Maintenance

Monthly Maintenance

Before completing the following checks, turn the unit OFF and lock the main power disconnect switch open.

Rotating Components!

Disconnect all electric power, including remote disconnects before servicing. Follow proper lockout/ tagout procedures to ensure the power can not be inadvertently energized. Failure to disconnect power before servicing could result in death or serious injury.

Failure to disconnect power before servicing can cause severe personal injury or death.

Filters

 Inspect the return air filters. Clean or replace them if necessary. Refer to the unit Service Facts for filter information.

Cooling Season

- Check the unit's drain pans and condensate piping to ensure that there are no blockages.
- Inspect the evaporator and condenser coils for dirt, bent fins, etc. If the coils appear dirty, clean them according to the instructions described in "Coil Cleaning" later in this section.
- Manually rotate the condenser fan(s) to ensure free movement and check motor bearings for wear. Verify that all of the fan mounting hardware is tight.
- Inspect the F/A-R/A damper hinges and pins to ensure that all moving parts are securely mounted. Keep the blades clean as necessary.
- Verify that all damper linkages move freely; lubricate with white grease, if necessary.
- Check supply fan motor bearings; repair or replace the motor as necessary.
- Check the fan shaft bearings for wear. Replace the bearings as necessary.
- Check the supply fan belt. If the belt is frayed or worn, replace it. Refer to the "Fan Belt Adjustment" section for belt replacement and adjustments.
- · Verify that all wire terminal connections are tight.
- Remove any corrosion present on the exterior surfaces of the unit and repaint these areas.
- Generally inspect the unit for unusual conditions (e.g., loose access panels, leaking piping connections, etc.).
- Make sure that all retaining screws are reinstalled in the unit access panels once these checks are complete.

• With the unit running, check and record the: ambient temperature; compressor suction and discharge pressures (each circuit); superheat (each circuit);

Record this data on an "operator's maintenance log" like the one shown in Table 8, p. 36. If the operating pressures indicate a refrigerant shortage, measure the system superheat. For guidelines, refer to the "Compressor Start-Up" section.

Important: Do not release refrigerant to the atmosphere! If adding or removing refrigerant is required, the service technician must comply with all federal, state and local laws.

Heating Season

- Inspect the unit's air filters. If necessary, clean or replace them.
- Check supply fan motor bearings; repair or replace the motor as necessary.
- Inspect both the main unit control panel and heat section control box for loose electrical components and terminal connections, as well as damaged wire insulation. Make any necessary repairs.
- Verify that the electric heat system operates properly.

Coil Cleaning

Regular coil maintenance, including annual cleaning, enhances the unit's operating efficiency by minimizing: compressor head pressure and amperage draw; evaporator water carryover; fan brake horsepower, due to increase static pressure losses; airflow reduction.

At least once each year, or more often if the unit is located in a "dirty" environment, clean the evaporator and condenser coils using the instructions outlined below. Be sure to follow these instructions as closely as possible to avoid damaging the coils.

Note: For units equipped with hail guards follow removal procedure listed below.

Hail Guard Removal

Figure 29. Slide-style

- Unlatch hail guards.
- Pull the top of the hail guard outward until the fastener studs are free of the retaining nuts.
- Lift the hail guard from the lower retaining bracket and set aside.

To clean refrigerant coils, use a soft brush and a sprayer (either a garden pump-up type or a high-pressure sprayer). A high-quality detergent is also required; suggested brands include "SPREX A.C.", "OAKITE 161", "OAKITE 166" and "COILOX". If the detergent selected is strongly alkaline (ph value exceeds 8.5), add an inhibitor.

AWARNING

Hazardous Chemicals!

Coil cleaning agents can be either acidic or highly alkaline. Handle chemical carefully. Proper handling should include goggles or face shield, chemical resistant gloves, boots, apron or suit as required. For personal safety refer to the cleaning agent manufacturer's Materials Safety Data Sheet and follow all recommended safe handling practices. Failure to follow all safety instructions could result in death or serious injury.

- 1. Remove enough panels from the unit to gain access to the coil.
- 2. Protect all electrical devices such as motors and controllers from any over spray.
- 3. Straighten any bent coil fins with a fin comb.
- Mix the detergent with water according to the manufacturer's instructions. If desired, heat the solution to 150°F maximum to improve its cleansing capability.

AWARNING

Hazardous Pressures!

Coils contain refrigerant under pressure. When cleaning coils, maintain coil cleaning solution temperature under 150°F to avoid excessive pressure in the coil. Failure to follow these safety precautions could result in coil bursting, which could result in death or serious injury.

Do not heat the detergent-and-water solution above 150°F. Hot liquids sprayed on the exterior of the coil will raise the coil's internal pressure and may cause it to burst. Failure to follow proper procedures can result in personal illness or injury or severe equipment damage.

- 5. Pour the cleaning solution into the sprayer. If a high-pressure sprayer is used:
 - a. do not allow sprayer pressure to exceed 600 psi.
 - b. the minimum nozzle spray angle is 15 degrees.
 - c. maintain a minimum clearance of 6" between the sprayer nozzle and the coil.
 - d. spray the solution perpendicular (at 90 degrees) to the coil face.

- 6. Spray the leaving-airflow side of the coil first; then spray the opposite side of the coil. Allow the cleaning solution to stand on the coil for five minutes.
- 7. Rinse both sides of the coil with cool, clean water.
- 8. Inspect both sides of the coil; if it still appears to be dirty, repeat Step 6 and Step 7.
- 9. Reinstall all of the components and panels removed in Step 1 and any protective covers installed in Step 2.
- **Note:** For units equipped with hail guards follow reinstallation procedure listed below.

Hail Guard Reinstallation

To reinstall the hail guard, locate the bottom of the hail guard in the lower bracket and secure it to the upper unit bracket with the attached fasteners.

Note: Secure hail guard latches.

Final Process

For future reference, you may find it helpful to record the unit data requested in the blanks provided.

Complete Model Number

Wiring Diagram Numbers (from unit control panel)

Schematics

Connections

Unit Serial Number

Table 8. Sample maintenance log

Refrigerant Circuit #1						Refrigerant Circuit #2							
Date	Current Ambient Temp. F/C	Compr. Oil Level	Suct. Press. Psig/ kPa	Disch. Press. Psig/ kPa	Liquid Press. Psig/ kPa	Super -heat F/C	Sub- cool. F/C	Compr. Oil Level	Suct. Press. Psig/kPa	Disch. Press. Psig/ kPa	Liquid Press. Psig/ kPa	Super- heat F/C	Sub- cool. F/C
		- ok - Iow						- ok - Iow					
		- ok - Iow						- ok - Iow					
		- ok - Iow						- ok - Iow					
		- ok - Iow						- ok - Iow					
		- ok - Iow						- ok - Iow					
		- ok - Iow						- ok - Iow					
		- ok - Iow						- ok - Iow					
		- ok - Iow						- ok - Iow					
		- ok - Iow						- ok - Iow					
		- ok - Iow						- ok - Iow					
		- ok - Iow						- ok - Iow					

Trouble Shooting

The RTRM has the ability to provide the service personnel with some unit diagnostics and system status information.

Before turning the main power disconnect switch "Off", follow the steps below to check the ReliaTel Refrigeration Module (RTRM). All diagnostics & system status information stored in the RTRM will be lost when the main power is turned "Off".

Live Electrical Components!

During installation, testing, servicing and troubleshooting of this product, it may be necessary to work with live electrical components. Have a qualified licensed electrician or other individual who has been properly trained in handling live electrical components perform these tasks. Failure to follow all electrical safety precautions when exposed to live electrical components could result in death or serious injury.

To prevent injury or death from electrocution, it is the responsibility of the technician to recognize this hazard and use extreme care when performing service procedures with the electrical power energized.

- 1. Verify that the Liteport LED on the RTRM is burning continuously. If the LED is lit, go to Step 3.
- If the LED is not lit, verify that 24 VAC is presence between J1-1 and J1-2. If 24 VAC is present, proceed to Step 3. If 24 VAC is not present, check the unit main power supply, check transformer (TNS1). Proceed to Step 3 if necessary.
- 3. Utilizing "Method 1" or "Method 2" in the "System Status Diagnostic" section, check the following:
 - System status
 - Heating status
 - Cooling status

If a System failure is indicated, proceed to Step 4. If no failures are indicated, proceed to Step 5.

- 4. If a System failure is indicated, recheck Steps 1 and 2. If the LED is not lit in Step 1, and 24 VAC is present in Step 2, the RTRM has failed. Replace the RTRM.
- 5. If no failures are indicated, use one of the TEST mode procedures described in the "Unit Start-Up" section to start the unit. This procedure will allow you to check all of the RTRM outputs, and all of the external controls (relays, contactors, etc.) that the RTRM outputs energize, for each respective mode. Proceed to Step 6.
- 6. Step the system through all of the available modes, and verify operation of all outputs, controls, and modes. If a problem in operation is noted in any mode, you may leave the system in that mode for up to one hour while troubleshooting. Refer to the sequence of operations for each mode, to assist in verifying proper

operation. Make the necessary repairs and proceed to Step 7 and Step 8.

- 7. If no abnormal operating conditions appear in the test mode, exit the test mode by turning the power "Off" at the main power disconnect switch.
- 8. Refer to the individual component test procedures if other microelectronic components are suspect.

System Status Checkout Procedure

"System Status" is checked by using one of the following two methods:

Method 1

If the Zone Sensor Module (ZSM) is equipped with a remote panel with LED status indication, you can check the unit within the space. If the ZSM does not have LED's, use Method 2. BAYSENS110*, BAYSENS109*, BAYSENS119*, & BAYSENS023A all have the remote panel indication feature. The LED descriptions are listed below.

LED 1 (System)

"On" during normal operation.

"Off" if a system failure occurs or the LED fails.

"Flashing" indicates test mode.

LED 2 (Heat)

"On" when the heat cycle is operating.

"Off" when the heat cycle terminates or the LED fails.

"Flashing" indicates a heating failure.

LED 3 (Cool)

- "On" when the cooling cycle is operating.
- "Off" when the cooling cycle terminates or the LED fails.

"Flashing" indicates a cooling failure.

LED 4 (Service)

"On" indicates a clogged filter.

"Off" during normal operation.

"Flashing" indicates an evaporator fan failure or condensate overflow switch failure

Below is the complete listing of failure indication causes.

System Failure

Check the voltage between terminals 6 and 9 on J6, it should read approximately 32 VDC. If no voltage is present, a System failure has occurred. Refer to Step 4 in the previous section for the recommended troubleshooting procedure.

Cooling Failure

- Cooling and heating set point (slide pot) on the zone sensor has failed. Refer to the "Zone Sensor Test Procedure" section.
- Zone temperature thermistor ZTEMP on ZTS failed. Refer to the "Zone Sensor Test Procedure" section.
- CC1 or CC2 24 VAC control circuit has opened, check CC1 & CC2 coils, and any of the controls below that apply to the unit (HPC1, HPC2).
- LPC1 has opened during the 3 minute minimum "on time" during 4 consecutive compressor starts, check LPC1 or LPC2 by testing voltage between the J1-8 & J3-2 terminals on the RTRM and ground. If 24 VAC is present, the LPC's has not tripped. If no voltage is present, LPC's has tripped.

Service Failure

- If the supply fan proving switch has closed, the unit will not operate (when connected to RTOM), check the fan motor, belts, and proving switch.
- · Clogged filter switch has closed, check the filters.
- If the condensate overflow switch is closed, the unit will not operate, check the float position is not in a tripped condition and verify an "open" between wires connecting to RTOM J6-1, J6-2

Simultaneous Heat and Cool Failure

• Emergency Stop is activated.

Method 2

The second method for determining system status is done by checking voltage readings at the RTRM (J6). The system indication descriptions and the approximate voltages are listed below.

System Failure

Measure the voltage between terminals J6-9 & J6-6.

Normal Operation = approximately 32 VDC

System Failure = less than 1 VDC, approximately 0.75 VDC

Test Mode = voltage alternates between 32 VDC & 0.75 VDC

Heat Failure

Measure the voltage between terminals J6-7 & J6-6.

Heat Operating = approximately 32 VDC

Heat Off = less than 1 VDC, approximately 0.75 VDC

Heating Failure = voltage alternates between 32 VDC & 0.75 VDC

Cool Failure

Measure the voltage between terminals J6-8 & J6-6.

Cool Operating = approximately 32 VDC

Cool Off = less than 1 VDC, approximately 0.75 VDC

Cooling Failure = voltage alternates between 32 VDC & 0.75 VDC

Service Failure

Measure the voltage between terminals J6-10 & J6-6.

Clogged Filter = Approximately 32 VDC.

Normal = Less than 1 VDC, approximately 0.75 VDC Fan Failure = voltage alternates between 32 VDC & 0.75 VDC.

To use LED's for quick status information at the unit, purchase a BAYSENS110* ZSM and connect wires with alligator clamps to terminals 6 through 10. Connected each respective terminal wire (6 through 10) from the Zone Sensor to the unit J6 terminals 6 through 10.

Note: If the system is equipped with a programmable zone sensor, BAYSENS119* the LED indicators will not function while the BAYSENS110* is connected.

Resetting Cooling and Ignition Lockouts

Cooling Failures and Heating Lockouts are reset in an identical manner. Method 1 explains resetting the system from the space; Method 2 explains resetting the system at the unit.

Note: Before resetting Cooling Failures and Heating Lockouts check the Failure Status Diagnostics by the methods previously explained. Diagnostics will be lost when the power to the unit is disconnected.

Method 1

To reset the system from the space, turn the "Mode" selection switch at the zone sensor to the "Off" position. After approximately 30 seconds, turn the "Mode" selection switch to the desired mode, i.e. Heat, Cool or Auto.

Method 2

To reset the system at the unit, cycle the unit power by turning the disconnect switch "Off" and then "On".

Lockouts can be cleared through the building management system. Refer to the building management system instructions for more information.

Zone Temperature Sensor (ZTS) Service Indicator

The ZSM SERVICE LED is a generic indicator, that will signal the closing of a Normally Open switch at any time, providing the Indoor Motor (IDM) is operating. This indicator is usually used to indicate a clogged filter, or an air side fan failure.

The RTRM will ignore the closing of this Normally Open switch for 2 (\pm 1) minutes. This helps prevent nuisance SERVICE LED indications. The exception is the LED will flash 40 seconds after the fan is turned "On" if the Fan Proving Switch is not made.

Clogged Filter Switch

This LED will remain lit the entire time that the Normally Open switch is closed. The LED will be turned off immediately after resetting the switch (to the Normally Open position), or any time that the IDM is turned "Off".

If the switch remains closed, and the IDM is turned "On", the SERVICE LED will be turned "On" again after the 2 (± 1) minute ignore delay.

This LED being turned "On", will have no other affect on unit operation. It is an indicator only.

Fan Failure Switch

When the "Fan Failure" switch is wired to the RTOM, the LED will remain flashing the entire time the fan proving switch is closed, indicating a fan failure, and it will shut the unit operations down.

Condensate Overflow Switch

When the "Condensate Overflow Switch" is closed, a drain pan overflow condition is indicated and it will shut unit operations down.

Zone Temperature Sensor (ZTS) Test

Note: These procedures are not for programmable or digital models and are conducted with the Zone Sensor Module electrically removed from the system.

Test 1 Zone Temperature Thermistor (ZTEMP)

This component is tested by measuring the resistance between terminals 1 and 2 on the Zone Temperature Sensor. Below are some typical indoor temperatures, and corresponding resistive values.

Test 2 Cooling Set Point (CSP) and Heating Set Point (HSP)

Table 9. Cooling (CSP) and heating setpoint (HSP)

Zone Te	mperature	Nominal ZTEMP Resistance	Nominal CSP or HSP Resistance
50 F°	10.0 C°	19.9 K-Ohms	889 Ohms
55 F°	12.8 C°	17.47 K-Ohms	812 Ohms
60 F°	15.6 C°	15.3 K-Ohms	695 Ohms
65 F°	18.3 C°	13.49 K-Ohms	597 Ohms
70 F°	21.1 C°	11.9 K-Ohms	500 Ohms
75 F°	23.9 C°	10.50 K-Ohms	403 Ohms
80 F°	26.7 C°	9.3 K-Ohms	305 Ohms
85 F°	29.4 C°	8.25 K-Ohms	208 Ohms
90 F°	32.2 C°	7.3 K-Ohms	110 Ohms

The resistance of these potentiometers are measured between the following ZSM terminals. Refer to the chart above for approximate resistances at the given setpoints.

Cool SP = Terminals 2 and 3

Range = 100 to 900 Ohms approximate

Range = 100 to 900 Ohms approximate

Test 3 - System Mode and Fan Selection

The combined resistance of the Mode selection switch and the Fan selection switch can be measured between terminals 2 and 4 on the Zone Sensor. The possible switch combinations are listed below with their corresponding resistance values.

Test 4 LED Indicator Test, (SYS ON, HEAT, COOL & SERVICE)

Method 1

Testing the LED using a meter with diode test function. Test both forward and reverse bias. Forward bias should measure a voltage drop of 1.5 to 2.5 volts, depending on your meter. Reverse bias will show an Over Load, or open circuit indication if LED is functional.

Method 2

Testing the LED with an analog Ohmmeter. Connect Ohmmeter across LED in one direction, then reverse the leads for the opposite direction. The LED should have at least 100 times more resistance in reverse direction, as compared with the forward direction. If high resistance in both directions, LED is open. If low in both directions, LED is shorted.

Method 3

To test LED's with ZSM connected to unit, test voltages at LED terminals on ZSM. A measurement of 32 VDC, across an unlit LED, means the LED has failed.

Programmable & Digital Zone Sensor Test

Testing serial communication voltage

- 1. Verify 24 VAC is present between terminals J6-14 & J6-11.
- 2. Disconnect wires from J6-11 and J6-12. Measure the voltage between J6-11 and J6-12, should be about 32 VDC.
- Reconnect wires to terminals J6-11 and J6-12. Measure voltage again between J6-11 and J6-12, voltage should flash high and low every 0.5 seconds. The voltage on the low end will measure about 19 VDC, while the voltage on the high end will measure from approximately 24 to 38 VDC.
- 4. Verify all modes of operation, by running the unit through all of the steps in the "Test Modes" section discussed in "Unit Start-Up".

Note: Measurements should be made from LED common (ZSM terminal 6 to respective LED terminal). Refer to the Zone Sensor Module (ZSM) Terminal Identification table at the beginning of this section.

Trouble Shooting

5. After verifying proper unit operation, exit the test mode. Turn the fan on continuously at the ZSM, by pressing the button with the fan symbol. If the fan comes on and runs continuously, the ZSM is good. If you are not able to turn the fan on, the ZSM is defective.

ReliaTel Refrigeration Module (RTRM) Default Chart

If the RTCI loses input from the building management system, the RTRM will control in the default mode after approximately 15 minutes. If the RTRM loses the Heating and Cooling setpoint input, the RTRM will control in the default mode instantaneously. The temperature sensing thermistor in the Zone Sensor Module is the only component required for the "Default Mode" to operate.

Unit Operation without a Zone Sensor

This procedure is for temporary operation only. The economizer and condenser fan cycling functions are disabled.

- 1. Open and Lock the unit disconnect switch.
- 2. Remove the Outside Air Sensor (OAS) from the condenser section of unit.
- 3. Use two (2) wire nuts, to individually cap the wires.
- 4. Locate the RTRM (J6). Connect two (2) wires to terminals J6-1 and 2.
- 5. Connect the sensor (OAS) using two wire nuts to the two (2) field supplied wires that were connected to terminals 1 and 2 on J6.

Unit Economizer Control (ECA) Troubleshooting ReliaTel Control

Verify Economizer Status by Economizer Actuator (ECA) LED indicator:

OFF: No Power or Failure

ON: Normal, OK to Economize

Slow Flash: Normal, Not OK to Economize

Fast Flash - 1/2 Second On / 2 Seconds Off:

Error Code:

Communications Failure

Pulse Flash: 2 Seconds On / 1/2 Second Off:

Error Code:

1 Flash: Actuator Fault

2 Flashes: CO₂ Sensor

3 Flashes: RA Humidity Sensor

4 Flashes: RA Temp Sensor

5 Flashes: OA Quality Sensor

- 6 Flashes: OA Humidity Sensor
- 7 Flashes: OA Temp Sensor
- 8 Flashes: MA Temp Sensor

9 Flashes: RAM Fault 10 Flashes: ROM Fault 11 Flashes: EEPROM F

Wiring Diagrams

Note: Wiring diagrams can be accessed using e-Library by entering the diagram number in the literature order number search field or by contacting technical support.

Schematic		Schematic		Schematic		
Туре		Туре		Туре		Description
Control	4366-1007-0104		4366-1010-0104	Connection Diagram	4366-1512-0104	060E
	4366-1007-0104	Bower	4366-1010-0104		4366-1542-0110	072E
	4366-1007-0104	Fower	4366-1010-0104		4366-1542-0110	090E
	4366-1043-0110		4366-1036-0110		4366-1535-0110	120E