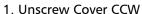


EnviZion™

Hygienic Diaphragm Valve

Experience the Future with EnviZion


The Biopharm industry relies on hygienic diaphragm valves for demanding process applications due to their unique balance of clean-ability, drain-ability and pressure/temperature capability. For more than 40 years the technology of these valves has changed very little. Advances in performance have been nominal as the basic design concept has remained the same: body, diaphragm, topworks, and four fasteners. This design requires experienced personnel and stringent maintenance practices to assure consistent, reliable valve performance. All while the industry is forced to increase productivity, extend preventative maintenance intervals, and reduce operating costs.

ITT's breakthrough technology, the Pure-Flo® EnviZion™ valve, sets a new standard for the future of hygienic diaphragm valves. The EnviZion valve is designed specifically to help customers install, operate, and maintain their valves more efficiently. This unique design provides a significant reduction in total cost of ownership while supporting the industries' goals to increase productivity, improve reliability and enhance clean-ability.

Valve maintenance as easy as 1-2-3

2. Rotate Bonnet

3. Lift Bonnet off Studs

The EnviZion valve utilizes a breakthrough mount and turn design that allows for quick and easy valve disassembly.

- Tool-less maintenance no tools required for valve installation and diaphragm replacement, simplifying the maintenance process.
- Fasteners eliminated no more handling loose parts or accessing fasteners in tight spaces.
- Save time diaphragm changes reduced from an industry average of 23 minutes to 3 minutes, resulting in a 90% reduction in maintenance time.

Reliable Sealing and Improved Cleanability with No Re-Torques

The EnviZion valve eliminates the effects of thermal cycling with an integrated thermal compensation system.

- Active sealing technology the constant force of the thermal compensation system provides a reliable seal that does not degrade over time (unlike other diaphragm valve designs that use passive sealing technology).
- No retorquing the seal is maintained over varying operating conditions, eliminating the need to adjust fasteners after thermal cycling.

The EnviZion valve improves clean-ability by reducing the potential for fluid entrapment.

• Diaphragm seal - the valve body and diaphragm create a seal on the leading edge of the D-section, preventing fluid from getting into areas which would be difficult to clean and possibly lead to process contamination.

Net result - reduced maintenance hours. commissioning costs and potential for system contamination.

Total Cost of Ownership

The EnviZion valve platform was developed with one overarching goal – to reduce the customer's total cost of ownership (TCO). Costs associated with installation, validation, operation, and maintenance are significantly reduced with the EnviZion valve.

- Over 90% annual maintenance cost savings is achieved by reducing the time required to change diaphragms.
- No retorquing after thermal cycling reduces start up time and maintenance cost.
- Body seal reliability eliminates the potential for system contamination, which can save significant production time and lost revenue.
- Preventative maintenance intervals can be extended, saving time and cost.

Cost Savings Example

Cost for Maintenance	Today's Valve	EnviZion Valve
Number of Diaphragm Changes Per Year	2	1
Diaphragm Replacement Time	23 Minutes	3 Minutes
Thermal Cycle Time	4 Hrs/System	0 Hrs/System
Time to Re-Torque Valve	5 Minutes	0 Minutes
Annual Diaphragm Replacement Time for 500 Valves	383 Hours	25 Hours
Total Annual Re-Torque Time	83 Hours	0 Hours
Total Annual Thermal Cycle Time	80 Hours	0 Hours
Total Annual Maintenance Time	547 Hours	25 Hours
Total Valve Related Annual Maintenance Cost*	\$82,000	\$3,750

Actual savings may vary depending on customer specific costs and protocols

Over 90% Reduction in Maintenance Costs

^{* \$150/}hour rate

Valve Bodies

Forged (2-Way)

Size: 0.5-2inch (DN15-50) End Connections: Tri-Clamp®, 16 O.D. Gauge Tubing, DIN 11850

Material: Tri-certified 316L stainless steel, sulfur controlled per ASME BPE (ASTM A182 grade 316L, S9, EN 10222-5 EN 1.4435, BN2)

Dimensional Standards: USOD Tubing, DIN

Patent

Wrought (Block Bodies)

Size: 0.5-2 inch (DN15-50) **End Connections:** Tri-Clamp®, 16 O.D. Gauge Tubing, Schedule piping (5, 10, 40), ISO, DIN 11850

Material: 316L stainless steel ASTM A479, A240,

316L

Special Alloys¹: C22, C276, AL6XN

Dimensional Standards: USOD Tubing, Pipe, ISO/DIN

1 Other materials available upon request

Patent

Surface Finishes

 $10 - 25 \text{ Ra}^* (.25 \mu\text{m} - 0.6 \mu\text{m})$ Interior & exterior electropolish available *25 Ra standard polish

Topworks

Manual Bonnet

Type: ZH, ZHS (sealed) Size: .5-2 inch (DN15-50) Bonnet Material: Stainless steel Handwheel/Bonnet Cover: FDA 21CFR177.1660 compliant PES Corrosion Resistance: Resistant to common industry washdowns. Consult factory for specific chemical resistance.

- Autoclavable
- Thermal compensation system
- Safety lock-pin
- Travel stop
- Visual position indication
- Weep hole

Patent

Actuated Bonnet

Type: ZA1, ZA2, ZA3, ZA1S (sealed), ZA2S (sealed), ZA3S (sealed)

Size: .5-2 inch (DN15-50)

Operating Modes: Fail Closed, Fail Open,

Double Acting

Actuator Material: Stainless steel Bonnet Material: Stainless steel Corrosion Resistance: Resistant to common industry washdowns. Consult factory for specific chemical resistance

Standard Features:

- Autoclavable
- Thermal compensation system
- Safety lock-pin
- Visual position indication
- Weep hole
- 360 degree air port rotation (excludes .5" (DN15))

Patent

Diaphragms

The EnviZion diaphragm has been developed to withstand the wear of today's production cycles and maintains a reliable seal, avoiding the risk of leakage and batch contamination. It combines advanced technology with proven materials that are used extensively in the Pharmaceutical and Biopharm industries.

Featuring a robust 2-piece construction, the EnviZion diaphragm utilizes the same modified PTFE material as the Pure-Flo series of valves with an enhanced EPDM backing cushion. The diaphragm design has been optimized to maximize sealing efficiency while minimizing stresses during operation.

Type: TMZ Patent

Temperature Rating:

- -20°C to 165°C (-4°F to 329°F)
- -30°C to 140°C (-22°F to 285°F) for continuous steam
- -30°C to 150°C (-22°F to 302°F) for intermittent steam

Material (2-Piece Construction):

Product Contact Surface: Modified PTFE Backing Cushion: Grade B1 EPDM

Lot code traceable

Regulatory Compliance:

PTFE: 21CFR 177.1550 (a)

EPDM Backing cushion: 21 CFR 177.2600

USP Class VI, Chapter <87>, <88> (70°C and 121°C)

EMEA 410 compliant

EnviZion Diaphragm Connection as easy as 1-2-3

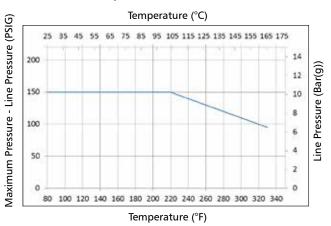
1. Align diaphragm stud head with compressor slot

2. Push diaphragm stud into compressor slot

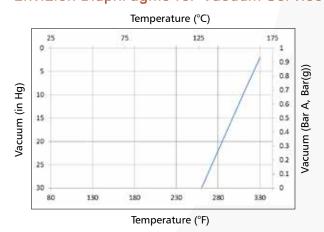
3. Rotate 90°

EnviZion Actuator Sizing

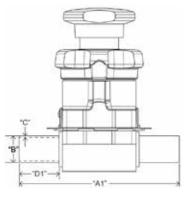
Valve Size		0.5" (0	N 15)	0.75" (DN 20)	0.75"R	(DN 20)	1" (D	N 25)	1.5" (0	N 40)	2.0" ([ON 50)
ΔF		100%	0%	100%	0%	100%	0%	100%	0%	100%	0%	100%	0%
Actuator Model			Fail Closed - Reverse Acting - Spring to Close Maximum Line Pressure (psi/(bar))										
ZA2/ZA2S		150 (10.3)	135 (9.3)	150 (10.3)	70 (4.8)	150 (10.3)	135 (9.3)	150 (10.3)	70 (4.8)	150 (10.3)	90 (6.2)	130 (9.0)	65 (4.5)
Actuator Model	Line Pressure		Fail Open - Direct Acting - Spring to Open Air pressure required to shut-off line pressure (psi/(bar))										
ZA1/ZA1S	20	45 (3.1)	45 (3.1)	45 (3.1)	45 (3.1)	45 (3.1)	45 (3.1)	45 (3.1)	45 (3.1)	32 (2.2)	35 (2.4)	42 (2.9)	50 (3.4)
ZA1/ZA1S	40	48 (3.3)	50 (3.4)	50 (3.4)	53 (3.7)	48 (3.3)	50 (3.4)	50 (3.4)	53 (3.7)	36 (2.5)	42 (2.9)	46 (3.2)	57 (3.9)
ZA1/ZA1S	60	51 (3.5)	54 (3.7)	54 (3.7	62 (4.3)	51 (3.5)	54 (3.7)	54 (3.7	62 (4.3)	40 (2.8)	49 (3.4)	50 (3.5)	64 (4.4)
ZA1/ZA1S	80	54 (3.7)	59 (4.1)	59 (4.1)	70 (4.8)	54 (3.7)	59 (4.1)	59 (4.1)	70 (4.8)	44 (3.0)	56 (3.9)	54 (3.8)	71 (4.9)
ZA1/ZA1S	100	57 (3.9)	63 (4.3)	63 (4.3)	79 (5.4)	57 (3.9)	63 (4.3)	63 (4.3)	79 (5.4)	47 (3.2)	63 (4.3)	59 (4.0)	78 (5.4)
ZA1/ZA1S	125	61 (4.2)	69 (4.8)	69 (4.8)	89 (6.1)	61 (4.2)	69 (4.8)	69 (4.8)	89 (6.1)	52 (3.6)	71 (4.9)	64 (4.4)	86 (5.9)
ZA1/ZA1S	150	65 (4.5)	75 (5.2)	75 (5.2)	100 (6.9)	65 (4.5)	75 (5.2)	75 (5.2)	100 (6.9)	57 (3.9)	80 (5.5)	69 (4.8)	95 (6.5)
Actuator Model	Line Pressure		Double Acting - Air to Open Air to Close Air pressure required to shut-off line pressure (psi/(bar))										
ZA3/ZA3S	20	30 (2.1)	30 (2.1)	30 (2.1)	30 (2.1)	30 (2.1)	30 (2.1)	30 (2.1)	30 (2.1)	17 (1.2)	18 (1.2)	27 (1.9)	27 (1.9)
ZA3/ZA3S	40	33 (2.3)	35 (2.4)	35 (2.4)	38 (2.6)	33 (2.3)	35 (2.4)	35 (2.4)	38 (2.6)	20 (1.4)	26 (1.8)	31 (2.1)	35 (2.4)
ZA3/ZA3S	60	36 (2.5)	39 (2.7)	39 (2.7)	47 (3.2)	36 (2.5)	39 (2.7)	39 (2.7)	47 (3.2)	23 (1.6)	35 (2.4)	34 (2.3)	44 (3.0)
ZA3/ZA3S	80	39 (2.7)	44 (3.0)	44 (3.0)	55 (3.8)	39 (2.7)	44 (3.0)	44 (3.0)	55 (3.8)	27 (1.9)	43 (3.0)	38 (2.6)	52 (3.6)
ZA3/ZA3S	100	42 (2.9)	48 (3.3)	48 (3.3)	64 (4.4)	42 (2.9)	48 (3.3)	48 (3.3)	64 (4.4)	30 (2.1)	51 (3.5)	41 (2.8)	61 (4.2)
ZA3/ZA3S	125	46 (3.2)	54 (3.7)	54 (3.7)	74 (5.1)	46 (3.2)	54 (3.7)	54 (3.7)	74 (5.1)	34 (2.3)	62 (4.3)	46 (3.1)	72 (5.0)
ZA3/ZA3S	150	50 (3.4)	60 (4.1)	60 (4.1)	85 (5.9)	50 (3.4)	60 (4.1)	60 (4.1)	85 (5.9)	38 (2.6)	72 (5.0)	50 (3.4)	83 (5.7)

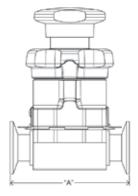

Note: Fail closed actuators require 90 psi (6 bar) instrument air to achieve full open with 0 psi/bar line pressure

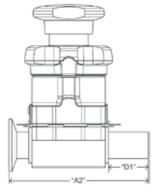
Cv/Kv Ratings for EnviZion Manual and Actuated valves


Size (in)	0.5" ([ON 15)	0.75" (DN 20)	0.75"R	(DN 20)	1" (D	N 25)	1.5" (1	DN 40)	2" (D	N 50)
Cv/Kv	Cv	Kv	Cv	Kv	Cv	Kv	Cv	Kv	Cv	Kv	Cv	Kv
25% Open	1.4	1.21	3.9	3.37	1.4	1.22	4.4	3.81	6.3	5.45	9.1	7.88
50% Open	2.5	2.16	7.4	6.40	2.9	2.51	9.5	8.22	17.3	14.98	24.9	21.56
75% Open	2.9	2.51	9.6	8.30	3.8	3.29	12.4	10.73	29.4	25.45	42.7	36.97
100% Open	3	2.60	10	8.65	4.5	3.89	14	12.11	37.1	32.12	51.2	44.33

Cv units = GPM with 1 psi pressure drop across valve. $Kv = m^3/hr$ with 1 Kg/cm² pressure drop across the valve


Pressure/Temperature Recommendations




EnviZion Diaphragms for Vacuum Service

Body Dimensions

USOD (ANSI)								Drain Angles		
В		А	A1	D1	A2	С				
End Connect	End Connection Size Ove		Overall Length	Weld Tangent	Overall Length	16 GA.	ANSI	ISO	DIN	
IN	DN	Tri Clamp	Extended BW	Extended BW	TC x BW	Extended BW				
				Forgings						
0.5"	DN15	3.5" (89)	5.22"(133)	1.5" (38)	4.36 (111)	.065	27°	TBD	TBD	
0.75"	DN20	4" (102)	6.00" (152)	1.5" (38)	5.00 (127)	.065	36°	TBD	TBD	
0.75R	DN20	4" (102)	6.00" (152)	1.5" (38)	5.00 (127)	.065	16°	TBD	TBD	
1"	DN25	4.5" (114)	6.00" (152)	1.5" (38)	5.25 (133)	.065	30°	TBD	TBD	
1.5"	DN40	5.5 (140)	7.08 (180)	1.5 (38)	6.3 (160)	.065	25°	TBD	TBD	
2"	DN50	6.25 (159)	7.42 (188)	1.5 (38)	6.84 (174)	.065	19°	TBD	TBD	

Note: Drain angle tolerances of $\pm -2^\circ$ will assure optimal drainability

Dimensions in () are mm

Platform

How to Specify an EnviZion Valve

EnviZion configuration numbers follow the same format as the Pure-Flo platform, with the exception of adding the ENV prefix in front of the figure number. In addition, codes have been established for manual bonnets, actuators, and diaphragms as noted below.

Code	Description
ENV	EnviZion
EnviZion	Manual Bonnets
Code	Description
ZH	EnviZion Zero torque Manual
ZHS	EnviZion Zero torque Manual
	sealed

Envizion Actuated Bonnets					
Code	Description				
ZA1	EnviZion Zero torque				
	Actuator - FO				
ZA2	EnviZion Zero torque				
	Actuator - FC (90#)				
ZA3	EnviZion Zero torque				
	Actuator – DA				
ZA1S	EnviZion Zero torque				
	Actuator - FO sealed				
ZA2S	EnviZion Zero torque				
	Actuator- FC (90#) sealed				
ZA3S	EnviZion Zero torque				
	Actuator – DA sealed				

Diaphragms				
Code	Description			
TMZ	EnviZion modified PTFE			
	diaphragm (FDA)/B1 backing			
	cushion			

For more information on how to order an EnviZion valve, see B.ENV-ORD.2017-11.

Figure Number Example: ENV-1-F-428L-6-0-0-TMZ-ZH

Description: 1" EnviZion manual valve, forged body, 16 gauge buttweld ends, 25 Ra interior polish with PTFE diaphragm with EPDM backing cushion

ENGINEERED FOR LIFE Engineered Valves, LLC 33 Centerville Road Lancaster, PA 176031 717.509.2200 www.engvalves.com

ITT Industries Ltd. Weycroft Avenue, Millwey Rise Industrial Estate Axminster, EX13 5HU United Kingdom © 2017 ITT Enginered Valves, LLC

Tel: +44 1297-639100

Fax: +44 1297-630476

B.ENV.en-US.2017-11