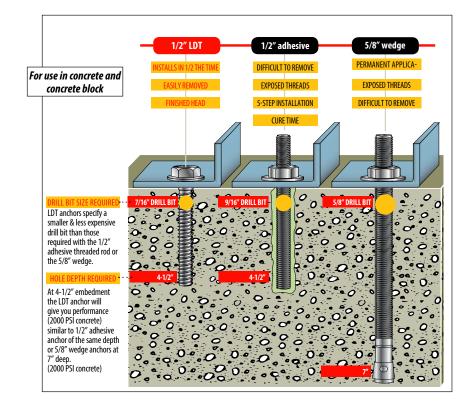
PERFORMANCE TABLES

LDT Anchors Ultimate Tension Load (Lbs/kN) in Concrete Block (anchors should be installed by hand in hollow block)									
ANCHOR DIA. In. (mm)	EMBEDMENT DEPTH	HOLLOW CON		GROUT FILLED CONCRETE BLOCK					
m. (mm)	In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)				
3/8 (9.5)	1-1/2 (38.1)	916 (4.1)	3,176 (14.1)	1,592 (7.1)	3,900 (17.3)				
1/2 (12.7)	2-1/2 (63.5)	N/A	N/A	5,924 (26.4)	6,680 (29.7)				

Allowable Tension and Shear* (Lbs/kN) in Concrete Block (anchors should be installed by hand in hollow block)

ANCHOR DIA. In. (mm)	EMBEDMENT DEPTH	HOLLOW COM	ICRETE BLOCK	GROUT FILLED CONCRETE BLOCK			
	In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)		
3/8 (9.5)	1-1/2 (38.1)	229 (1.0)	794 (3.5)	398 (1.8)	975 (4.3)		
1/2 (12.7)	2-1/2 (63.5)	N/A	N/A	1,481 (6.6)	1,670 (7.4)		

* Allowable values are based upon a 4 to 1 safety factor. (Ultimate/4)


LDT Anchors

LDT Anchors

Anchoring Overhead in 3000 PSI Lightweight On Motal Dock

000 00000 0000 20 Gauge Metal Dec ↑ LDT Installed in

	Concrete	On Metal Deck			Lower Flute
ANCHOR	DRILL HOLE	EMBEDMENT		CONCRETE	
	DIAMETER In. (mm)	In. (mm)	ULTIMATE TENSION LOAD Lbs. (kN)		ALLOWABLE WORKING LOAD Lbs. (kN)
3/8″ LDT	5/16 (7.9)	1-1/2 (38.1)	Upper Flute	2,889 (12.9)	722 (3.2)
			Lower Flute	1,862 (8.3)	465 (2.1)

INSTALLATION STEPS

5 0 0 0 0 0 0 0 0 0 0 0 0 0

DESCRIPTION/SUGGESTED SPECIFICATIONS

SPECIFIED FOR ANCHORAGE INTO CONCRETE

The Boa^m Coil is a high performance expansion anchor providing through fixture fastening and easy removal to keep the job moving. It's reusable with the coil replacement anchors making this anchor a low cost solution.

Ideal combination of value, performance and reusability make the Boa Coil the choice for Forming and tilt-wall contractors.

ADVANTAGES: Easy installation, removable, reusable, high shear strength, Grade 5 bolt.

APPLICATIONS: Concrete formwork, load bearing angles, beams and columns, machinery holddown, Jersey barrier, glare screens, light rail/commuter work.

NOTE: To achieve maximum loads the installation process needs to be carried out as follows:

- 1. Using the fixture as a template, drill the correct diameter and depth hole.
- 2. Remove debris with vacuum or hand pump.
- 3. Insert the assembled Boa Coil anchor. (The coil anchor tab points up the anchor.)
 Tap anchor down to depth set mark and stop.
 - 4. Tighten until washer is firmly held to the fixture and stop. Number of turns to set anchor: 1/2" 3-4 turns, 5/8" and 3/4" 4-5 turns. Ensure washer is tight and snug fit.
 - 5. The anchor is ready to take load. (The bolt can be removed leaving the coil in the hole.) The Boa coil anchor can be <u>reused up to 3 times</u> in new holes.

SELECTION CHART

Boa Coil Anchors

PART NO.	ANCHOR DIA In. (mm)	SOCKET SIZE In.	DRILL BIT DIA. In. (mm)	HOLE DEPTH In. (mm)	FIXTURE THICKNESS AT MINIMUM EMBEDMENT TO BE FASTENED In. (mm)	QTY/WT PER BOX Lbs.	QTY/WT PER MASTER CTN Lbs.
RHCA-1230	1/2 (12.7)	3/4	1/2 (12.7)	3-1/2 (88.9)	3/8 (9.5)	25 / 4.5	150 / 27.2
RHCA-1240	1/2 (12.7)	3/4	1/2 (12.7)	4-1/2 (114.3)	1-3/8 (35.0)	25 / 5.9	150 / 35.6
RHCA-1254	1/2 (12.7)	3/4	1/2 (12.7)	6 (152.4)	2-7/8 (73.0)	25 / 7.8	150 / 46.9
RHCA-5834	5/8 (15.9)	15/16	5/8 (15.9)	4 (101.6)	3/8 (9.5)	20 / 8.8	120 / 52.5
RHCA-5850	5/8 (15.9)	15/16	5/8 (15.9)	5-1/2 (139.7)	1-7/8 (47.6)	15 / 8.5	90 / 51.0
RHCA-3444	3/4 (19.1)	1-1/8	3/4 (19.1)	5 (127.00)	1/4 (6.4)	10 / 6.4	60 / 38.3
RHCA-3460	3/4 (19.1)	1-1/8	3/4 (19.1)	6-1/2 (165.1)	1-3/4 (44.5)	10 / 8.2	60 / 49.1

Replacement coil available for easy re-use with Red Head Boa Coil Anchors only.

COIL REPLACEMENT PART NO.	QTY/WT PER BOX Lbs.	QTY/WT PER MASTER CTN Lbs.			
RHC-12 (1/2")	100 / 2.8	600/16.9			
RHC-58 (5/8")	100 / 2.2	600/13.1			
RHC-34 (3/4")	100 / 1.3	600/7.5			

PERFORMANCE TABLES

Boa Coil Anchors Ultimate concrete/steel capacity in concrete¹

ANCHOR DIAMETER	HOLE DIA. In. (mm)	EFFECTIVE EMBEDMENT	FIXTURE HOLE DIA.	TURNS TO SET	2 000 PS	ULTIMATE CONCRETE CAPACITY (2) (3) 2.000 PSI (13.8 MPa) 4.000 PSI (27.6 MPa) 6.000 PSI (41.4 MPa)						ULTIMATE STEEL STRENGTH (4) LBS. (kN)		
In. (mm)	,	DEPTH In. (mm)	In. (mm)	ANCHOR	TENSION (5) Lbs. (kN)	SHEAR Lbs. (kN)	TENSION (5) Lbs. (kN)	SHEAR Lbs. (kN)	TENSION (5) Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)		
1/2 (12.7)	1/2 (12.7)	2 (50.8) 3 (76.2)	9/16 (14.3) 9/16 (14.3)	-	4,039 (17.9) 7,403 (32.9)	6,070 (27.0) 12,082 (53.7)	5,715 (25.4) 10,471 (46.6)	8,590 (38.2) 17,089 (76.0)	6,994 (31.1) 12,822 (57.0)	10,516 (46.8) 20,937 (93.1)	19,384 (86.2)	14,456 (64.3)		
5/8 (15.9)	5/8 (15.9)		11/16 (17.5) 11/16 (17.5)		5,291 (23.5) 10,855 (48.3)	8,800 (39.1) 19,999 (89.0)	7,483 (33.3) 15,355 (68.3)	12,445 (55.4) 28,285 (125.8)	9,162 (40.8) 18,802 (83.6)	15,242 (67.8) 34,636 (154.0)	30,152 (134.1)	21,937 (97.6)		
3/4 (19.1)	3/4 (19.1)	4-1/2 (114.3)	13/16 (20.6) 13/16 (20.6)		8,479 (37.7) 13,555 (60.3)	16,567 (73.7) 27,239 (121.2)	11,991 (53.3) 19,171 (85.3)	23,427 (104.2) 38,518 (171.3)	14,682 (65.3) 23,478 (104.4)	28,690 (127.6) 47,173 (209.8)	43,360 (192.9)	32,031 (142.5)		

(1) Use lower value of either concrete or steel (2) Concrete capacity based on Concrete Capacity Design method and verified by test data (3) Influence factors must be applied to concrete strength values

(4) Steel strength based on .57 Fu Ag for shear and 0.75 Fu Ag for tension (5) Test results when reused four times; maximum 20% reduction in tensile capacity; no reduction in shear

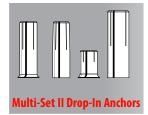
Boa Coil Anchors Allowable concrete/steel capacity in concrete¹

ANCHOR	HOLE DIA.	EFFECTIVE	FIXTURE	TURNS			ENDED WORKING L				ALLOWABLE STEEL STRENGTH (4)	
DIAMETER	In. (mm)	EMBEDMENT	HOLE DIA.	TO SET	2,000 PSI (13.8 MPa)		4,000 PSI (27.6 MPa)		6,000 PSI	(41.4 MPa)	LBS. (kN)	
In. (mm)		DEPTH In. (mm)	In. (mm)	ANCHOR	TENSION (5) Lbs. (kN)	SHEAR Lbs. (kN)	TENSION (5) Lbs. (kN)	SHEAR Lbs. (kN)	TENSION (5) Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
1/2 (12.7)	1/2 (12.7)	2 (50.8) 3 (76.2)	9/16 (14.3) 9/16 (14.3)		1,011 (4.5) 1,852 (8.2)	1,517 (6.7) 3,020 (13.4)	1,430 (6.4) 2,619 (11.6)	2,147 (9.5) 4,272 (19.0)	1,751 (7.8) 3,208 (14.3)	2,629 (11.7) 5,234 (23.3)	8,529 (37.9)	5,579 (24.8)
5/8 (15.9)	5/8 (15.9)		11/16 (17.5) 11/16 (17.5)		1,324 (5.9) 2,715 (12.1)	2,200 (9.8) 5,000 (22.2)	1,872 (8.3) 3,840 (17.1)	3,111 (13.8) 7,071 (31.5)	2,293 (10.2) 4,703 (20.9)	3,810 (16.9) 8,660 (38.5)	13,266 (59.0)	8,466 (37.7)
3/4 (19.1)	3/4 (19.1)		13/16 (20.6) 13/16 (20.6)		2,121 (9.4) 3,390 (15.1)	4,141 (18.4) 6,810 (30.3)	2,999 (13.3) 4,794 (21.3)	5,556 (24.7) 9,630 (42.8)	3,673 (16.3) 5,872 (26.2)	7,172 (31.9) 11,793 (52.4)	19,078 (84.9)	12,362 (55.0)

(1) Use lower value of either concrete or steel (2) Safety factor 4 (3) Influence factors must be applied to concrete strength values (4) Steel strength based on .22 Fu Ag for shear and 0.33 Fu Ag for tension (5) Test results when reused four times; maximum 20% reduction in tensile capacity; no reduction in shear

IT W **Red Head**

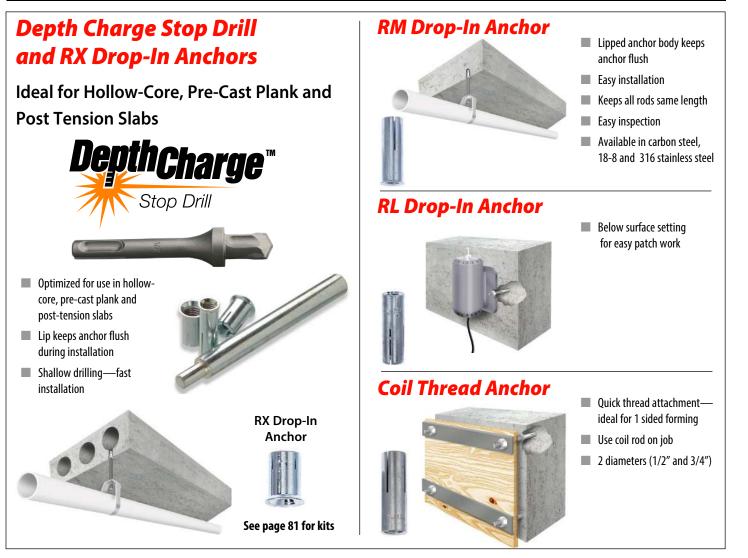
Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>


Internally Threaded Heavy-Duty Anchoring Systems

DESCRIPTION/SUGGESTED SPECIFICATIONS

Drop-In, Shell-Type Anchors—

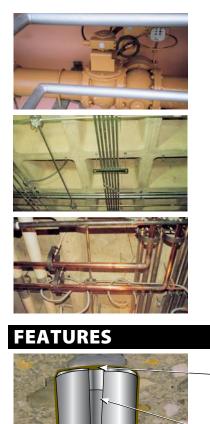
SPECIFIED FOR ANCHORAGE INTO CONCRETE


Drop-In, shell-type anchors feature an internally threaded, all-steel shell with expansion cone insert and flush embedment lip. Anchors are manufactured from zinc-plated carbon steel, 18-8 stainless steel and 316 stainless steel.

Anchors should be installed with carbide tipped hammer drill bits made in accordance to ANSI B212.15-1994 specifications.

Anchors should be tested to ASTM E488 criteria and listed by ICC-ES. Anchors should also be listed by the following agencies as required by the local building code: UL, FM, City of Los Angeles, California State Fire Marshal and Caltrans.

ADVANTAGES



IT W Red Head Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Multi-Set II Anchors

APPLICATIONS

Pumps and heavy piping are common applications for larger diameter Multi-Set Drop-In Anchors.

Cable tray and strut suspended from concrete ceilings are ideal Multi-Set applications. In post-tension or hollow-core slabs use the RX-38.

The Multi-Set Anchor is the standard for pipe-hanging. The RM version has a retainer lip to keep all anchors flush at the surface, keeping all your threaded rod the same length.

Expander Slots—allow for easy setting and superior performance

Cone Insert—that expands the anchor when driven with setting tool and hammer

Body—available in zinc-plated steel, 18-8 stainless steel, and 316 stainless steel

Easy Depth Inspection—keeps threaded rod drop lengths consistent

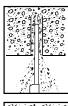
Retainer Lip—to keep anchor flush with surface

APPROVALS/LISTINGS

Meets or exceeds U.S. Government G.S.A. Specification A-A-55614 Type 1 (Formerly GSA: FF-S-325 Group VIII)

Underwriters Laboratories

Factory Mutual


Caltrans

For the most current approvals/listings visit: www.itw-redhead. com

INSTALLATION STEPS

To set anchor flush with surface:

- Drill hole to required embedment (see Table on page 69).

- Clean hole with pressurized air.
- **3.** Drive anchor flush with surface of concrete.
- **4.** Expand anchor with setting tool provided (see chart on page 69). Anchor is properly expanded when shoulder of setting tool is flush with top of anchor.

SELECTION CHART

For use with threaded rods or headed bolts (supplied by contractor)

> **Multi-Set II** Depth Charge Bits

PART NUMBER	DESCRIPTION FEATURE BENEFITS	DRILLING DEPTH
DCX-138	3/8" Depth Charge Stop Drill	3/4″
DCX-112	1/2" Depth Charge Stop Drill	1″

Shoulder prevents over drilling. Less likely to hit reinforcing steel or post-tension cable in concrete

- No wasted time or energy drilling deeper than necessary
- Prevents anchor from dropping too far into hole below work surface

#TW Rec Head Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

SELECTION CHARTS

Multi-Set II

PART NUMBER RT-138	

8

PART NUMBER RTX-112 For use with RX-12 only.

	Multi-Set II Drop-In Anchors		1 setting tool per ma (See above for part	aster carton			e with RX-38 only		For use with RX-12 only.		
USER TYPE / APPLICATION	BASE MATERIAL	CORROSION RESISTANCE LEVEL	DROP-IN ANCHOR TYPE	PART NUMBER	SETTING TOOL PART NUMBER*	BOLT SIZE- THREADS PER INCH	DRILL BIT DIA. In. (mm)	THREAD DEPTH In. (mm)	EMBEDMENT MIN. HOLE DEPTH In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CTN Ibs. *
HVAC/Fire Sprinkler	Solid	Low	RM	RM-14	RT-114	1/4″ - 20	3/8 (9.5)	3/8 (9.5)	1 (25.4)	100/ 2.6	1000/28
Plumber (Pipe-fitter)	concrete/			RM-38	RT-138	3/8″ - 16	1/2 (12.7)	1/2 (12.7)	1-5/8 (41.3)	50/ 3.4	500/36
	lightweight			RM-12	RT-112	1/2″ - 13	5/8 (15.9)	3/4 (19.1)	2 (50.8)	50/ 5.8	400/49
	fill deck			RM-58	RT-158	5/8″ - 11	7/8 (22.2)	1 (25.4)	2-1/2 (63.5)	25/ 7.8	125/41
				RM-34	RT-134	3/4″ - 10	1 (25.4)	1-1/4 (31.8)	3-3/16 (81.0)	25/11.9	100/49
	Hollow-core	Low	RX	RX-38	RTX-138	3/8″ - 16	1/2 (12.7)	3/8 (9.5)	3/4 (19.1)	100/ 3.5	1000/36
	pre-cast			RX-12	RTX-112	1/2″ - 13	5/8 (15.9)	1/2 (12.7)	1 (25.4)	50/ 3.0	500/ 31
	or Post-										
	tension		-								
	Solid	Medium	SRM**	SRM-14	RT-114	1/4″ - 20	3/8 (9.5)	3/8 (9.5)	1 (25.4)	100/ 2.7	1000/28
	concrete/		18-8 S.S.	SRM-38	RT-138	3/8″ - 16	1/2 (12.7)	1/2 (12.7)	1-5/8 (41.3)	50/ 3.4	500/36
	lightweight			SRM-12	RT-112	1/2″ - 13	5/8 (15.9)	3/4 (19.1)	2 (50.8)	50/ 6.0	400/ 50
	fill deck			SRM-58	RT-158	5/8″ - 11	7/8 (22.2)	1 (25.4)	2-1/2 (63.5)	25/ 7.9	125/42
				SRM-34	RT-134	3/4″ - 10	1 (25.4)	1-1/4 (31.8)	3-3/16 (81.0)	25/12.0	100/ 50
	Solid	High	SSRM**	SSRM-38	RT-138	3/8″ - 16	1/2 (12.7)	1/2 (12.7)	1-5/8 (41.3)	50/ 3.4	500/ 36
	concrete		316 S.S.	SSRM-12	RT-112	1/2″ - 13	5/8 (15.9)	3/4 (19.1)	2 (50.8)	50/ 6.0	400/ 50
Concrete Contractor,	Solid	Low	CL-Coil	CL-12	RT-112	1/2″ - 6	5/8 (15.9)	3/4 (19.1)	2 (50.8)	50/ 5.7	400/47
General Contractor,	concrete		Threaded	CL-34	RT-134	3/4″ - 4.5	1 (25.4)	1-1/4 (31.8)	3-3/16 (81.0)	25/11.9	100/49
Highway											
Concrete Cutting/	Solid	Low	RL	RL-14	RT-114	1/4″ - 20	3/8 (9.5)	3/8 (9.5)	1 (25.4)	100/ 2.6	1000/ 28
Sawing Contractor/	concrete/		(w/o lip)	RL-38	RT-138	3/8″ - 16	1/2 (12.7)	1/2 (12.7)	1-5/8 (41.3)	50/ 3.4	500/ 36
Misc. Metal	lightweight			RL-12	RT-112	1/2″ - 13	5/8 (15.9)	3/4 (19.1)	2 (50.8)	50/ 5.8	400/49
	fill deck			RL-58	RT-158	5/8″ - 11	7/8 (22.2)	1 (25.4)	2-1/2 (63.5)	25/ 7.8	125/41
				RL-34	RT-134	3/4″ - 10	1 (25.4)	1-1/4 (31.8)	3-3/16 (81.0)	25/11.9	100/49

* 1 setting tool per master carton.

** For continuous extreme low temperature, use stainless steel.

Description
3/8" drop-in using 1/2" drill bit
Setting Tool
Depth Charge Stop Drill
Contains: 1,000 RX-38 Anchors, 5 RTX-138 Setting Tools and
2 DCX-138 Depth Charge Stop Drills

Part No.	Description
RX-12	1/2" drop-in using 5/8" drill bit
RTX-112	Setting Tool
DCX-112	Depth Charge Stop Drill

PERFORMANCE TABLE

Multi-Set II Drop-In Anchors Ultimate Tension and Shear Values (Lbs/kN) in Concrete*

BOLT	DRILL BIT	MIN. EMBEDMENT	ANCHOR		-	SHEAR Lbs. (kN)		
DIA. In. (mm)	SIZE In. (mm)	DEPTH In. (mm)	ТҮРЕ	f'c = 2000 PSI (13.8 MPa)	f'c = 4000 PSI (27.6 MPa)	f′c = 6000 PSI (41.4 MPa)	f′c ≥2000 PSI (13.8 MPa)	
1/4 (6.4)	3/8 (9.5)	1 (25.4)	RM, RL	1,680 (7.5)	2,360 (10.5)	2,980 (13.3)	1,080 (4.8)	
3/8 (9.5)	1/2 (12.7)	1-5/8 (41.3)	or CL-Carbon	2,980 (13.3)	3,800 (16.9)	6,240 (27.8)	3,160 (14.1)	
1/2 (12.7)	5/8 (15.9)	2 (50.8)	or	3,300 (14.7)	5,840 (26.0)	8,300 (36.9)	4,580 (20.4)	
5/8 (15.9)	7/8 (22.2)	2-1/2 (63.5)	SRM-18-8 S.S. or	5,500 (24.5)	8,640 (38.4)	11,020 (49.0)	7,440 (33.1)	
3/4 (19.1)	1 (25.4)	3-3/16 (81.0)	SSRM-316 S.S.	8,280 (36.8)	9,480 (42.2)	12,260 (54.5)	10,480 (46.6)	

 $^{\ast}~$ Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

* For continuous extreme low temperature applications, use stainless steel.

	Multi-Set IIUltimate Tension and Shear Values (Lbs/kN) in Lightweight Concrete*										
BOLT DIA. In. (mm)	DRILL BIT SIZE In. (mm)	MINIMUM EMBEDMENT DEPTH	ANCHOR TYPE		iHT CONCRETE PSI (20.7 MPa)	LOWER FLUTE OF STEEL DECK WITH LIGHTWEIGHT CONCRETE FILL f'c = 3000 PSI (20.7 MPa)					
,	()	In. (mm)		TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)				
3/8 (9.5)	1/2 (12.7)	1-5/8 (39.7)	RM, RL	2,035 (9.1)	1,895 (8.4)	3,340 (14.9)	4,420 (19.6)				
1/2 (12.7)	5/8 (15.9)	2 (50.8)	or CL-Carbon or	2,740 (12.2)	2,750 (12.2)	3,200 (14.2)	4,940 (22.0)				
5/8 (15.9)	7/8 (22.2)	2-1/2 (63.5)	SRM-18-8 S.S. or	4,240 (18.9)	4,465 (19.9)	5,960 (26.5)	5,840 (26.0)				
3/4 (19.1)	1 (25.4)	3-3/16 (81.0)	SSRM-316 S.S.	5,330 (23.7)	6,290 (28.0)	8,180 (36.4)	9,120 (40.6)				

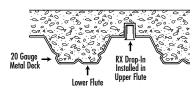
* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

Multi-Set II Drop-In Anchors Recommended Edge and Spacing Distance Requirements*

BOLT DIA. In. (mm)	DRILL BIT SIZE In. (mm)	EMBEDMENT DEPTH In. (mm)	ANCHOR TYPE	EDGE DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)		MIN. EDGE DISTANCE AT WHICH LOAD FACTOR APPLIED =.80 FOR TENSION =.70 FOR SHEAR In. (mm)		SPACING REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)		MIN. ALLOWABLE SPACING BETWEEN ANCHORS LOAD FACTOR APPLIED =.80 FOR TENSION =.55 FOR SHEAR In. (mm)	
1/4 (6.4)	3/8 (9.5)	1 (25.4)		1-3/4	(44.5)	7/8	(22.2)	3-1/2	(88.9)	1-3/4	(44.5)
3/8 (9.5)	1/2 (12.7)	1-5/8 (41.3)	RM, RL or CL-Carbon	2-7/8	(73.0)	1-7/16	(36.5)	5-11/16	(144.5)	2-7/8	(73.0)
1/2(12.7)	5/8 (15.9)	2 (50.8)	or	3-1/2	(88.9)	1-3/4	(44.5)	7	(177.8)	3-1/2	(88.9)
5/8(15.9)	7/8 (22.2)	2-1/2 (63.5)	SRM-18-8 S.S. or SSRM-316 S.S.	4-3/8	(111.1)	2-3/16	(55.6)	8-3/4	(222.3)	4-3/8	(111.1)
3/4(19.1)	1 (25.4)	3-3/16 (81.0)		5-5/8	(142.9)	2-13/16	(71.4)	11-3/16	(284.2)	5-5/8	(142.9)

* Spacing and edge distances shall be divided by 0.75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.

PERFORMANCE TABLES


Multi-Set IIUltimate Tension and Shear Values (Lbs/kN) for RX-seriesDrop-In Anchors(3/4" and 1" Embedment)*

BOLT DIA.	DRILL BIT	EMBEDMENT	2500 PSI (17.2	MPa) CONCRETE	4000 PSI (27.6	i MPa) CONCRETE	HOLLOW CORE		
In. (mm)	SIZE In. (mm)	In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
3/8 (9.5)	1/2 (12.7)	3/4 (19.1)	1,571 (7.0)	2,295 (10.2)	1,987 (8.8)	2,903 (12.9)	1,908 (8.5)	2,401 (10.7)	
1/2 (12.7)	5/8 (15.9)	1 (25.4)	2,113 (9.4)	2,585 (11.5)	2,673 (11.9)	3,270 (14.5)	2,462 (11.0)	2,401 (10.7)	

* The tabulated values are for RX anchors installed at a minimum of 12 diameters on center and minimum edge distance of 6 diameters for 100 percent anchor efficiency. Spacing and edge distance may be reduced to 6 diameters spacing and 3 diameter edge distance provided the values are reduced 50 percent. Linear Interpolation may be used for intermediate spacings and edge margins.

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

Multi-Set II Anchoring Overhead in 3000 PSI Drop-In Anchors Lightweight Concrete On Metal Deck

ANCHOR	DRILL HOLE	EMBEDMENT	3000PSI (20.7 MPa) CONCRETE					
	DIAMETER In. (mm)	In. (mm)		ENSION LOAD . (kN)	ALLOWABLE WORKING LOAD Lbs. (kN)			
RX-38 Drop-In	1/2 (12.7)	3/4 (19.1)	Upper Flute	1,410 (6.3)	353 (1.6)			
			Lower Flute	1,206 (5.4)	301 (1.3)			

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

Combined Tension and Shear Loading—for Multi-Set Anchors

Allowable loads for anchors subjected to combined shear and tension forces are determined by the following equation:

 $(Ps/Pt)^{5/3} + (Vs/Vt)^{5/3} \le 1$

Ps = Applied tension load	Vs = Applied shear load	Pt = Allowable tension load	Vt = Allowable shear load
---------------------------	-------------------------	-----------------------------	---------------------------

Dynabolt[®] Sleeve Anchors

Versatile, Medium-Duty Sleeve Anchor

Dynabolt Hex Nut Sleeve Anchor

APPROVALS/LISTINGS

Meets or exceeds U.S. Government G.S.A. Specification A-A-1922A (Formerly GSA: FF-S-325 Group II, Type 3, Class 3) Factory Mutual

DESCRIPTION/SUGGESTED SPECIFICATIONS

Sleeve Type Anchors—

SPECIFIED FOR ANCHORAGE INTO CONCRETE, GROUT-FILLED CONCRETE BLOCK, HOLLOW CONCRETE BLOCK AND BRICK

Dynabolt Masonry Sleeve Anchor

Sleeve type anchors feature a split expansion sleeve over a threaded stud bolt body and integral expander, nut and washer.

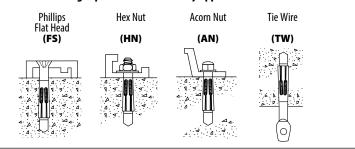
Anchors are made of Plated Carbon Steel, or Type 18-8 Stainless Steel.

Anchors should be installed with carbide tipped hammer drill bits made in accordance to ANSI B212.15-1994.

Anchors are tested to ASTM E488 criteria.

ADVANTAGES

- Anchor diameter equals hole diameter
- Available in hex head and three other head styles
- Available 1/4 3/4" diameter up to 6-1/4" length
- Zinc plated carbon steel and 304 stainless steel
 - Provides full 360° hole contact over large area and reduces concrete stress No pre-spot


Available Head Styles

Preassembled for faster, easier installations

Heavy-loading capacity

- Dynabolt can be installed through object to be fastened
- Sleeve design improves holding power
- No pre-spotting of holes necessary

Full range of head style, corrosion protection, and sizes makes the Dynabolt Sleeve the right product for almost any application.

INSTALLATION STEPS

 Use a carbide tipped drill bit whose diameter is equal to the anchor.
 See Chart to determine proper size bit for anchor used. Dnll hole to any depth exceeding minimum embedment. Clean hole.

2. Insert assembled anchor through fixture and into hole so that washer or head is flush with materials to be fastened.

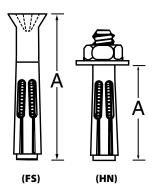
3. Expand anchor by tightening nut or head 2 to 3 turns.

APPLICATIONS

Electrical junction boxes are common applications for the Dynabolt Sleeve anchor because it works well in solid concrete, concrete block, and brick. It is also available in several finished head styles.

The Dynabolt Sleeve anchor works well in hollow materials like brick and block. It is available in zinc-plated carbon steel and 304 stainless steel.

Door and window frames are commonly attached to the structure with Dynabolt Sleeve anchors because of their finished & threshold head styles and performance in block & brick.


SELECTION CHART

Dynabolt Carbon Steel with Zinc Plating

Typical Applications— Shelf ledgers, electrical boxes, conduit Environment—Interior (non-corrosive) Level of Corrosion—Low

* Effective Anchor Length

۶,	HEAD STYLE	PART NUMBER	ANCHOR DIA. & DRILL BIT SIZE	EFFECTIVE ANCHOR LENGTH* In. (mm)	BOLT DIA./ THREADS PER INCH	MIN. EMBEDMENT In. (mm)	MAX. THICKNESS OF MATERIAL TO BE FASTENED In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
	ACORN NUT	AN-1405 AN-1413 AN-1422	1/4″	5/8 (15.9) 1-3/8 (34.9) 2-1/4 (57.2)	3/16" /24 3/16" /24 3/16" /24	1/2 (12.7) 1-1/8 (28.6) 1-1/8 (28.6)	1/8 (3.2) 1/4 (6.4) 1-1/8 (28.6)	100/ 1.9 100/ 2.6 100/ 3.7	1000/ 20 1000/ 27 1000/ 38
		HN-1413 HN-1422	1/4″	1-3/8 (34.9) 2-1/4 (57.2)	3/16″ /24 3/16″ /24	1-1/8 (28.6) 1-1/8 (28.6)	1/4 (6.4) 1-1/8 (28.6)	100/ 2.3 100/ 3.4	1000/ 24 1000/ 35
		HN-1614 HN-1624	5/16″	1-1/2 (38.1) 2-1/2 (63.5)	1/4″/20 1/4″/20	1-1/4 (31.8) 1-1/4 (31.8)	1/4 (6.4) 1-1/4 (31.8)	100/ 4.0 100/ 5.9	1000/ 41 800/ 47
	NUT	HN-3817 HN-3830	3/8″	1-7/8 (47.6) 3 (76.2)	5/16" /18 5/16" /18	1-1/2 (38.1) 1-1/2 (38.1)	3/8 (9.5) 1-1/2 (38.1)	50/ 3.5 50/ 4.9	500/ 36 400/ 40
	HEX NUT	HN-1222 HN-1230 HN-1240	1/2″	2-1/4 (57.2) 3 (76.2) 4 (101.6)	3/8"/16 3/8"/16 3/8"/16	1-7/8 (47.6) 1-7/8 (47.6) 1-7/8 (47.6)	3/8 (9.5) 1-1/8 (28.6) 2-1/8 (54.0)	25/ 3.3 25/ 4.0 25/ 5.3	250/ 34 200/ 33 200/ 44
		HN-5830 HN-5842 HN-3424	5/8″ 3/4″	3 (76.2) 4-1/4 (108.0) 2-1/2 (63.5)	1/2" /13 1/2" /13 5/8" /11	2 (50.8) 2 (50.8) 2-1/4 (57.2)	1 (25.4) 2-1/4 (57.2) 1/4 (6.4)	25/ 7.0 10/ 3.9 10/ 4.7	150/ 46 100/ 41 50/ 25
L		HN-3440		4 (101.6)	5/8″/11	2-1/4 (57.2)	1-3/4 (44.5)	5/ 3.2	50/33
	PHILUPS FLAT HEAD*	FS-3826 FS-3840 FS-3850 FS-3860	3/8″ (head dia722)	2-7/8 (73.0) 4 (101.6) 5 (127.0) 6 (152.4)	5/16" /18 5/16" /18 5/16" /18 5/16" /18	1-1/2 (38.1) 1-1/2 (38.1) 1-1/2 (38.1) 1-1/2 (38.1)	1-3/8 (34.9) 2-1/2 (63.5) 3-1/2 (88.9) 4-1/2 (114.3)	50/ 3.8 50/ 5.3 50/ 5.6 50/ 8.0	500/ 40 400/ 44 300/ 40 300/ 48
	TIE WIRE	TW-1614	5/16″	1-1/2 (38.1)	1/4″ /20	1-1/2 (38.1)	9/32 (7.1) hole	100/ 4.9	1000/ 50

* Phillips flat head uses a standard 80°-82° counter sink.

SELECTION CHART

Typical Applications— **Cladding and Brick Ties** Environment—Slight to moderate degree of pollution Level of Corrosion— Medium

	HEAD STYLE	PART NUMBER	ANCHOR DIA. & DRILL BIT SIZE	EFFECTIVE ANCHOR LENGTH* In. (mm)	BOLT DIA./ THREADS PER INCH	MIN. EMBEDMENT In. (mm)	MAX. THICKNESS OF MATERIAL TO BE FASTENED In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
on		SHN-3817 SHN-3830	3/8″	1-7/8 (47.6) 3 (76.2)	5/16"/18 5/16"/18	1-1/2 (38.1) 1-1/2 (38.1)	3/8 (9.5) 1-1/2 (38.1)	50/ 3.5 50/ 4.9	500/ 36 400/ 40
	HEX NUT	SHN-1222 SHN-1230 SHN-1240	1/2″	2-1/4 (57.2) 3 (76.2) 4 (101.6)	3/8″ /16 3/8″ /16 3/8″ /16	1-7/8 (47.6) 1-7/8 (47.6) 1-7/8 (47.6)	3/8 (9.5) 1-1/8 (28.6) 2-1/8 (54.0)	25/ 3.3 25/ 4.0 25/ 5.3	250/ 34 200/ 33 200/ 44
		SHN-5842	5/8″	4-1/4 (108.0)	1/2″ /13	2 (50.8)	2-1/4 (57.2)	10/ 3.9	100/41
	PS AD*	SFS-1430	1/4″	3-1/8 (79.4)	3/16″/24	1-1/8 (28.6)	2 (50.8)	100/ 3.8	1000/38
	PHILLIPS FLAT HEAD*	SFS-3826 SFS-3840	3/8″	2-7/8 (73.0) 4 (101.6)	5/16"/18 5/16"/18	1-1/2 (38.1) 1-1/2 (38.1)	1-3/8 (34.9) 2-1/2 (63.5)	50/ 3.8 50/ 5.3	500/ 40 400/ 44

* Flat head uses a standard 80°-82° counter sink.

For continuous extreme low temperature applications, use stainless steel.

PERFORMANCE TABLES

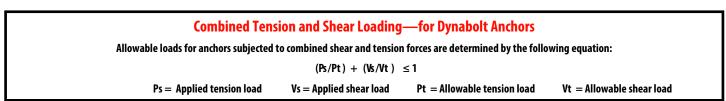
Dynabolt Sleeve Anchors Ultimate Tension and Shear Values in Concrete (Lbs/kN)*

ANCHOR	INSTALLATION	BOLT	MINIMUM	ANCHOR	f'c = 2000 P	5I (13.8 MPa)	f′c = 3000 PS	5I (20.7 MPa)	f'c = 4000 P	5I (27.6 MPa)
DIA. In. (mm)	TORQUE Ft. Lbs. (Nm)	DIA. In. (mm)	EMBEDMENT DEPTH In. (mm)	TYPE (STEEL)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
1/4 (6.4)	3.5 (4.7)	3/16 (4.8)	1-1/8 (28.6)		1,200 (5.3)	1,215 (5.4)	1,325 (5.9)	1,215 (5.4)	1,450 (6.4)	1,215 (5.4)
5/16 (7.9)	8 (10.8)	1/4 (6.4)	1-1/4 (31.8)		1,400 (6.2)	2,040 (9.1)	1,920 (8.5)	2,220 (9.9)	2,600 (11.6)	2,400 (10.7)
3/8 (9.5)	14 (19.0)	5/16 (7.9)	1-1/2 (38.1)	Carbon	1,620 (7.2)	2,560 (11.4)	2,240 (10.0)	2,800 (12.5)	3,100 (13.8)	3,040 (13.5)
1/2 (12.7)	20 (27.1)	3/8 (9.5)	1-7/8 (47.6)	or Stainless	2,220 (9.9)	3,250 (14.5)	3,140 (14.0)	4,000 (17.8)	4,400 (19.6)	4,500 (20.0)
5/8 (15.9)	48 (65.1)	1/2 (12.7)	2 (50.8)		3,080 (13.7)	6,440 (28.6)	4,400 (19.6)	7,240 (32.2)	6,120 (27.2)	8,080 (35.9)
3/4 (19.1)	90 (122.0)	5/8 (15.9)	2-1/4 (57.2)		4,200 (18.7)	10,200 (45.4)	6,060 (27.0)	11,600 (51.6)	8,900 (39.6)	13,100 (58.3)

* For continuous extreme low temperature applications, use stainless steel.

For AN-1405, Ultimate Pullout: 500 lbs. & Ultimate Shear: 1751 lbs. based on 4.000 psi.

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values


Dynabolt Sleeve Anchors Ultimate Tension and Shear Values in Lightweight Concrete (Lbs/kN)*

ANCHOR	INSTALLATION	BOLT	MINIMUM	ANCHOR	f' c = 4000	PSI (27.6 MPa)	f'c = 6000 PS	51 (41.4 MPa)
DIA. In. (mm)	TORQUE Ft. Lbs. (Nm)	DIA. In. (mm)	EMBEDMENT DEPTH In. (mm)	TYPE (STEEL)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
1/4 (6.4)	3.5 (4.7)	3/16 (4.8)	1-1/8 (28.6)		870 (3.9)	730 (3.2)	1,066 (4.7)	894 (4.0)
5/16 (7.9)	8 (10.8)	1/4 (6.4)	1-1/4 (31.8)		1,260 (5.6)	1,680 (7.5)	1,440 (6.4)	2,220 (9.9)
3/8 (9.5)	14 (19.0)	5/16 (7.9)	1-1/2 (38.1)	Carbon or	1,620 (7.2)	2,300 (10.2)	2,240 (10.0)	2,800 (12.5)
1/2 (12.7)	25 (33.9)	3/8 (9.5)	1-7/8 (47.6)	Stainless	2,600 (11.6)	2,400 (10.7)	3,160 (14.1)	2,400 (10.7)
5/8 (15.9)	48 (65.1)	1/2 (12.7)	2 (50.8)		3,240 (14.4)	5,600 (24.9)	4,300 (19.1)	7,840 (34.9)
3/4 (19.1)	90 (122.0)	5/8 (15.9)	2-1/4 (57.2)		3,640 (16.2)	8,640 (38.4)	5,800 (25.8)	12,480 (55.5)

Dynabolt Sleeve Anchors Ultimate Tension and Shear Values in Concrete Masonry Units (Lbs/kN)*

ANCHOR	INSTALLATION	BOLT	MINIMUM	ANCHOR	LIGHTWEIGHT					MEDIUN	A WEIGHT	
DIA.	TORQUE	DIA.	EMBEDMENT	TYPE	HOLLOV	V CORE	GROUT FILLED		HOLLOW CORE		GROUT FILLED	
ln. (mm)	Ft. Lbs. (Nm)	ln. (mm)	DEPTH In. (mm)	(STEEL)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)						
1/4 (6.4)	3.5 (4.7)	3/16 (4.8)	1-1/8 (28.6)	Carbon	1,120 (5.0)	1,215 (5.4)	1,120 (5.0)	1,215 (5.4)	1,120 (5.0)	1,215 (5.4)	1,120 (5.0)	1,215 (5.4)
				Stainless	640 (2.8)	1,620 (7.2)	640 (2.8)	1,620 (7.2)	640 (2.8)	1,620 (7.2)	640 (2.8)	1,620 (7.2)
3/8 (9.5)	15 (20.3)	5/16 (7.9)	1-1/2 (38.1)	Carbon	1,360 (6.0)	2,560 (11.4)	1,360 (6.0)	2,560 (11.4)	1,360 (6.0)	2,560 (11.4)	1,360 (6.0)	2,560 (11.4)
				Stainless	1,160 (5.2)	2,560 (11.4)	1,160 (5.2)	2,560 (11.4)	1,160 (5.2)	2,560 (11.4)	1,160 (5.2)	2,560 (11.4)
1/2 (12.7)	25 (33.9)	3/8 (9.5)	1-7/8 (47.6)	Carbon	N/A	N/A	2,220 (9.9)	3,500 (15.6)	N/A	N/A	2,220 (9.9)	3,500 (15.6)
				Stainless	N/A	N/A	2,100 (9.3)	3,500 (15.6)	N/A	N/A	2,100 (9.3)	3,500 (15.6)
5/8 (15.9)	55 (74.6)	1/2 (12.7)	2 (50.8)	Carbon	N/A	N/A	3,080 (13.7)	6,440 (28.6)	N/A	N/A	3,080 (13.7)	6,440 (28.6)
				Stainless	N/A	N/A	3,080 (13.7)	6,440 (28.6)	N/A	N/A	2,820 (12.5)	6,440 (28.6)
3/4 (19.1)	90 (122.0)	5/8 (15.9)	2-1/2 (63.5)	Carbon	N/A	N/A	4,200 (18.7)	10,200 (45.4)	N/A	N/A	4,200 (18.7)	10,200 (45.4)

Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values. The tabulated values are for anchors installed in a minimum of 12 diameters on center and a minimum edge distance of 6 diameters for 100 percent anchor efficiency. Spacing and edge distance may be reduced to 6 diameter spacing and 3 diameter edge distance, provided the values are reduced 50 percent. Linear interpolation may be used for intermediate spacings and edge distances.

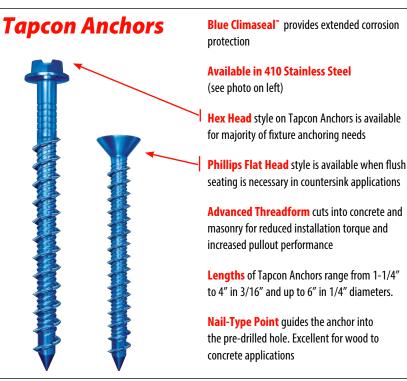
it w **Red Head**

Tapcon[®] Concrete and Masonry Anchors

DESCRIPTION/SUGGESTED SPECIFICATIONS

Tapcon Anchors —

SPECIFIED FOR ANCHORAGE INTO CONCRETE, BRICK OR BLOCK



The "original masonry" anchor that cuts its own threads into concrete, brick, or block. Maximum performance is achieved because the Tapcon Anchor, the Condrive Installation Tool, and the carbide-tipped Tapcon Drill Bits are designed to work as a system. It is essential to use the Condrive tool and the correct drill bit to assure consistent anchor performance.

ADVANTAGES

- Works in all masonry base materials.
- Fast and easy—3 anchors per minute.
- No hole spotting or inserts required.
- Removable.

- Slotted hex and phillips flat head styles.
- Extended corrosion protection— Blue Climaseal[®].
- Available in 410 Stainless Steel.

Tapcon® is a registered trademark of Buildex, a divison of Illinois Tool Works, Inc.

CORROSION RESISTANCE

Kesternich Results (DIN 40018 2.0L)

30 Cycles - 10% or less rust

Salt Spray Results (ASTM B117)

720 Hrs - 10% or less rust

Tapcon[®] Anchors

APPLICATIONS

.....

The Tapcon Anchor is especially well suited for window and door frames because it performs well in block, is available in a flat head style, and is fast to install.

Many horizontal or "wall" applications are attached with Tapcon Anchor because it is removable and works well in block and brick.

The picture shows the Condrive 1000 Installation Kit in action. The kit makes for fast and easy change over from drill bit to driver and controls the driving torque to prevent thread stripping and head snapping in hard base materials.

APPROVAL/LISTINGS

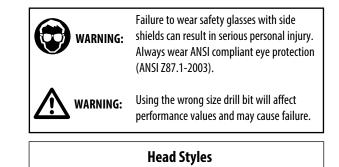
Blue Climaseal™

ICC Evaluation Service, Inc. – ESR-1671 ICC Evaluation Service, Inc. – ESR-2202 Miami-Dade County – NOA #12-0816.06 Florida Building Code

410 Stainless Steel

Miami-Dade County — NOA #12-0816.06 Florida Building Code

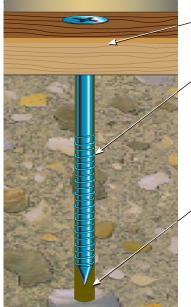
For the most current approvals/listings visit: www.itw-redhead.com


INSTALLATION STEPS

Read installation instructions before using!

If there are any questions concerning proper installation, applications or appropriate use of this product, please call our Technical Services Department at 1-800-848-5611. Failure to follow these instructions can result in serious personal injury.

- Select proper fastener diameter / head style / length.
 a) Use selection chart to choose proper length.
- 2. Drill Hole use selection chart to determine drill bit length and depth of hole.
 - a) Choose appropriate drill of Tapcon Anchor.
 - b) Drill hole minimum ¼" deeper than Tapcon Anchor to be embedded.
 - Minimum anchor embedment: 1" Maximum anchor embedment: 1-3/4"
- 3. Drive Anchor.


3/16" diameter has a 1/4" slotted hex washer head (HWH) 1/4" diameter has a 5/16" slotted hex washer head (HWH)

3/16" diameter uses a #2 phillips flat head (PFH) 1/4" diameter uses a #3 phillips flat head (PFH)

Fixture Thickness—determine the fixture thickness to be anchored

Anchor Embedment—with a minimum recommended embedment of 1", the correct Tapcon anchor choice can be made. Hole depth must be a minimum 1/4" deeper than the anchor embedment to allow for displaced material

Hole Diameter—proper hole diameter is very important to insure consistent performance and maximum pullout strength. 3/16" anchors require 5/32" diameter bits, and 1/4" anchors require 3/16" diameter bits

IT W Recl Head Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

SELECTION CHARTS

Tapcon[®] Anchors

with Blue Climaseal™

Diameter.....3/16" and 1/4"

Thread Form.....Advanced Threadform Technology™ Finish......Blue Climaseal™

Point Type......Nail Finish.....Blue Climaseal[™] All boxes of Tapcon anchors come packaged with matching carbide-tipped bit. Tapcon is packaged 100 pieces per box and 500 pieces per master carton except 3205407 and 3203407 (400 in master carton).

FIXTURE THICKNESS INCHES	RECOMMENDED TAPCON LENGTH In. (mm)	PART NO. 3/16" HEX HEAD	PART NO. 1/4" HEX HEAD	PART NO. 3/16" Flat head	PART NO. 1/4" Flat head	BIT LENGTH In. (mm)	STRAIGHT SHANK BITS FOR 3/16" TAPCON PART NO.	STRAIGHT SHANK Bits For 1/4" Tapcon Part No.
0"-1/4"	1-1/4 (31.8)	3139407	3153407	3169407	3183407	3-1/2 (88.9)	3095910	3098910
1/4" - 3/4"	1-3/4 (44.5)	3141407	3155407	3171407	3185407	3-1/2 (88.9)	3095910	3098910
3/4" - 1-1/4"	2-1/4 (57.2)	3143407	3157407	3173407	3187407	4-1/2 (114.3)	3096910	3099910
1-1/4 " — 1-3/4"	2-3/4 (69.9)	3145407	3159407	3175407	3189407	4-1/2 (114.3)	3096910	3099910
1-3/4" - 2-1/4"	3-1/4 (82.6)	3147407	3161407	3177407	3191407	5-1/2 (139.7)	3097910	3100910
2-1/4" - 2-3/4"	3-3/4 (95.3)	3149407	3163407	3179407	3193407	5-1/2 (139.7)	3097910	3100910
2-1/2" - 3"	4 (101.6)	N/A	3165407	3181407	3195407	5-1/2 (139.7)	3097910	3100910
3-1/2" - 4"	5 (127.0)	N/A	3167407	N/A	3197407	6-1/2 (165.1)	N/A	3102910
4-1/2" - 5"	6 (152.4)	N/A	3205407	N/A	3203407	7-1/2 (190.5)	N/A	3206910

Additional Tapcon bits are available 10 per tube.

	_			®
	Л	Ì	()	1 î Î
410	66	Л	nc	hor
410	22		19	101

FIXTURE THICKNESS INCHES	RECOMMENDED TAPCON LENGTH In. (mm)	PART NO. 1/4" HEX HEAD	PART NO. 3/16" Flat head	PART NO. 1/4" Flat head	BIT LENGTH In. (mm)	STRAIGHT SHANK BITS FOR 3/16" TAPCON PART NO.	STRAIGHT SHANK Bits for 1/4" Tapcon Part No.
0" - 1/4"	1-1/4 (31.8)	3367907	3434907	3373907	3-1/2 (88.9)	3095910	3098910
1/4" - 3/4"	1-3/4 (44.5)	3368907	3418907	3374907	3-1/2 (88.9)	3095910	3098910
3/4" - 1-1/4"	2-1/4 (57.2)	3369907	3419907	3375907	4-1/2 (114.3)	3096910	3099910
1-1/4 - 1-3/4"	2-3/4 (69.9)	3370907	3420907	3376907	4-1/2 (114.3)	3096910	3099910
1-3/4" - 2-1/4"	3-1/4 (82.6)	3371907	3421907	3377907	5-1/2 (139.7)	3097910	3100910
2-1/4" - 2-3/4"	3-3/4 (95.3)	3372907	3422907	3378907	5-1/2 (139.7)	3097910	3100910
2-1/2" - 3"	4 (101.6)	3459907	N/A	N/A	5-1/2 (139.7)	N/A	3100910
3-1/2" - 4"	5 (127.0)	3460907	N/A	N/A	6-1/2 (165.1)	N/A	3102910
4-1/2" - 5"	6 (152.4)	N/A	N/A	N/A	7-1/2 (190.5)	N/A	3461907

	Tapcon [®] SDS Bits
PART NUMBER	DESCRIPTION
3311910	7" (SDS Rotohammer Bits for use with 3/16" Tapcon)
7901060	5" (SDS Rotohammer Bits for use with 1/4" Tapcon)
3101910	7" (SDS Rotohammer Bits for use with 1/4" Tapcon)
All SDS bits	are sold individually.

PERFORMANCE TABLE

Tapcon®AnchorsUltimate Tension and Shear Values (Lbs/kN) in Concrete

ANCHOR					SI (20.7 MPa)	l (20.7 MPa) f'c = 4000 PSI (27.6 MPa)		f'c = 5000 PSI (34.5 MPa)	
DIA. In. (mm)	EMBEDMENT In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
3/16 (4.8)	1 (25.4)	600 (2.7)	720 (3.2)	625 (2.8)	720 (3.2)	650 (2.9)	720 (3.2)	800 (3.6)	860 (3.8)
	1-1/4 (31.8)	845 (3.7)	720 (3.2)	858 (3.8)	720 (3.2)	870 (3.9)	720 (3.2)	1,010 (4.5)	860 (3.8)
	1-1/2 (38.1)	1,090 (4.8)	860 (3.8)	1,090 (4.8)	860 (3.8)	1,090 (4.8)	860 (3.8)	1,220 (5.4)	860 (3.8)
	1-3/4 (44.5)	1,450 (6.5)	870 (3.9)	1,455 (6.5)	870 (3.9)	1,460 (6.5)	990 (4.4)	1,730 (7.7)	990 (4.4)
1/4 (6.4)	1 (25.4)	750 (3.3)	900 (4.0)	775 (3.4)	900 (4.0)	800 (3.6)	1,360 (6.1)	950 (4.2)	1,440 (6.4)
	1-1/4 (31.8)	1,050 (4.7)	900 (4.0)	1,160 (5.2)	900 (4.0)	1,270 (5.6)	1,360 (6.1)	1,515 (6.7)	1,440 (6.4)
	1-1/2 (38.1)	1,380 (6.1)	1,200 (5.3)	1,600 (7.2)	1,200 (5.3)	1,820 (8.1)	1,380 (6.1)	2,170 (9.7)	1,670 (7.4)
	1-3/4 (44.5)	2,020 (9.0)	1,670 (7.4)	2,200 (9.8)	1,670 (7.4)	2,380 (10.6)	1,670 (7.4)	2,770 (12.3)	1,670 (7.4)

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

PERFORMANCE TABLES

Tapcon[®] Anchors**Ultimate Tension and Shear Values**
(Lbs/kN) in Hollow Block

		1				
ANCHOR	ANCHOR	LIGHTWE	GHT BLOCK	MEDIUM W	EIGHT BLOCK	
DIA. In. (mm)	EMBEDMENT In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
3/16 (4.8)	1 (25.4)	220 (1.0)	400 (1.8)	340 (1.5)	730 (3.2)	
1/4 (6.4)	1 (25.4)	250 (1.1)	620 (2.8)	500 (2.2)	1,000 (4.4)	

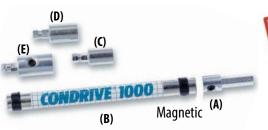
Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

NOTE: 3/16" Tapcon requires 5/32" bit, 1/4" Tapcon requires 3/16" bit.

Tapcon[®] Anchors Allowable Edge and Spacing Distances

PARAMETER	ANCHOR	1	IORMAL WEIGHT CONCRET	ſE	CONCRETE MASONRY UNITS (CMU)		
	DIA. In. (mm)	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION Factor	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION Factor
Spacing Between	3/16	3	1-1/2	0.73	3	1-1/2	1.00
Anchors - Tension	1/4	4	2	0.66	4	2	0.84
Spacing Between	3/16	3	1-1/2	0.83	3	1-1/2	1.00
Anchors - Shear	1/4	4	2	0.82	4	2	0.81
Edge Distance -	3/16	1-7/8	1	0.83	4	2	0.91
Tension	1/4	2-1/2	1-1/4	0.82	4	2	0.88
Edge Distance	3/16	2-1/4	1-1/8	0.70	4	2	0.93
-Shear	1/4	3	1-1/2	0.59	4	2	0.80

For SI: 1 inch = 25.4 mm


Tapcon[®] Condrive 1000 Tool Kit

DESCRIPTION/SUGGESTED SPECIFICATIONS Condrive 1000 Installation Tool— SPECIFIED FOR ANCHORAGE INTO CONCRETE, BRICK OR BLOCK

The key to Tapcon's fast and easy installation is the multi-purpose Condrive Installation Tool. The drive sleeve, along with the hex head and phillips sockets provide the installer with the flexibility necessary for the complete variety of Tapcon applications (tool does not include drill bit).

Condrive[®] 1000 - A multi-purpose tool designed for installation of Tapcon hex head and Phillips flat head anchors up to 3-3/4" long. If driving hex head Tapcon, driver will automatically disengage. The Condrive 1000 has a reusable plastic case.

Condrive Tools are designed to specifically install Tapcon Anchors and to fit standard hammer drills.

Part No. C1000 (Does not include drill bit)

APPLICATIONS

The picture shows the Condrive 1000 Installation Kit in action. The kit makes for fast and easy change over from drill bit to driver and controls the driving torque to prevent thread stripping and head snapping in hard base materials.

ADVANTAGES

- Fast change from drilling to driving
- Eliminates need to change out chucks and bits
- Eliminates need for two tools
- Special nut driver is recessed for torque control to reduce head breakage

Condrive 1000 Spare Parts

PART NO.	DESCRIPTION	QTY/WT
(A) 7901001	Drill Adapter	1/.06
(B) 7901002	Sleeve	1/.01
(C) 7901006	3/16" Socket	1/.04
(D) 7901007	1/4″ Socket	1/.05
(E) 7901010	Phillips Socket	1/.44

Tapcon Maxi-Set Anchors

White UltraShield

UltraShield

DESCRIPTION/SUGGESTED SPECIFICATIONS

FOR TAPCON APPLICATIONS THAT REQUIRE MORE ANCHOR BEARING SURFACE.

ADVANTAGES

- Same reliable performance and speed of installation as regular Tapcon.
- Large 5/8" diameter flange provides more bearing surface and increases pullover resistance. High 5/16" hex head adds driving stability.
- Compatible with DrivTru[™] socket system. Improves installation. Protects paint finish.
- UltraShield[™] and White UltraShield[™] long-life finish deliver excellent corrosion resistance.

CORROSION RESISTANCE

Salt Spray Test (ASTM B117)

1100 Hrs 10% or less rust

UltraShield

White UltraShield 1500 Hrs NO RED RUST

APPROVAL/LISTINGS

ICC Evaluation Service, Inc. – #ESR-1671 Miami-Dade County – NOA #12-0816.06

For the most current approvals/listings visit: www.itw-redhead.com

INSTALLATION STEPS

Read installation instructions before using!

If there are any questions concerning proper installation, applications or appropriate use of this product, please call our Technical Services Department at 1-800-848-5611. Failure to follow these instructions can result in serious personal injury.

- Select proper fastener diameter / head style / length.
 a) Use selection chart to choose proper length.
- 2. Drill Hole use selection chart to determine drill bit length and depth of hole.
 - a) Choose appropriate drill of Tapcon Anchor.
 - b) Drill hole minimum ¼" deeper than Tapcon Anchor to be embedded. Minimum anchor embedment: 1" Maximum anchor embedment: 1-3/4"
- 3. Drive anchor using DrivTru HWH Socket.

DrivTru PART#	DESCRIPTION	APPLICATIONS
1513910	DrivTru Socket	All 5/16" across flats HWH fasteners

Failure to wear safety glasses with side shields can result in serious personal injury. Always wear ANSI compliant eye protection (ANSI Z87.1-2003).

Using the wrong size drill bit will affect performance values and may cause failure.

APPLICATIONS

Shutters - protective and decorative

Screened porch and pool enclosures.

Various sheet metal flashings.

Decorative wrought iron.

Wood nailers and plywood attachment.

Tapcon[®] Maxi-Set Anchors

SELECTION CHART

Tapcon®

Maxi-Set Anchors

Point Type......Nail Head Style......5/16

Diameter.......1/4" Thread Form.... Advanced Threadform Technology™ Point Type......Nail Finish.....UltraShield™ or *White UltraShield™ Head Style.......5/16" across flats hex with 5/8" diameter flange.

RECOMMENDED TAPCON LENGTH In. (mm)	PART NO. 1/4" HEX HEAD	FINISH	BIT LENGTH In. (mm)	STRAIGHT SHANK BITS FOR 1/4" TAPCON PART NO.				
1-3/4 (44.5)	3294000	Ultra Shield	3-1/2 (88.9)	3098910				
2-1/4 (57.2)	3295000	Ultra Shield	4-1/2 (114.3)	3099910				
1-3/4 (44.5)	3383100	White Ultra Shield	3-1/2 (88.9)	3098910				
2-1/4 (57.2)	3384100	White Ultra Shield	4-1/2 (114.3)	3099910				
2-3/4 (69.9)	3408100	White Ultra Shield	4-1/2 (114.3)	3099910				
3-1/4 (82.6)	3409100	White Ultra Shield	5-1/2 (139.7)	3100910				
3-1/4 (82.6)	3409100	White Ultra Shield	5-1/2 (139.7)	3100910				

	Tapcon [®] SDS Bits
PART NUMBER	DESCRIPTION
3311910	7" (SDS Rotohammer Bits for use with 3/16" Tapcon)
7901060	5" (SDS Rotohammer Bits for use with 1/4" Tapcon)
3101910	7" (SDS Rotohammer Bits for use with 1/4" Tapcon)

NOTE: 2-3/4" and 3-1/4" lengths are special orders. Contact customer service for lead-times. Maxi-Sets are packed 1,000 pieces per master carton except 3409100 is packed 750 pieces.

PERFORMANCE TABLES

Tapcon [®] Anchors			Ultimate	Tension d	and Shea	r Values	(Lbs/kN)	in Concre	ete
ANCHOR DIA. In. (mm)	MIN. DEPTH OF EMBEDMENT In. (mm)	f'c = 2000 TENSION Lbs. (kN)	PSI (13.8 MPa) SHEAR Lbs. (kN)	f'c = 3000 P TENSION Lbs. (kN)	PSI (20.7 MPa) SHEAR Lbs. (kN)	f'c = 4000 F TENSION Lbs. (kN)	PSI (27.6 MPa) SHEAR Lbs. (kN)	f'c = 5000 P TENSION Lbs. (kN)	SI (34.5 MPa) SHEAR Lbs. (kN)
1/4 (6.4)	1 (25.4)	750 (3.3)	900 (4.0)	775 (3.4)	900 (4.0)	800 (3.6)	1,360 (6.1)	950 (4.2)	1,440 (6.4)
	1-1/4 (31.8)	1,050 (4.7)	900 (4.0)	1,160 (5.2)	900 (4.0)	1,270 (5.6)	1,360 (6.1)	1,515 (6.7)	1,440 (6.4)
	1-1/2 (38.1)	1,380 (6.1)	1,200 (5.3)	1,600 (7.2)	1,200 (5.3)	1,820 (8.1)	1,380 (6.1)	2,170 (9.7)	1,670 (7.4)
	1-3/4 (44.5)	2,020 (9.0)	1,670 (7.4)	2,200 (9.8)	1,670 (7.4)	2,380 (10.6)	1,670 (7.4)	2,770 (12.3)	1,670 (7.4)

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity. Divide by 4

Ultimate Tension and Shear Values(Lbs/kN) in Hollow Block

ANCHOR	ANCHOR	LIGHTWEI	GHT BLOCK	MEDIUM W	EIGHT BLOCK
DIA. In. (mm)	EMBEDMENT In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
1/4 (6.4)	1 (25.4)	250 (1.1)	620 (2.8)	500 (2.2)	1,000 (4.4)

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity. Divide by 4.

NOTE: 3/16" Tapcon requires 5/32" bit, 1/4" Tapcon requires 3/16" bit.

Tapcon[®] Anchors Allowable Edge and Spacing Distances

PARAMETER	ANCHOR	N	NORMAL WEIGHT CONCRETE		CONCRETE MASONRY UNITS (CMU)			
	DIA. In. (mm)	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION FACTOR	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION Factor	
Spacing Between Anchors - Tension	1/4	4	2	0.66	4	2	0.84	
Spacing Between Anchors - Shear	1/4	4	2	0.82	4	2	0.81	
Edge Distance - Tension	1/4	2-1/2	1-1/4	0.82	4	2	0.88	
Edge Distance -Shear	1/4	3	1-1/2	0.59	4	2	0.80	

For SI: 1 inch = 25.4 mm

92

Tapcon SCOTS Anchors

DESCRIPTION/SUGGESTED SPECIFICATIONS

PREMIUM CONCRETE ANCHOR THAT COMBINES THE CORROSION PROTECTION OF STAINLESS STEEL WITH THE PERFORMANCE OF TAPCON ANCHORS.

ADVANTAGES

- 300 Series Stainless Steel head and Carbon Steel body.
- Integral washer design provides more bearing surface.
- Rubber EPDM sealing washer "locks-out" moisture from building interior.
- Head paint available in white or bronze (extra charge).
- Delivers the same holding performance as Tapcon anchors with Blue Climaseal[™].
- Reduces replacement of "weathered" fasteners.

CORROSION RESISTANCE

Kesternich Results (DIN 50018, 2.0L)

Climaseal™

30 Cycles - 10% or less red rust

APPROVAL/LISTINGS

ICC Evaluation Service, Inc. – ESR-1671 Miami-Dade County – #12-0816.06

For the most current approvals/listings visit: www.itw-redhead.com

INSTALLATION STEPS

Read installation instructions before using!

If there are any questions concerning proper installation, applications or appropriate use of this product, please call our Technical Services Department at 1-800-848-5611. Failure to follow these instructions can result in serious personal injury.

- Select proper fastener diameter / head style / length.
 a) Use selection chart to choose proper length.
- 2. Drill Hole use selection chart to determine drill bit length and depth of hole.
 - a) Choose appropriate drill of Tapcon Anchor.
 - b) Drill hole minimum 1/4" deeper than Tapcon Anchor to be embedded Minimum anchor embedment: 1" Maximum anchor embedment: 1-3/4"

DrivTru PART#	DESCRIPTION	APPLICATIONS
1513910	DrivTru Socket	All 5/16" across flats HWH fasteners

 WARNING:
 Failure to wear safety glasses with side shields can result in serious personal injury. Always wear ANSI compliant eye protection (ANSI Z87.1-2003).

 WARNING:
 Using the wrong size drill bit will affect performance values and may cause failure.

APPLICATIONS

Shutters - protective

Flexible flashings

Tapcon[®] SCOTS Anchors

SELECTION CHART

Tapcon[®] SCOTS Anchors

Head Style......5/16" HWH (300 Series Stainless)

RECOMMENDED TAPCON LENGTH In. (mm)	PART NO. 1/4" HEX HEAD	BIT LENGTH In. (mm)	STRAIGHT SHANK BITS For 1/4" Tapcon Part No.
1-3/4 (44.5)	3358407	3-1/2 (88.9)	3098910
2-1/4 (57.2)	3359407	4-1/2 (114.3)	3099910

 Tapcon® SDS Bits

 PART NUMBER
 DESCRIPTION

 3311910
 7" (SDS Rotohammer Bits for use with 3/16" Tapcon)

 7901060
 5" (SDS Rotohammer Bits for use with 1/4" Tapcon)

 3101910
 7" (SDS Rotohammer Bits for use with 1/4" Tapcon)

NOTE: 2-3/4" and 3-1/4" lengths are special orders. Contact customer service for lead-times. SCOTS are packed 1,000 pieces per master, 100 pieces per inner.

PERFORMANCE TABLES

		CON [®] nchors	Ultimate	Tension d	and Shea	r Values	(Lbs/kN)	in Concre	ete
ANCHOR	MIN. DEPTH OF	f'c = 2000	PSI (13.8 MPa)	f'c = 3000 P	SI (20.7 MPa)	f'c = 4000 F	SI (27.6 MPa)	f'c = 5000 P	SI (34.5 MPa)
DIA. In. (mm)	EMBEDMENT In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
1/4 (6.4)	1 (25.4)	750 (3.3)	900 (4.0)	775 (3.4)	900 (4.0)	800 (3.6)	1,360 (6.1)	950 (4.2)	1,440 (6.4)
	1-1/4 (31.8)	1,050 (4.7)	900 (4.0)	1,160 (5.2)	900 (4.0)	1,270 (5.6)	1,360 (6.1)	1,515 (6.7)	1,440 (6.4)
	1-1/2 (38.1)	1,380 (6.1)	1,200 (5.3)	1,600 (7.2)	1,200 (5.3)	1,820 (8.1)	1,380 (6.1)	2,170 (9.7)	1,670 (7.4)
	1-3/4 (44.5)	2,020 (9.0)	1,670 (7.4)	2,200 (9.8)	1,670 (7.4)	2,380 (10.6)	1,670 (7.4)	2,770 (12.3)	1,670 (7.4)

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

Tapcon[®] AnchorsUltimate Tension and Shear Values (Lbs/
kN) in Hollow Concrete Masonry Units

ANCHOR	ANCHOR	LIGHTWEI	GHT BLOCK	MEDIUM W	EIGHT BLOCK
DIA. In. (mm)	EMBEDMENT In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
1/4 (6.4)	1 (25.4)	250 (1.1)	620 (2.8)	500 (2.2)	1,000 (4.4)

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

NOTE: 3/16" Tapcon requires 5/32" bit, 1/4" Tapcon requires 3/16" bit.

Tapcon[®]Anchors</sup> Allowable Edge and Spacing Distances

ANCHOR	NORMAL WEIGHT CO		TE	CON	CRETE MASONRY UNITS (CMU)			
DIA. In. (mm)	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION FACTOR	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION Factor		
1/4	4	2	0.66	4	2	0.84		
1/4	4	2	0.82	4	2	0.81		
1/4	2-1/2	1-1/4	0.82	4	2	0.88		
1/4	3	1-1/2	0.59	4	2	0.80		
	DIA. In. (mm) 1/4 1/4 1/4	DIA. In. (mm)FULL CAPACITY (Critical Distance Inches)1/441/441/42-1/2	DIA. In. (mm)FULL CAPACITY (Critical Distance Inches)REDUCED CAPACITY (Minimal Distance Inches)1/4421/4421/421-1/4	DIA. In. (mm)FULL CAPACITY (Critical Distance Inches)REDUCED CAPACITY (Minimal Distance Inches)LOAD REDUCTION FACTOR1/4420.661/4420.821/42-1/21-1/40.82	DIA. In. (mm)FULL CAPACITY (Critical Distance Inches)REDUCED CAPACITY 	DIA. In. (mm)FULL CAPACITY (Critical Distance Inches)REDUCED CAPACITY (Minimal Distance Inches)LOAD REDUCTION FACTORFULL CAPACITY (Critical Distance Inches)REDUCED CAPACITY (Minimal Distance Inches)1/4420.66421/4420.82421/42-1/21-1/40.8242		

For SI: 1 inch = 25.4 mm

Tapcon[®] XL Anchors

UltraShield

White UltraShield

Shutters - protective and decorative

Sill plates

APPLICATIONS

DESCRIPTION/SUGGESTED SPECIFICATIONS

EXTRA LARGE TAPCON FOR EXTRA LARGE CHALLENGES!

ADVANTAGES

- Internal TORX[®] T-40 drive assures easy installation.
- High button head resists cam-out during installation.
- Corrosion protection of UltraShield[™] and White UltraShield[™] to combat aggressive environments.
- Available in silver or white to complement standard fixtures.

CORROSION RESISTANCE

Salt Spray Test (ASTM B117)

UltraShield 1100 Hrs 10% or less rust

White UltraShield

Delivers over 3,000 lbs. holding power in concrete.

1/4" SDS Tapcon drill bit for added convenience.

Condrive[®] XL with MegaGrip[™] bit holder for rapid

Alternative to sleeve anchors.

one-tool installation.

1500 Hrs no red rust

INSTALLATION STEPS

Read installation instructions before using!

If there are any questions concerning proper installation, applications or appropriate use of this product, please call our Technical Services Department at 1-800-848-5611. Failure to follow these instructions can result in serious personal injury.

- Select proper fastener diameter / head style / length.
 a) Use selection chart to choose proper length.
- Drill Hole use selection chart to determine drill bit length and depth of hole.
 a) Choose appropriate drill of Tapcon Anchor.
 - **b)** Drill hole minimum ¼" deeper than Tapcon Anchor to be embedded. Minimum anchor embedment: 1"

Maximum anchor embedment: 1-3/4"

- 3. Insert the adjustable MegaGrip bit tip holder in the small opening of sleeve. Slide the open end of the Condrive XL Installation Tool sleeve over the drill bit and snap in place.
- 4. Drive anchor using MegaGrip adjustable magnetic bit holder with TORX T-40 bit tip

MegaGrip PART#	DESCRIPTION
3400910	MegaGrip Bit Holder

WARNING:

Failure to wear safety glasses with side shields can result in serious personal injury. Always wear ANSI compliant eye protection (ANSI Z87.1-2003).

Using the wrong size drill bit will affect performance values and may cause failure.

Tapcon[®] XL Anchors

SELECTION CHART

Tapcon[®] XL Anchors

Diameter......5/16″ Thread Form..... Reverse Hi-Lo® Point Type......Nail Finish.....UltraShield™ or *White UltraShield™ Head Style......High button with TORX T-40 Drive

RECOMMENDED TAPCON LENGTH In. (mm)	PART NO.	FINISH	BIT LENGTH In. (mm)	1/4" DRILL BITS FOR TAPCON XL PART NO.
2-1/4 (57.2)	3395902	Ultra Shield	6-3/4" SDS drill bit with hex	3394910
2-1/4 (57.2)	3397902	White Ultra Shield	6-3/4" SDS drill bit with hex	3394910
2-3/4 (69.9)	3398902	White Ultra Shield	6-3/4" SDS drill bit with hex	3394910

XLs are packed 100 pieces per master carton.

PART NO.	PART NO. DESCRIPTION			
3401910	Condrive® XL Installation Tool with MegaGrip™ Bit Holder with TORX® T-40 Bit Tip	10 per master carton		
3400910	MegaGrip™ Magnetized Bit Holder with TORX T-40 Bit Tip	10 per bag		
3394910	1/4" x 6-3/4" SDS Tapcon Drill Bit with Hex	1 piece per tube		

Tapcon XL Anchors must be installed using all Red Head system components (Tapcon XL Anchors, Condrive XL Installation Tool and Tapcon Drill Bits) in order to qualify for ITW Red Head system support.

PERFORMANCE TABLES

	Tapcon [®] XL Anchors	Ultimate Ten (Lbs/kN) in Co	sion and Shea oncrete	r Values	
ANCHOR	MIN. DEPTH OF	EDGE DISTANCE	f'c = 3000 P	SI (20.7 MPa)	
DIA. In. (mm)	EMBEDMENT In. (mm)			TENSION Lbs. (kN)	SHEAR Lbs. (kN)
5/16 (7.9)	1-1/4 (31.8)	1-9/16 (39.7)	1,050 (4.7)	1,330 (5.9)	
		2-3/16 (55.6)	1,205 (5.4)	1,725 (7.7)	
	1-3/4 (44.5)	1-9/16 (39.7)	2,020 (9.0)	1,530 (6.8)	
		2-3/16 (55.6)	2,250 (10.0)	2,505 (11.1)	
	2-1/4 (57.2)	1-9/16 (39.7)	2,850 (12.7)	1,955 (8.9)	
		2-3/16 (55.6)	3,120 (13.9)	3,250 (14.4)	

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity. Divide by 4.

1. Pilot hole diameter shall be 0.263" and drilled 1/4" longer than the necessary embedment.

2. Allowable loads are based ultimate test load divide by 4.

3. Recommended center to center distance of 3-3/4" is required for 100% efficiency and 1-7/8" for 50% efficiency.

4. Embedment is through 1-1/4" face shell of hollow block.

Tapcon[®]Ultimate Tension & Shear Values in
Concrete Masonry Units

ANCHOR	ANCHOR MINIMUM		EDGE		HOLLO	W CORE ¹			GROUT	-FILLED ²	
DIA. In. (mm)	EMBE	TH OF DMENT mm)	DISTANCE (Inches)	TENSION Lbs. (kN)		SHEAR Lbs. (kN)					HEAR 5. (kN)
5/16 (7.9)	1-1/4	(31.8)	4	1,045	(4.6)	2,280	(10.1)	1,045	(4.6)	2,280	(10.1)
	1-3/4	(44.5)	4	NOT RECO	MMENDED	NOT RECO	OMMENDED	1,950	(8.7)	2,825	(12.6)
	2-1/4	(57.2)	4	NOT RECO	MMENDED	NOT RECO	OMMENDED	3,770	(16.8)	3,140	(14.0)

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

1 CMU = 1,600 PSI minimum compressive strength.

 $2\ \text{CMU} = 1,600\ \text{PSI}$ minimum compressive strength with 2,000\ \text{PSI} grout.

Tapcon® Storm Guard Anchors

DESCRIPTION/SUGGESTED SPECIFICATIONS

DIRECT MOUNT PERMANENT ANCHORS FOR QUICK AND EASY INSTALLATIONS OF METAL AND PLYWOOD PANELS TO CONCRETE AND BLOCK.

ADVANTAGES

- White UltraShield[™] for corrosion protection in coastal environments.
- 1/4-20 x 7/8" external thread above collar.
- No caulking required.
- Threaded chamfered safety collar prevents overdriving.
- 3/16″ Hex Drive.
- Use with ANSI standard 3/16" carbide-tipped drill bit. (bit not included)

CORROSION RESISTANCE

Salt Spray Test (ASTM B117)

White UltraShield 1500 Hrs no red rust

APPROVAL/LISTINGS

Miami-Dade County – #11-0616.04

For the most current approvals/listings visit: www.itw-redhead.com

INSTALLATION STEPS

Read installation instructions before using!

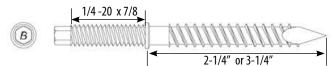
DO NOT BEND DRILL BIT. Do not force the drill bit into base material.

3/16" Nut Driver Installation Tool (Part # 3426910)

Failure to wear safety glasses with side shields can result in serious personal injury. Always wear ANSI compliant eye protection (ANSI Z87.1-2003).

Using the wrong size drill bit will affect performance values and may cause failure.

APPLICATIONS



Direct mount permanent anchors for quick and easy installations for metal and plywood panels to wood, hollow block and concrete.

Tapcon[®] Storm Guard Anchors

SELECTION CHART

	Tap Storm Guard A		neter1/4″ t TypeNail	Thread Form Origina FinishUltraSh	
	PART NO.	DESCRIPTI	DN	COATING	BOX QTY
Ī	3424100	1/4″ dia. x 2-	1/4″	White UltraShield	1,000
	3426910	3/16″ Nut Dr	iver		1
ſ	3095910	3/16" x 3-1/2" Carbide-	tipped Drill Bit		1

PERFORMANCE TABLES

Ta Storm Guard	PCON[®] Anchors Ultimat	e Tension and Sh	ear Values (Lbs/k	N) in Concrete
ANCHOR DIA. In. (mm)	MIN. DEPTH OF EMBEDMENT In. (mm)	EDGE DISTANCE	f'c = 3000 P. TENSION Lbs. (kN)	SI (20.7 MPa) SHEAR Lbs. (kN)
1/4 (6.4)	1 (25.4)	1-1/4 (31.8)	1,230 (5.5)	1,339 (6.0)
	1 (25.4)	2-1/2 (63.5)	1,701 (7.6)	2,333 (10.4)
	1-3/4 (44.5)	1-1/4 (31.8)	2,704 (12.0)	1,375 (6.1)
	1-3/4 (44.5)	2-1/2 (63.5)	2,844 (12.6)	2,618 (11.6)

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity. Divide by 4.

Storm	Tapcon [®] Guard Anchors		ension and S ow Concrete		•
ANCHOR	MIN. DEPTH OF	EDGE DISTANCE	f'c = 1500 P	SI (10.4 MPa)	
DIA. In. (mm)	EMBEDMENT In. (mm)		TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
1/4 (6.4)	1-1/4 (31.8)	1-1/4 (31.8)	1,955 (8.7)	536 (2.4)	
	1-1/4 (31.8)	2-1/2 (63.5)	1,940 (8.6)	1,088 (4.8)	

Storm (Tapcon [®] Guard Anchors		Ultimate Tension and Shear Values (Lbs/kN) in Grout-Filled (CMU)			
ANCHOR DIA.	MIN. DEPTH OF EMBEDMENT	EDGE DISTANCE	GROUT-FILLED (CMU) f'c = 2000 PSI (13.8 MPa)			
ln. (mm)	In. (mm)		TENSION Lbs. (kN)	SHEAR Lbs. (kN)		
1/4 (6.4)	1-3/4 (44.5)	1-1/4 (31.8)	3,335 (14.8)	1,207 (5.4)		
	1-3/4 (44.5)	2-1/2 (63.5)	3,779 (16.8)	2,061 (9.2)		

SAMMYS[®] SSC Hurricane Protection Anchors

APPROVAL/LISTINGS

Miami Dade County # 11-0616.04

For the most current approvals/listings visit: www.itw-redhead.com

APPLICATIONS

Direct mount permanent anchors for quick and easy installations for metal and plywood panels to hollow block and concrete.

#TW Red Head®

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

DESCRIPTION/SUGGESTED SPECIFICATIONS

SPECIFIED FOR SECURING SHUTTERS

Low profile permanent anchors for quick and easy secure shutter installations.

ADVANTAGES

- Thread: 1/4-20 internal thread
- Thread Depth: 5/8"
- Head Diameter: 1/2"
- Head Length: 3/4"

- Cap made of 304 stainless steel will never rust.
- "Original" Tapcon[®] 1/4 dia. anchor with Blue Climaseal[™].
- T25 torx[®] driver for fast and easy installations.

SELECTION CHART

Hurricane Pro	SAMMYS tection Anchors			er1/4″ /peNail
PART NO.	ANCHOR LENGTH	B	OX QTY	

- PART NO.
 ANCHOR LENGTH
 BOX QTY

 8167957
 3-1/4"
 125

 8155957
 6"
 125

 8182910
 Installation Tool
 1
- Thread Form.... Original Notched Hi-Lo™ Finish......Blue Climaseal™

PERFORMANCE TABLES

Hurricane Pro	SAMMYS tection Anchors	Ultimate Te (Lbs/kN) in	nsion and Shear Concrete	Values
ANCHOR	MIN. DEPTH OF	EDGE DISTANCE	f'c = 3295 P	SI (22.7 MPa)
DIA. In. (mm)	EMBEDMENT In. (mm)		TENSION Lbs. (kN)	SHEAR Lbs. (kN)
1/4 (6.4)	1 (25.4)	1-1/4 (31.8)	1,533 (6.8)	1,166 (5.2)
	1 (25.4)	2-1/2 (63.5)	2,024 (9.1)	1,264 (5.6)
	2-1/4 (57.2)	1-1/4 (31.8)	2,972 (13.2)	1,342 (6.0)
	2-1/4 (57.2)	2-1/2 (63.5)	3,099 (13.8)	1,906 (8.5)

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity. Divide by 4.

Hurricane Pro	SAMMYS tection Anchors		nsion and Sheai w Concrete Mas	•	
ANCHOR	MIN. DEPTH OF	EDGE DISTANCE	f'c = 1500 P	SI (10.4 MPa)	
DIA. In. (mm)	EMBEDMENT In. (mm)		TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
1/4 (6.4)	1-1/4 (31.8)	1-1/4 (31.8)	1,388 (6.2)	526 (2.3)	
	1-1/4 (31.8)	2-1/2 (63.5)	1,427 (6.3)	1,056 (4.7)	
Safe working loads for single in	stallation under static loading sh	nould not exceed 25% of the	Itimate load capacity. Divide by 4	•	

Ultimate Tension and Shear Values SAMMYS (Lbs/kN) in Grout-Filled (CMU) **Hurricane Protection Anchors** MIN. DEPTH OF EDGE DISTANCE Hollow Block ANCHOR EMBEDMENT f'c = 2000 PSI (13.8 MPa) DIA. In. (mm) In. (mm) TENSION SHEAR Lbs. (kN) Lbs. (kN) 1/4 (6.4) 2-1/2 (63.5) 1-1/4 (31.8) 3,011 (13.4) 1,086 (4.8) 2-1/2 (63.5) 2-1/2 (63.5) 3,332 (14.8) 1,317 (5.9) Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity. Divide by 4

RED HEAD

99

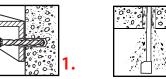
Hammer-Set[™] Anchors

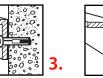
Nail-Drive Anchors

DESCRIPTION/SUGGESTED SPECIFICATIONS Hammer-Set Nail Drive Anchors—

SPECIFIED FOR ANCHORAGE INTO CONCRETE

Hammer-Set Nail-Drive Anchor The Hammer-Set one-piece zinc plated steel anchor consists of an expansion body and expander drive pin. Anchors meet or exceed GSA specification A-A-1925A Type 1. (Formerly GSA: FF-S-325 Group V, Type 2, Class 3)


ADVANTAGES


- Fast, easy installation
- Works in concrete, block and brick
- Install through material to be fastened
- Low profile mushroom head style

APPROVALS/LISTINGS

Meets or exceeds GSA specification A-A-1925A Type 1 (Formerly GSA: FF-S-325 Group V, Type 2, Class 3)

NSTALLATION STEPS

- **1.** Drill proper size hole through material to be fastened into base material. (See Chart for bit size).
- 2. Clean hole.
- 3. Insert Hammer-Set into hole until head of anchor body is flush with material to be fastened. Tap the nail until flush with head of anchor. Ensure minimum embedment is 1/4" deeper than anchor embedment. Be sure head is firmly against fixture
- Anchor is now set. ** NOT RECOMMENDED FOR OVERHEAD **

SELECTION CHART

Hammer-Set

PART NUMBER	DESCRIPTION In. (mm)	DRILL SIZE In. (mm)	MAX. FIXTURE THICKNESS In. (mm)	MIN. EMBEDMENT In. (mm)	MIN. HOLE DEPTH In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CTN - Ibs.
HS-1607	3/16 x 7/8 (4.8 x 22.2)	3/16 (4.8)	1/4 (6.4)	5/8 (15.9)	1-1/8 (28.6)	100/ 2.0	1000/20
HS-1406	1/4 x 3/4 (6.4 x 19.1)	1/4 (6.4)	1/8 (3.2)	5/8 (15.9)	1 (25.4)	100/ 2.2	1000/22
HS-1410	1/4 x 1 (6.4 x 25.4)	1/4 (6.4)	1/4 (6.4)	3/4 (19.1)	1-1/4 (31.8)	100/ 2.4	1000/24
HS-1412	1/4 x 1-1/4 (6.4 x 31.8)	1/4 (6.4)	1/2 (12.7)	3/4 (19.1)	1-1/2 (38.1)	100/ 2.6	1000/26
HS-1414	1/4 x 1-1/2 (6.4 x 38.1)	1/4 (6.4)	3/4 (19.1)	3/4 (19.1)	1-3/4 (44.5)	100/ 2.8	1000/28
HS-1420	1/4 x 2 (6.4 x 50.8)	1/4 (6.4)	1-1/4 (31.8)	3/4 (19.1)	2-1/4 (57.2)	100/ 3.5	1000/35

PERFORMANCE TABLE

Ultimate Tension and Shear Values in Concrete (Lbs/kN)

ANCHOR DIA.	MIN. DEPTH OF EMBEDMENT	4000 PSI (27.6 MPa)					
In. (mm)	In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)				
3/16" (4.8)	5/8" (15.9)	500 (2.2)	450 (2.0)				
1/4″ (6.4)	5/8" (15.9)	700 (3.1)	700 (3.1)				
1/4″ (6.4)	3/4" (19.1)	800 (3.5)	800 (3.5)				
1/4″ (6.4)	1″ (25.4)	950 (4.2)	800 (3.5)				
1/4″ (6.4)	1-1/4" (31.8)	1,100 (4.9)	1,100 (4.9)				

Safe working loads for single installations under static loading conditions should not exceed 25% of the ultimate capacity. Divide ultimate values by 4.

Tw **Red Head**

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

APPLICATIONS

⁶For overhead applications refer to page 79 for Redi-Drive information and performance data

NOT FOR USE IN OVERHEAD APPLICATIONS*

- Electrical boxes
- Conduit clips
- Drywall track
- Roof flashing

The Truly Versatile Plug Anchor

PS-0608SP

PS-1012SP

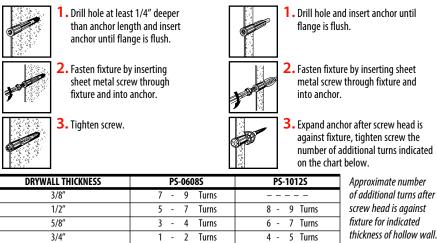
TW Red Head^{*} Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

DESCRIPTION/SUGGESTED SPECIFICATIONS Plug Anchors — specified for anchorage into all base materials

Poly-Set Plug Anchor

The Poly-Set is a polyethylene expansion anchor designed for fastening into drywall, hollow block, brick and solid concrete.

ADVANTAGES


For Solid Concrete

- Unique twisting action provides superior holding over standard plug anchors
- Resistant to moisture, chemicals or atmospheric conditions—can be used anywhere

INSTALLATION STEPS

- Pre-packaged in kits with matching screws and carbide-tipped drill bit
- Works well in *all* base materials

For Hollow Material

SELECTION CHART

Poly-Set Anchors										
PART NUMBER	DRILL BIT Size	ANCHOR LENGTH	SCREW SIZE	GRIP RANGE	QTY/WT PER BOX (lbs.)	QTY/WT PER MASTER CTN (lbs.)				
PS-0608SP	3/16	1-1/4	#6-8	3/8 - 3/4	100/ 0.9	1000/ 2				
PS-1012SP	9/32	1-7/16	#10 - 12	1/2 - 1	100/ 1.8	1000/4				

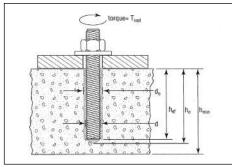
PERFORMANCE TABLES

Average Ultimate Tension Load in Various Base Materials

PART NUMBER	DRYWALL (1/2")	CONCRETE (2000 PSI)	CONCRETE (4000 PSI)	HOLLOW BLOCK (CMU)
PS-0608SP	110 lbs.	225 lbs.	265 lbs.	235 lbs
PS-1012SP	145 lbs.	355 lbs.	390 lbs.	385 lbs

Allowable load values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

	Р	oly-Set Kits			
PART NUMBER	DRILL BIT Size	KIT CONTAINS	GRIP RANGE	QTY/WT PER BOX (lbs.)	QTY/WT PER MASTER CTN (lbs.)
PS-0608SKP	3/16	100 1-1/4" anchors/100 #8 screws	3/8 - 3/4	1/ 1.0	10/ 11
PS-1012SKP	9/32	50 1-7/16" anchors/50 #10 screws	1/2 - 1	1/ 1.2	10/ 12


APPENDIX A: Strength Design Performance Values

SPECIFICATIONS AND DETAILS FOR INSTALLATION OF ANCHORS IN CONCRETE WITH

Characteristic	Cumbal Unit	11			Threa	ded Rod Diamet	er (d)		
Characteristic	Symbol	Units	3/8″	1/2″	5/8″	3/4″	7/8″	1″	1-1/4″
Nominal carbide bit diameter	do	in.	7/16	9/16	3/4	7/8	1	1-1/8	1-3/8
Anchor embedment depth – minimum	h ef, min	in.	1-5/8	2	2-1/2	3-1/2	3-1/2	4	5
Anchor embedment depth – maximum	h ef, max	in.	3-3/8	4-1/2	5-5/8	6-3/4	7-7/8	9	11-1/4
Minimum spacing	s _{min}	in.	15/16	1	2-1/2	6	3-1/2	4	5
Minimum edge distance	c _{min}	in.	15/16	1	2-1/2	6	3-1/2	4	5
Minimum concrete thickness	h _{min}	in.	h _{ef} +	h _{ef} + 1-1/4		$h_{ef} + 2d_0$			
Maximum tightening torque for pretension clamping	T inst	ft lb	9	16	47	90	145	170	370

For SI: 1 inch= 25.4mm, 1 lbf = 4.45N, 1ft-lbf = 1.356N-m, 1psi = .006895MPa

ANCHOR INSTALLATION

BRUSH SPECIFICATIONS

Brush color	Part #	(d) Anchor diameter (in.)	Minimum brush diameter (in.)
Grey	SB038	3/8	0.563
Brown	SB012	1/2	0.675
Green	SB058	5/8	0.900
Yellow	SB034	3/4	1.125
Red	SB078	7/8	1.350
Purple	SB010	1	1.463
Blue	SB125	1-1/4	1.575

For SI: 1 inch= 25.4mm ◆ Available with lead time.

WORKING TIMES AND CURE TIME FOR EPEDAG G5 ADHESIVE

Concrete Temp. (°F) ^{1,2}	Working Time (minutes) ³	Cure Time (hours) ⁴
70	15	24
90	9	24
110	9	24

For SI: $t^{\circ}({}^{\circ}F-32) \times .555 = {}^{\circ}C$.

1 Adhesives must be installed in base material temperatures of 70°F to 110°F or artificially maintained.

2 Cartridge temperature should not differ significantly from the temperature of the base material.

3 Working time is the maximum time from the end of mixing to when the insertion of the anchor into the adhesive shall be completed.

4 Cure time is the minimum time from the end of working time to when the anchor may be torqued or loaded. Anchors are to be undisturbed during the cure time.

APPENDIX A: Strength Design Performance Values

TABLE 1: EFELIM G5 ADHESIVE STEEL DESIGN INFORMATION FOR THREADED ROD

Characteristic		Symbol	Units			Anchor r	nominal diar	neter (d)		
		Symbol	Units	3/8″	1/2″	5/8″	3/4″	7/8″	1″	1-1/4″
Threaded	rod effective cross-sectional area	A _{se}	inch ²	0.078	0.142	0.226	0.335	0.462	0.606	0.969
	Nominal steel strength in tension	N _{sa}	lb	4,500	8,230	13,110	19,400	26,780	35,130	56,210
A36	Nominal steel strength in shear	V _{sa}	lb	2,250	4,940	7,870	11,640	16,070	21,080	33,730
Carbon Steel A36	Strength reduction factor for tension, steel failure mode ¹	Φ	-	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Carbo	Strength reduction factor for shear, steel failure mode ¹	Φ	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	Reduction factor for seismic shear	$lpha_{ m v,seis}$	-	0.70	0.70	0.70	0.70	0.70	0.70	0.70
	Nominal steel strength in tension	N _{sa}	lb	9,690	17,740	28,250	41,810	57,710	75,710	121,140
93 B.	Nominal steel strength in shear	V _{sa}	lb	4,845	10,640	16,950	25,090	34,630	45,430	72,680
teel A1	Strength reduction factor for tension, steel failure mode ¹	Φ	-	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Carbon Steel A193 B7	Strength reduction factor for shear, steel failure mode ¹	Φ	_	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	Reduction factor for seismic shear	$\alpha_{ m v,seis}$	-	0.70	0.70	0.70	0.70	0.70	0.70	0.70
	Nominal steel strength in tension	N _{sa}	lb	5,810	10,640	16,950	25,090	34,630	45,430	72,680
F593	Nominal steel strength in shear	V _{sa}	lb	2,905	6,390	10,170	15,050	20,780	27,260	43,610
Stainless Steel F593	Strength reduction factor for tension, steel failure mode ¹	Φ	_	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	Strength reduction factor for shear, steel failure mode ¹	Ф	-	0.60	0.60	0.60	0.60	0.60	0.60	0.60
	Reduction factor for seismic shear	$\alpha_{ m v,seis}$	-	0.70	0.70	0.70	0.70	0.70	0.70	0.70

For SI: 1 inch = 25.4mm, 1 lbf = 4.45N

1 The tabulated value of **Φ** applies when the load combinations of Section 1605.2.1 of the IBC, Section 1612.2.1 of the UBC, or ACI 318 Section 9.2 are used as set forth in ACI 318 D.4.4. If the load combinations of Section 1909.2 of the UBC or ACI 318 Appendix C are used, the appropriate value of **Φ** must be determined in accordance with ACI 318 D.4.5.

TABLE 2: EFELIN G5 ADHESIVE CONCRETE BREAKOUT DESIGN INFORMATION

Characteristic	Cumhal	Inite			Nominal	rod diamete	r, d (inch)			
Characteristic	Symbol	Units	3/8″	1/2″	5/8″	3/4″	7/8″	1″	1-1/4″	
Effectiveness factor for uncracked concrete	k c,uncr	-	24	24	24	24	24	24	24	
Effectiveness factor for cracked concrete	k _{c,cr}	-	17	17	17	17	17	17	17	
Minimum concrete thickness ²	h _{min}	in.	h _{ef} +	1-1/4			h _{ef} + 2d _o			
Anchor embedment depth - minimum	h ef,min	in.	1-5/8	2	2-1/2	3-1/2	3-1/2	4	5	
Anchor embedment depth - maximum	h _{ef,max}	in.	3-3/8	4-1/2	5-5/8	6-3/4	7-7/8	9	11-1/4	
Minimum spacing	s _{min}	in.	15/16	1	2-1/2	6	3-1/2	4	5	
Minimum edge distance	c min	in.	15/16	1	2-1/2	6	3-1/2	4	5	
Critical edge distance	c ac	in.		S	ee Section 4.	1.10 of the ES	R-1137 Repoi	rt		
Strength reduction factor for tension, concrete failure mode ¹	Φ	Cond B	0.65	0.65	0.65	0.65	0.65	0.65	0.65	
Strength reduction factor for shear, concrete failure mode ¹	Φ	Cond B.	0.70	0.70	0.70	0.70	0.70	0.70	0.70	

For SI: 1 inch = 25.4mm, 1 lbf = 4.45N

1 The tabulated value of **o** applies when the load combinations of Section 1605.2.1 of the IBC, Section 1612.2.1 of the UBC, or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4(c) for Condition B are met. If the load combinations of Section 1909.2 of the UBC or ACI 318 Appendix C are used, the appropriate value of **o** must be determined in accordance with ACI 318 D.4.5 for Condition B.

2 do represents the nominal drill hole diameter.

	Chaus stavistic	Cumhal	11			Nomina	l rod diamet	er (inch)		
	Characteristic	Symbol	Units	3/8″	1/2″	5/8″	3/4″	7/8″	1″	1-1/4″
Anchor en	nbedment depth - minimum	h ef,min	in.	1-5/8	2	2-1/2	3-1/2	3-1/2	4	5
Anchor en	nbedment depth - maximum	h ef,max	in.	3-3/8	4-1/2	5-5/8	6-3/4	7-7/8	9	11-1/4
Temperature Range A ^{2,3,4}	Characteristic Bond Strength for Uncracked Concrete	$\tau_{\kappa,\text{uncr}}$	psi	1,155	1,155	1,155	1,155	1,155	1,155	1,155
Tempe Range	Characteristic Bond Strength for Cracked Concrete ⁶	$\tau_{\kappa, cr}$	psi	475	560	560	560	560	560	560
Si u	Strength Reduction Factor - Dry Concrete	Φ dry, ci	-	0.65	0.65	0.65	0.65	0.55	0.55	0.55
	Strength Reduction Factor - Saturated Concrete	Φ sat, ci	_	0.65	0.65	0.65	0.65	0.55	0.55	0.55
ontii nspe	Strength Reduction Factor - Water-Filled Holes	Φ wf, ci	_	0.65	0.65	0.65	0.65	0.55	0.55	0.55
0-	Strength Reduction Factor - Submerged Concrete	Φsub, ci	_	0.65	0.65	0.65	0.65	0.55	0.55	0.55
	Strength Reduction Factor - Dry Concrete	Φ dry, ci	-	0.55	0.55	0.55	0.55	0.45	0.45	0.45
Periodic Inspection	Strength Reduction Factor - Saturated Concrete	Φsat, ci	-	0.55	0.55	0.55	0.55	0.45	0.45	0.45
Pe Insp	Strength Reduction Factor - Water-Filled Holes	Φ wf, ci	_	0.55	0.55	0.55	0.55	0.45	0.45	0.45
	Strength Reduction Factor - Submerged Concrete	Φsub, ci	_	0.55	0.55	0.55	0.55	0.45	0.45	0.45
Reduction	n factor for seismic tension	Φ N, seis	-				0.80			

TABLE 3: EFERN G5 ADHESIVE ANCHOR BOND STRENGTH DESIGN INFORMATION¹

For SI: 1 inch = 25.4mm, 1 lbf = 4.45N, 1ft-lbf= 1.356 N-m, 1 psi=0.006895 MPa.

1 Bond strength values correspond to concrete compressive strength range 2,500 psi to 8,500 psi.

2 Temperature range A: Maximum short term temperature of 130 degrees F and maximum long term temperature of 110 degrees F.

3 Short term elevated concrete temperatures are those that occur over brief interval, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

4 For load combinations consisting of only short-term loads, such as wind or seismic loads, bond strengths may be increased by 36% for Temperature Range A

5 For structures assigned to IBC or IRC Seismic Design Category C, D, E, or F, or UBC Seismic Zone 2b, 3, or 4, bond strength values must be multiplied by $\alpha_{N,seis}$.

SEE TABLE ON ALLOWABLE STRESS DESIGN, ASD, USING LOW STRENGTH CARBON STEEL (A36) THREADED ROD ON NEXT PAGE.

APPENDIX A: Strength Design Performance Values

TABLE 4: STRENGTH DESIGN USING LOW STRENGTH CARBON STEEL (A36) THREADED ROD \blacklozenge INSTALLED IN f' c = 2,500 PSI – 8,000 PSI UNCRACKED CONCRETE WITH EFFECTIVE GS ADHESIVE

Anchor	Embedment			AI	lowable Tension Load L	BS	
Diameter (d)	Depth, hef (in) (min./max)	Bond Strength $\tau_{\rm K}$, uncr (psi)	2,500 PSI (Controlling Mode)	3,000 PSI (Controlling Mode)	4,000 PSI (Controlling Mode)	6,000 PSI (Controlling Mode)	8,000 PSI (Controlling Mode)
2/0	2-3/8	1,155	1,777 (BOND)				
3/8	3-3/8	1,155	2,525 (BOND)				
1/2	2-3/4	1,155	2,743 (BOND)				
1/2	4-1/2	1,155	4,488 (BOND)				
5.10	3-1/8	1,155	3,896 (BOND)				
5/8	5-5/8	1,155	7,013 (BOND)				
2/4	3-1/2	1,155	5,107 (CONCRETE)	5,236 (BOND)	5,236 (BOND)	5,236 (BOND)	5,236 (BOND)
3/4	6-3/4	1,155	10,098 (BOND)				
7/0	3-1/2	1,155	4,998 (BOND)				
7/8	7-7/8	1,155	11,246 (BOND)				
	4	1,155	6,240 (CONCRETE)	6,528 (BOND)	6,528 (BOND)	6,528 (BOND)	6,528 (BOND)
1	9	1,155	14,668 (BOND)				
1 1/4	5	1,155	8,721 (CONCRETE)	9,553 (CONCRETE)	10,200 (BOND)	10,200 (BOND)	10,200 (BOND)
1-1/4	11-1/4	1,155	22,950 (BOND)				

For SI: 1 inch= 25.4mm, 1 lbf = 4.45N, 1ft-lbf= 1.356 N-M, 1 psi=0.006895 MPa

1. Refer to Tables 1, 2 and 3 for steel, concrete and bond strength design information.

2. Bond strength reduction factors based on periodic inspection and dry, saturated, water-filled or submerged concrete conditions.

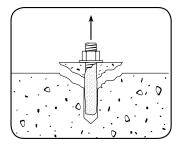
• Call 800-848-5611 for controlling modes and loads using stainless steel or higher strength threaded rod.

Procedure to calculate tension load for strength design – SD

Example: 1/2" diameter anchor with embedment depth of 4-1/2" installed in 4,000 psi concrete

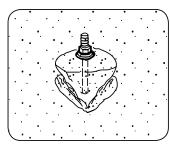
1. Calculate steel strength – tension (per ACI 318 D.5.1.2)

 Φ Nsa = 0.75 * 8,230 = 6,173 lbs


2. Calculate concrete breakout strength – tension Φ kuncr $\sqrt{2,500 \text{ psi}}$ hef ^{1.5} = 0.65 * 24 * $\sqrt{2,500}$ * 4-1/2^{1.5} = 7,446 lbs per ACI 318 D.5.2 (4.000)

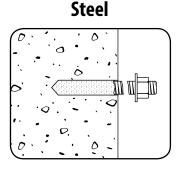
Normalize load for 4,000 psi concrete = 7,446 $\sqrt{\frac{4,000}{2,500}}$ = 9,418 lbs

- Calculate bond strength tension
 Φ * d * π * hef * τ_{k,uncr} = 0.55 * 1/2 * π * 4-1/2 * 1,155 = 4,488 lbs (per equations D-16a, and D-16f of ESR-1137)
- 4. Controlling strength is 4,488 lbs (bond) lowest load value amongst bond, concrete and steel controlling modes


Strength Design Load = 4,488 lbs

Controlling Modes

Concrete


Procedure to calculate tension load for allowable stress design – ASD

 Determine load combination and conversion factor.

 Assume 30% dead load and 70% live load using load combination = 1.2D + 1.6L = 1.2 (0.3) + 1.6 (0.7) = 1.48 (per ACI318 Sect. 9.2)

2. Divide controlling strength (see strength design procedure - step 4) 4,488 lbs by the conversion factor of 1.48 = 4,488/1.48 = 3,032 lbs (steel)

Allowable Strength Design Load = 3,032 lbs

IT W Red Head Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

APPENDIX B: Strength Design Performance values in accordance to 2015 IBC

ITW RED HEAD TRUBOLT WEDGE ANCHOR

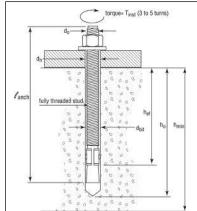
DESIGN INFORMATION TESTED TO ICC-ES AC193 AND ACI 355.2, IN ACCORDANCE WITH 2015 IBC

TRUBOLT WEDGE ANCHOR DESIGN INFORMATION^{1,2,3}

										weage /	anchors
Cumhal	11				Ν	lominal Anc	hor Diamete	er			
Symbol	Units	1,	/4	3.	/8	1,	/2	5,	/8	3,	/4
d _o	in	0.2	250	0.3	75	0.5	00	0.6	525	0.7	'50
h _{ef}	in	1-1/2	2	1-3/4	2-5/8	1-7/8	3-3/8	2-1/2	4	3-1/2	4-3/4
h _{min}	in	4	4	4	5	5	6	5	8	6	8
с _{ас}	in	2-5/8	3	2-5/8	5-1/4	3-3/4	6-3/4	5	8	7	9
¢ _{min}	in	1-3/4	1-1/2	2-1/4	2	3-3/4	3-3/4	4-1/4	3-1/4	3-3/4	3-1/2
s _{min}	in	1-3/4	1-1/2	2-1/4	2	3-3/4	3-3/4	4-1/4	3-1/4	3-3/4	3-1/2
fy	lb/in ²					55,	000				
f _{uta}	lb/in ²		75,000								
A _{se}	in²	0.0)32	0.0	78	0.1	0.142 0.226 0.334				34
Ns	lb	2,3	385	5,8	:15	10,	645	16,950 25,050			050
Vs	lb	1,4	130	2,975	3,490	4,450	6,385	6,045	10,170	10,990	15,030
N _{p,uncr}	lb	1,392	1,706	2,198	3,469	2,400	4,168	4,155	6,638	8,031	10,561
)							1				
te						2	4				
β	lb/in	14,651	9,385	17,515	26,424	32,483	26,136	42,899	21,749	43,576	28,697
in service load	range	34	47	28	45	17	33	55	22	63	28
teel failure mo	des		•	•		0.	75			•	
el failure mode	s					0.	65				
ncrete failure m	odes, Condition B					0.	65				
trength reduction factor $\boldsymbol{\varphi}$ for shear, concrete failure modes, Condition				0.70							
	h _{ef} h _{min} c _{ac} c _{min} f _y futa A _{se} N _s V _s N _{p,uncr}) te β in service load teel failure mode el failure mode	d_0 in h_{ef} in h_{min} in c_{ac} in c_{min} in c_{min} in f_y lb/in ² f_y lb/in ² f_{y} lb/in ² f_{y} lb/in h_{se} in ² h_{se} in ² N_s lb V_s lb $N_{p,uncr}$ lb $h_{p,uncr}$ lb/in lb lb/in	d_0 in 1 d_0 in 0.2 h_{ef} in 1-1/2 h_{min} in 2-5/8 c_{min} in 2-5/8 c_{min} in 1-3/4 s_{min} in 1-3/4 f_y lb/in² 2 f_{uta} lb/in² 2 A_{se} in² 0.0 N_s lb 2,7 V_s lb 1,4 $N_{p,uncr}$ lb 1,392 O I_{see} 34 teel Ib/in 14,651 in service load range 34 4 teel failure modes el failure modes encrete failure modes, Condition B	1/4 1/4 d_0 in 1/4 h_{ef} in 1-1/2 2 h_{min} in 1-1/2 2 h_{min} in 2-5/8 3 c_{ac} in 2-5/8 3 c_{min} in 2-5/8 3 c_{min} in 1-3/4 1-1/2 s_{min} in 1-3/4 1-1/2 f_y lb/in²	1/4 3/ d₀ in 1/4 3/ h _{ef} in 0.250 0.3 h _{ef} in 1-1/2 2 1-3/4 h _{min} in 4 4 4 c _{ac} in 2-5/8 3 2-5/8 c _{min} in 1-3/4 1-1/2 2-1/4 s _{min} in 1-3/4 1-1/2 2-1/4 fy lb/in² 2-1/4 1-1/2 2-1/4 fy lb/in² 2-1/4 1-1/2 2-1/4 fy lb/in² 3/2 0.032 0.00 Ns lb 2,385 5,8 5,8 Vs lb 1,392 1,706 2,975 Np,uncr lb 1,392 1,706 2,198 o 34 47 28 38 38 f lb/in 14,651 9,385 17,515 38 in service load range 34 47 28 34 47 28 el failure modes <t< td=""><td>Symbol Units 1/4 3/8 d₀ in 0.25 0.37 h_{ef} in 1-1/2 2 1-3/4 2-5/8 h_{min} in 4 4 4 5 c_{ac} in 2-5/8 3 2-5/8 5-1/4 c_{min} in 2-5/8 3 2-5/8 5-1/4 c_{min} in 1-3/4 1-1/2 2-1/4 2 s_{min} in 1-3/4 1-1/2 2-1/4 2 fy lb/in² 2-1/4 2 2 fy lb/in² 2-1/4 2 2 fy lb/in² 2-1/4 2 2 fy lb/in² 5/8 5 3 Ns lb 2,385 5,490 3,469 Np,uncr lb 1,392 1,706 2,198 3,469 n g b/in <t< td=""><td>Symbol Units $1/4$ $3/8$ $1/7$ d₀ in 0.250 0.375 0.55 h_{ef} in $1-1/2$ 2 $1-3/4$ $2-5/8$ $1-7/8$ h_{min} in 4 4 4 5 5 c_{ac} in 2-5/8 3 2-5/8 5-1/4 3-3/4 c_{min} in 2-5/8 3 2-5/8 5-1/4 3-3/4 s_{min} in 1-3/4 1-1/2 2-1/4 2 3-3/4 f_y lb/in² 1-1/2 2-1/4 2 3-3/4 f_y lb/in² 5-1/4 3-3/4 3-3/4 3-3/4 f_y lb/in² 2-1/4 2 3-3/4 3-3/4 f_y lb/in² 5-1/4 3-3/4 3-3/4 3-3/4 f_y lb/in² 0.032 0.017 3-3/4 3-3/4 N_s lb 1,392 1,706 2</td><td>Symbol Units 1/4 3/8 1/2 d₀ in 0.25 0.37 0.5 h_{ef} in 1-1/2 2 1-3/4 2-5/8 1-7/8 3-3/8 h_{min} in 4 4 4 5 5 6 c_{ac} in 2-5/8 3 2-5/8 5-1/4 3-3/4 6-3/4 c_{min} in 2-5/8 3 2-5/8 5-1/4 3-3/4 6-3/4 s_{min} in 1-3/4 1-1/2 2-1/4 2 3-3/4 3-3/4 s_{min} in 1-3/4 1-1/2 2-1/4 2 3-3/4 3-3/4 s_{min} in 1-3/4 1-1/2 2-1/4 2 3-3/4 3-3/4 s_{min} lb/in² 0.03 0.03 0.14 2 3-3/4 3-3/4 s_f lb/in² 0.032 0.032 0.07 3,490 4,450 6,385 N_{p,}</td><td>$\begin{array}{ c c c c c c } \hline 0 & 1/4 & 1/4 & 3/8 & 1/2 & 5 \\ \hline d_0 & in & 0.250 & 0.37 & 0.50 & 0.6 \\ \hline h_{ef} & in & 1-1/2 & 2 & 1-3/4 & 2-5/8 & 1-7/8 & 3-3/8 & 2-1/2 \\ \hline h_{min} & in & 1 & 4 & 4 & 5 & 5 & 6 & 5 \\ \hline c_{ac} & in & 2-5/8 & 3 & 2-5/8 & 5-1/4 & 3-3/4 & 6-3/4 & 5 \\ \hline c_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.15 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.15 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.15 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.15 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.15 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.15 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.16 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.16 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-2/4 & 3-2/4 & 3-2/4 \\ \hline s_{min} & in & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-2/4 & 3-2/4 & 3-2/4 \\ \hline s_{min} & in & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-2/4 & 3-2/4 & 3-2/4 \\ \hline s_{min} & in & in & 1-3/4 & in & i$</td><td></td><td></td></t<></td></t<>	Symbol Units 1/4 3/8 d ₀ in 0.25 0.37 h _{ef} in 1-1/2 2 1-3/4 2-5/8 h _{min} in 4 4 4 5 c _{ac} in 2-5/8 3 2-5/8 5-1/4 c _{min} in 2-5/8 3 2-5/8 5-1/4 c _{min} in 1-3/4 1-1/2 2-1/4 2 s _{min} in 1-3/4 1-1/2 2-1/4 2 fy lb/in ² 2-1/4 2 2 fy lb/in ² 2-1/4 2 2 fy lb/in ² 2-1/4 2 2 fy lb/in ² 5/8 5 3 Ns lb 2,385 5,490 3,469 Np,uncr lb 1,392 1,706 2,198 3,469 n g b/in <t< td=""><td>Symbol Units $1/4$ $3/8$ $1/7$ d₀ in 0.250 0.375 0.55 h_{ef} in $1-1/2$ 2 $1-3/4$ $2-5/8$ $1-7/8$ h_{min} in 4 4 4 5 5 c_{ac} in 2-5/8 3 2-5/8 5-1/4 3-3/4 c_{min} in 2-5/8 3 2-5/8 5-1/4 3-3/4 s_{min} in 1-3/4 1-1/2 2-1/4 2 3-3/4 f_y lb/in² 1-1/2 2-1/4 2 3-3/4 f_y lb/in² 5-1/4 3-3/4 3-3/4 3-3/4 f_y lb/in² 2-1/4 2 3-3/4 3-3/4 f_y lb/in² 5-1/4 3-3/4 3-3/4 3-3/4 f_y lb/in² 0.032 0.017 3-3/4 3-3/4 N_s lb 1,392 1,706 2</td><td>Symbol Units 1/4 3/8 1/2 d₀ in 0.25 0.37 0.5 h_{ef} in 1-1/2 2 1-3/4 2-5/8 1-7/8 3-3/8 h_{min} in 4 4 4 5 5 6 c_{ac} in 2-5/8 3 2-5/8 5-1/4 3-3/4 6-3/4 c_{min} in 2-5/8 3 2-5/8 5-1/4 3-3/4 6-3/4 s_{min} in 1-3/4 1-1/2 2-1/4 2 3-3/4 3-3/4 s_{min} in 1-3/4 1-1/2 2-1/4 2 3-3/4 3-3/4 s_{min} in 1-3/4 1-1/2 2-1/4 2 3-3/4 3-3/4 s_{min} lb/in² 0.03 0.03 0.14 2 3-3/4 3-3/4 s_f lb/in² 0.032 0.032 0.07 3,490 4,450 6,385 N_{p,}</td><td>$\begin{array}{ c c c c c c } \hline 0 & 1/4 & 1/4 & 3/8 & 1/2 & 5 \\ \hline d_0 & in & 0.250 & 0.37 & 0.50 & 0.6 \\ \hline h_{ef} & in & 1-1/2 & 2 & 1-3/4 & 2-5/8 & 1-7/8 & 3-3/8 & 2-1/2 \\ \hline h_{min} & in & 1 & 4 & 4 & 5 & 5 & 6 & 5 \\ \hline c_{ac} & in & 2-5/8 & 3 & 2-5/8 & 5-1/4 & 3-3/4 & 6-3/4 & 5 \\ \hline c_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.15 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.15 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.15 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.15 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.15 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.15 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.16 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.16 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-2/4 & 3-2/4 & 3-2/4 \\ \hline s_{min} & in & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-2/4 & 3-2/4 & 3-2/4 \\ \hline s_{min} & in & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-2/4 & 3-2/4 & 3-2/4 \\ \hline s_{min} & in & in & 1-3/4 & in & i$</td><td></td><td></td></t<>	Symbol Units $1/4$ $3/8$ $1/7$ d ₀ in 0.250 0.375 0.55 h _{ef} in $1-1/2$ 2 $1-3/4$ $2-5/8$ $1-7/8$ h _{min} in 4 4 4 5 5 c_{ac} in 2-5/8 3 2-5/8 5-1/4 3-3/4 c_{min} in 2-5/8 3 2-5/8 5-1/4 3-3/4 s_{min} in 1-3/4 1-1/2 2-1/4 2 3-3/4 f_y lb/in ² 1-1/2 2-1/4 2 3-3/4 f_y lb/in ² 5-1/4 3-3/4 3-3/4 3-3/4 f_y lb/in ² 2-1/4 2 3-3/4 3-3/4 f_y lb/in ² 5-1/4 3-3/4 3-3/4 3-3/4 f_y lb/in ² 0.032 0.017 3-3/4 3-3/4 N_s lb 1,392 1,706 2	Symbol Units 1/4 3/8 1/2 d ₀ in 0.25 0.37 0.5 h _{ef} in 1-1/2 2 1-3/4 2-5/8 1-7/8 3-3/8 h _{min} in 4 4 4 5 5 6 c _{ac} in 2-5/8 3 2-5/8 5-1/4 3-3/4 6-3/4 c _{min} in 2-5/8 3 2-5/8 5-1/4 3-3/4 6-3/4 s _{min} in 1-3/4 1-1/2 2-1/4 2 3-3/4 3-3/4 s _{min} in 1-3/4 1-1/2 2-1/4 2 3-3/4 3-3/4 s _{min} in 1-3/4 1-1/2 2-1/4 2 3-3/4 3-3/4 s _{min} lb/in ² 0.03 0.03 0.14 2 3-3/4 3-3/4 s _f lb/in ² 0.032 0.032 0.07 3,490 4,450 6,385 N _{p,}	$\begin{array}{ c c c c c c } \hline 0 & 1/4 & 1/4 & 3/8 & 1/2 & 5 \\ \hline d_0 & in & 0.250 & 0.37 & 0.50 & 0.6 \\ \hline h_{ef} & in & 1-1/2 & 2 & 1-3/4 & 2-5/8 & 1-7/8 & 3-3/8 & 2-1/2 \\ \hline h_{min} & in & 1 & 4 & 4 & 5 & 5 & 6 & 5 \\ \hline c_{ac} & in & 2-5/8 & 3 & 2-5/8 & 5-1/4 & 3-3/4 & 6-3/4 & 5 \\ \hline c_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4-1/4 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.15 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.15 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.15 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.15 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.15 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.15 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.16 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-3/4 & 3-3/4 & 4.16 \\ \hline s_{min} & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-2/4 & 3-2/4 & 3-2/4 \\ \hline s_{min} & in & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-2/4 & 3-2/4 & 3-2/4 \\ \hline s_{min} & in & in & 1-3/4 & 1-1/2 & 2-1/4 & 2 & 3-2/4 & 3-2/4 & 3-2/4 \\ \hline s_{min} & in & in & 1-3/4 & in & i$		

¹ Trubolt+ Anchor Design Strengths must be determined in accordance with ACI 318-05 Appendix D and this table

² The Trubolt+ Wedge Anchor is a ductile steel element as defined by ACI 318 D.1


³ 1/4", 3/8", & 1/2" diameter data is listed in ICC-ES ESR-2251.

TRUBOLT WEDGE ANCHOR (INSTALLED) TRUBOLT WEDGE INSTALLATION INFORMATION

Trubolt[®] Wedge Anchors

Trubolt[®]

Wedge Anchors

			-	-	-							
	Cumhal	11:0:40				Nomina	al Ancho	r Diame	ter (in.)			
	Symbol	Units	1/4		3,	/8	1/2		5/8		3/4	
Anchor outer diameter	d ₀	in	0.	25	0.3	375	0	.5	0.6	525	0.7	/50
Nominal carbide bit diameter	d _{bit}	in	1.	/4	3,	/8	1,	/2	5,	/8	3,	/4
Effective embedment depth	h _{ef}	in	1-1/2	2	1-3/4	2-5/8	1-7/8	3-3/8	2-1/2	4	3-1/2	4-3/4
Min hole depth	h _o	in	2	2-1/2	2-1/2	3-3/8	2-3/4	4-1/4	3-3/4	5-1/4	4-3/4	6
Min slab thickness	h _{min}	in		4	4	5	5	6	5	8	6	8
Installation torque	T _{inst}	ft-lb	4		2	25		5	90		110	
Min hole diameter in fixture	dh	in	5/	16	7/	16	9/	16	11,	/16	13,	/16

TW Reci Head^{*} Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

APPENDIX B: Strength Design Performance values in accordance to 2015 IBC

TRUBOLT WEDGE PULLOUT STRENGTH (Np, unc) (POUNDS) 1

	· · · · · · · · · · · · · · · · · · ·				
Nominal Anchor	Effective		Concrete Comp	ressive Strength	
Diameter (in.)	Embedment Depth (in.)	f′c = 2,500 psi	f′c = 3,000 psi	f′c = 4,000 psi	f′c = 6,500 psi
1/4	1-1/2	1,392	1,525	1,610	1,822
1/4	2	1,706	1,869	1,947	2,151
2 /0	1-3/4	2,198	2,408	2,621	3,153
3/8	2-5/8	3,469	3,800	3,936	4,275
1/2	1-7/8	2,400	2,629	3,172	4,520
1/2	3-3/8	4,168	4,520	4,520	4,520
5/8	2-1/2	4,155	4,155	4,376	5,578
5/6	4	6,638	6,900	7,968	10,157
3/4	3-1/2	8,031	8,322	9,610	12,251
5/4	4-3/4	10,561	10,561	10,561	12,251

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 Mpa

1 Values are for single anchors with no edge distance or spacing reduction.

TRUBOLT WEDGE ANCHOR ALLOWABLE STATIC TENSION (ASD), NORMAL-WEIGHT UNCRACKED CONCRETE 1-6

Nominal Anchor	Effective		Concrete Comp	ressive Strength	
Diameter (in.)	Embedment Depth (in.)	f′c = 2,500 psi	f'c = 3,000 psi	f′c = 4,000 psi	f′c = 6,500 psi
1/4	1-1/2	611	670	707	800
1/4	2	749	821	855	945
3/8	1-3/4	965	1,058	1,151	1,385
5/6	2-5/8	1,524	1,669	1,729	1,878
1/2	1-7/8	1,054	1,155	1,393	1,985
1/2	3-3/8	1,831	1,985	1,985	1,985
5/8	2-1/2	1,825	1,825	1,922	2,450
5/8	4	2,915	3,030	3,499	4,461
3/4	3-1/2	3,527	3,655	4,221	5,381
5/4	4-3/4	4,638	4,638	4,638	5,381

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 Mpa

Design Assumptions:

¹ Single anchor with static tension load only.

² Concrete determined to remain uncracked for the life of the anchorage.

³ Load combinations from 2006 IBC, Sections 1605.2.1 and 1605.3.1 (no seismic loading).

⁴ Thirty percent dead load and 70 percent live load, controlling load combination 1.2D + 1.6L

⁵ Calculation of weighted average: 1.2D + 1.6L = 1.2(0.3) + 1.6(0.7) = 1.48

⁶ Values do not include edge distance or spacing reductions.

TRUBOLT WEDGE ANCHOR ALLOWABLE STATIC SHEAR (ASD), STEEL (POUNDS)¹⁻⁵

Nominal Anchor Diameter (in.)	Effective Embedment Depth (in.)	Allowable Steel Capacity, Static Shear			
1/4	1-1/2	629			
1/4	2	628			
3/8	1-3/4	1,307			
5/8	2-5/8	1,533			
1/2	1-7/8	1,954			
1/2	3-3/8	2,804			
E /9	2-1/2	2,655			
5/8	4	4,467			
3/4	3-1/2	4,827			
5/4	4-3/4	6,601			

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 Mpa

Design Assumptions:

¹ Single anchor with static shear load only.

³ Load combinations from 2006 IBC, Sections 1605.2.1 and 1605.3.1 (no seismic loading).

 3 Thirty percent dead load and 70 percent live load, controlling load combination 1.2D + 1.6L

⁴ Calculation of weighted average: 1.2D + 1.6L = 1.2 (0.3) + 1.6 (0.7) = 1.48

⁵ Values do not include edge distance or spacing reductions.

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

APPENDIX C: Strength Design Performance values in accordance with 2015 IBC ITW RED HEAD TRUBOLT+ and OVERHEAD TRUBOLT+ EDGE ANCHOR DESIGN INFORMATION TESTED TO ICC-ES AC 193 AND ACI 355.2, IN ACCORDANCE WITH 2015 IBC

Characteristic	Symbol	Units					al Anchor	Diameter				
	•	VIIICS	3/8"			1/	2"		5/3	8"	3/4"	
Anchor category	1, 2 or 3		- 1 1 1									
Minimum effective embedment depth	h _{ef}	in	1-5/8		2		3-1		2-3/4	4-1/4	3-3	
Minimum concrete member thickness	h _{min}	in	4	5	4	6	6	8	6	6-1/4	7	8
Critical edge distance	c _{ac}	in	5	3	6	6	7-1/2	6	7-1/2	6-1/2	12	1
	4		a for Steel St		- Tension ar							
Minimum specified yield strength	fy f	psi	60,00			55,			55,0		55,	
Minimum specified ultimate strength	f _{uta}	psi	75,00			75,		75,0		75,		
Effective tensile stress area (neck)	A _{se}	in ²	0.056			0.1			0.1		0.2	
Effective tensile stress area (thread)	A _{se}	in ²	0.075			0.1			0.2		0.3	-
Steel strength in tension	N _{sa}	lbf	4,200			8,9			13,5		19,	
Steel strength in shear, uncracked or cracked concrete ⁶	V _{sa}	lbf	1,830			5,1			8,9		14,	
Steel strength in shear — seismic loads	v _{eq}	lbf	1,545			5,1			8,9		11,775	
Strength reduction factor <i>f</i> for tension, steel failure mod			0.75			0.			0.7		0.7	
Strength reduction factor <i>f</i> for shear, steel failure modes			0.60			0.			0.0	55	0.	j5
		oncrete B	Breakout Con	crete Pry	out Strengt			r				
Effectiveness factor – uncracked concrete	k _{uncr}		24			2			2		2	
Effectiveness factor – cracked concrete	k _{cr}		17			1	7		1	7	1	1
Modification factor for cracked and uncracked concrete ³	Ψϲ͵Ν		1.0		1.0				1.	0	1	0
Coefficient for pryout strength	к _{ср}		1.0		1.	.0	2.0		2.	0	2.0	
Load-bearing length of anchor	l _e	in	1.625	5	2	0	3.	25	2.75	4.25	3.	75
Strength reduction factor ϕ for tension, concrete failure mo	odes, Condition B ²		0.65			0.	65		0.0	55	0.	i5
Strength reduction factor ϕ for shear, concrete failure mo	des, Condition B ²		0.70			0.	70		0.1	70	0.	/0
			Data fo	r Pullout	Strengths							
Pullout strength, uncracked concrete	N _{p,uncr}	lbf	See Footn	iote ⁵	See Foo	otnote 5	6,5	40	5,430	8,900	See Foo	tnote
Pullout strength, cracked concrete	N _{p,cr}	lbf	See Footn	ote ⁵		See Foo	otnote 5		See Foo	tnote 5	See Foo	tnote
Pullout strength for seismic loads	N _{eq}	lbf	See Footn	iote ⁵		See Foo	otnote 5		See Footnote ⁵	6,715	See Foo	tnote
Strength reduction factor <i>f</i> for tension, pullout failure mo	odes, Condition B 2		See Footn	note ⁵		0.	65		0.0	55	See Foo	tnote
			Additi	ional Anc	hor Data							
Axial stiffness in service load range in uncracked concrete	b _{uncr}	lbf/in	100,00	00		250	,000		250,	000	250	000
Axial stiffness in service load range in cracked concrete	b cr	lbf/in	40,00	0		20,	000		20,0	000	20,	000

For SI: 1 inch = 25.4 mm, 1 in2 = 645.16mm2, 1 lbf = 4.45 N, 1 psi = 0.006895 MPa, 1 lbf • 102/in - 17,500 N/m.

¹ The 1/2", 5/8" and 3/4" diameter Trubolt+ Wedge Anchors are ductile steel elements as defined by ACI 318 D.1. The 3/8" diameter Trubolt+ is considered ductile under tension loading and brittle under shear loading.
² All values of φ apply to the load combinations of IBC Section 1605.2, ACI 318 Section 9.2 or UBC Section 1612.2. If the load combinations of Appendix C or UBC Section 1909.2 are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.5. For installations where reinforcement that complies with ACI 318 Appendix D requirements for Condition A is present, the appropriate φ factor must be determined in accordance with ACI 318 D.4.4.

³ For all design cases $\Psi_{c,N} = 1.0$. The appropriate effectiveness factor for cracked concrete (k_{cr}) or uncracked concrete (k_{uncr}) must be used.

⁴ The actual diameter for the 3/8" diameter anchor is 0.361" for the 5/8" diameter anchor is 0.615" and the 3/4" diameter anchor is 0.7482".

⁵ Anchor pullout strength does not control anchor design. Determine steel and concrete capacity only.

⁶ Steel strength in shear values are based on test results per ACI 355.2, Section 9.4 and must be used for design.

TRUBOLT + WEDGE ANCHOR (INSTALLED)

fully threaded stur

torque= Tind

TRUBOLT + AND OVERHEAD TRUBOLT + WEDGE INSTALLATION INFORMATION Parameter Notation Units Nominal Achor Diamet

	Parameter	Notation	Units		Nominal Achor Diameter (inch)									
				3	/8		1/2			5/	/8	3/	/4	
	Anchor outer diameter	d _o	inches	0.3	361		0	.5		0.6	15	0.7	482	
	Nominal carbide bit diameter	d _{bit}	inches	3	/8		1,	/2		5,	/8	3/	/4	
	Effective embedment depth	h _{ef}	inches	1-:	5/8		2	3-	1/4	2-3/4	4-1/4	3-3	3/4	
1	Minimum anchor embedment depth	h _{nom}	inches		2	2-	1/2	3-3	3/4	3-1/4	4-3/4	4-3	3/8	
	Minimum hole depth ¹	h ₀	inches	2-1/4		2-3	3/4	4		3-1/2	5	4-5/8		
	Minimum concrete member thickness ¹	h _{min}	inches	4	5	4	6	6	8	6	6-1/4	7	8	
h _{nom} h _n	Critical edge distance ¹	с _{ас}	In.	5	3	6	6	7-1/2	6	7-1/2	6-1/2	12	10	
	Minimum anchor spacing ¹	s _{min}	In.	3-1/2	2-1/2	6	5-3/4	4	5-3/4	8	6	6	6	
	Minimum edge distance ¹	c _{min}	In.		3		(5		7-1/2	5	7-1/2	7-1/2	
+	Minimum overall anchor length	I	inches	2-	2-1/2		3/4	4-1	1/2	4-1/4	6	5-1	1/2	
	Installation torque	T _{inst}	ft-lb	3	30		4	5		90		110		
	Minimum diameter of hole in fastened part			1.	/2		5	/8		3/	3/4		7/8	

For SI: 1 inch = 25.4 mm, 1 ft-lb = 1.356 N-m.

#TW Rec Head^{*} Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

APPENDIX C: Strength Design Performance values in accordance with 2015 IBC

Anchor Notation	Anchor Embedment Depth	Effective Embedment Depth	Allowable Tension Load
	(inches), h _{nom}	(inches), h _{ef}	(lbs)
3/8	2	1-5/8	1,090
1/2	2-1/2	2	1,490
1/2	3-3/4	3-1/4	2,870
5/8	3-1/4	2-3/4	2,385
۵/۵	4-3/4	4-1/4	3,910
3/4	4-3/8	3-3/4	3,825

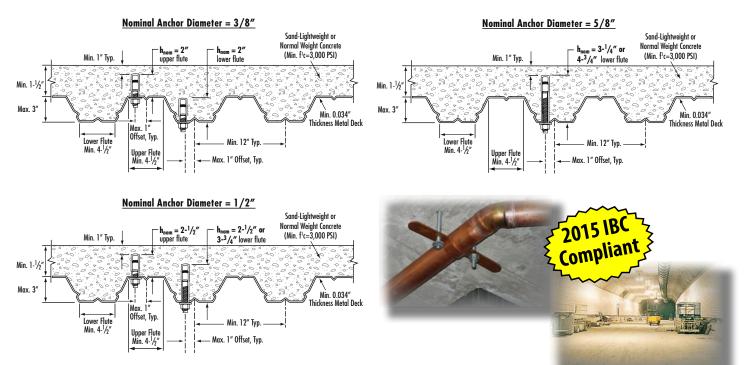
TRUBOLT AND OVERHEAD TRUBOLT + WEDGE ANCHOR ALLOWABLE STRESS DESIGN (ASD) VALUES FOR ILLUSTRATIVE PURPOSES

For SI: 1 inch = 25.4 mm, 1 ft-lb = 4.45N. Design Assumptions:

1 Single anchor with static shear load only.

² Load combinations from 2006 IBC, Sections 1605.2.1 and 1605.3.1 (no seismic loading). 3 Thirty percent dead load and 70 percent live load, controlling load combination 1.2D + 1.6L

⁴ Calculation of weighted average: 1.2D + 1.6L = 1.2(0.3) + 1.6(0.7) = 1.48


⁵ Values do not include edge distance or spacing reductions.

ITW RED HEAD TRUBOLT+ and OVERHEAD TRUBOLT+ WEDGE ANCHOR DESIGN INFORMATION FOR INSTALLATION IN THE SOFFIT OF CONCRETE FILL ON METAL DECK FLOOR AND ROOF ASSEMBLIES

TRUBOLT+ AND OVERHEAD TRUBOLT+ WEDGE ANCHOR DESIGN INFORMATION

				Nom	inal Anchor Dian	neter		
			3/8"	1/	1/2"		8"	
Characteristic	Symbol	Units	Upper /Lower	Upper /Lower	Lower Only	Lower Only	Lower Only	
			$h_{ef} = 1-5/8"$	h _{ef} = 2"	$h_{ef} = 3 - 1/4"$	h _{ef} = 2-3/4"	$h_{ef} = 4 - 1/4''$	
Pullout strength, uncracked concrete over metal deck	Np, deck, uncr	lbf	2,170	2,515	5,285	3,365	6,005	
Pullout strength, cracked concrete over metal deck	Np, deck, cr	lbf	1,650	1,780	4,025	2,405	5,025	
Reduction factor for pullout strength in tension, Condition B	φ				0.65			
Shear strength, uncracked concrete over metal deck	Vp, deck, uncr	lbf	1,640	2,200	3,790	2,890	6,560	
Reduction factor for steel strength in shear	φ		0.60	0.65				
Anchor embedment depth	h _{nom}	in	2.0	2.5	3.75	3.25	4.75	

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N

RED HEAD

109

ITW **Red Head** Call our toll free number 800-848-5611 or visit our web site for the most

current product and technical information at www.itwredhead.com

APPENDIX C: Strength Design Performance values in accordance with 2015 IBC ITW RED HEAD TRUBOLT + WEDGE ANCHOR DESIGN INFORMATION TESTED TO ICC-ES AC 193 AND ACI 355.2, IN ACCORDANCE WITH 2015 IBC

TRUBOLT+ STAINLESS STEEL WEDGE ANCHOR DESIGN INFORMATION¹

Characteristic	Symbol	Units		1/2"			5/8"		
Anchor category	1, 2 or 3			I/2)/ð		
Minimum effective embedment depth	h _{ef}	in		2 3-1/4		2-3/4	4-1/4		
Minimum concrete member thickness	h _{min}	in	4			6	6-1/4		
Critical edge distance	Cac	in	6	6	7-1/2	6	7-1/2	6-1/2	
-	ta for Steel St	renaths –	- Tension a	and Shear	-				
Minimum specified yield strength	fy	psi			000		65,	000	
Minimum specified ultimate strength	futa	psi		100	,000		100,000		
Effective tensile stress area (neck)	A _{se}	in ²	0.119			0.183			
Effective tensile stress area (thread)	A _{se}	in ²	0.142			0.217			
Steel strength in tension	N _{sa}	lbf	11,900			18,300			
Steel strength in shear, uncracked or cracked concrete ⁶	V _{sa}	lbf	7,265			10,215			
Steel strength in shear – seismic loads	V _{eq}	lbf	5,805				8,105		
Strength reduction factor f for tension, steel failure mod		-	0.75			0.75			
Strength reduction factor <i>f</i> for shear, steel failure modes ²			0.65			0.65			
Data for Concrete I	Breakout Con	crete Pry	out Streng	gths in Ter	nsion and S	hear			
Effectiveness factor – uncracked concrete	k _{uncr}			24				24	
Effectiveness factor – cracked concrete	k _{cr}	_	17			17			
Modification factor for cracked and uncracked concrete ³	Ус,N	_	1.0			1.0			
Coefficient for pryout strength	k _{cp}		1	1.0 2.0		2.0			
Load-bearing length of anchor	le	in	2	.0	3.25		2.75	4.25	
Strength reduction factor f for tension, concrete failure mod	des, Condition B ²	_		0.65			0.65		
Strength reduction factor f for shear, concrete failure mode					0.70				
	Data fo	r Pullout	Strength	5			1		
Pullout strength, uncracked concrete	N _{p,uncr}	lbf	See Foo		6,5	40	5,430	8,900	
Pullout strength, cracked concrete	N _{p,cr}	lbf	See Footnote ⁴		See Footnote ⁴				
Pullout strength for seismic loads	N _{eq}	lbf	2,345 See Footnote ⁴			See Footnote 4			
Strength reduction factor f for tension, pullout failure mo	des, Condition B ²			0.	65		0.0	65	
		ional Anc	hor Data						
Axial stiffness in service load range in uncracked concrete	^b uncr	lbf/in		250,000			250,000		
Axial stiffness in service load range in cracked concrete	b _{cr}	lbf/in		20,000 20			20,	000	

 $\label{eq:ForSI: 1 inch = 25.4 mm, 1 in2 = 645.16mm2, 1 lbf = 4.45 N, 1 psi = 0.006895 MPa, 1 lbf \cdot 102/in - 17,500 N/m.$

¹ The 1/2" and 5/8" diameter Trubolt + Wedge Anchors are ductile steel elements as defined by ACI 318 D.1.

² All values of f apply to the load combinations of IBC Section 1605.2, ACI 318 Section 9.2 or UBC Section 1612.2. If the load combinations of Appendix C or UBC Section 1909.2 are used, the appropriate value of f must be determined in accordance with ACI 318 D.4.5. For installations where reinforcement that complies with ACI 318 Appendix D requirements for Condition A is present, the appropriate f factor must be determined in accordance with ACI 318 D.4.4.

³ For all design cases $\Psi_{C,N} = 1.0$. The appropriate effectiveness factor for cracked concrete (k_{Cr}) or uncracked concrete (k_{uncr}) must be used.

⁴ Anchor pullout strength does not control anchor design. Determine steel and concrete capacity only.

⁵ Steel strength in shear values are based on test results per ACI 355.2, Section 9.4 and must be used for design.

TRUBOLT + WEDGE ANCHOR (INSTALLED)

fully threaded stu

torque= Tinst

TRUBOLT + STAINLESS STEEL WEDGE INSTALLATION INFORMATION

Parameter	Notation	Units						
			1/2		5/8			
Anchor outer diameter	do	inches	0.5		0.615			
Nominal carbide bit diameter	d _{bit}	inches	1/2		5/8			
Effective embedment depth	h _{ef}	inches	2 3-1/4		2-3/4	4-1/4		
Minimum anchor embedment depth	h _{nom}	inches	2-1/2		3-3	3/4	3-1/4	4-3/4
Minimum hole depth ¹	ho	inches	2-3/4 4		4	3-1/2	5	
Minimum concrete member thickness ¹	h _{min}	inches	4	6	6	8	6	6-1/4
Critical edge distance ¹	cac	In.	6	6	7-1/2	6	7-1/2	6-1/2
Minimum anchor spacing ¹	^s min	In.	6	5-3/4	4	5-3/4	8	6
Minimum edge distance ¹	^c min	In.	6		7-1/2	5		
Minimum overall anchor length	I	inches	3-3/4		4-1/2		4-1/4	6
Installation torque	Tinst	ft-lb	45			90		
Minimum diameter of hole in fastened part	dh	inches	5/8		3/4			

For SI: 1 inch = 25.4 mm, 1 ft-lb = 1.356 N-m.

IT W Rec Head Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at <u>www.itwrednead.com</u>

Notes	 		

