



#### **Features**

Fixed orifice DZR brass double regulating valve. Intended for HVAC use. Threaded F/F (ASME B1.20.1 - NPT) or solder joint ends (ASME B16.22). Design according to BS7350. Tolerance on nominal C<sub>vs</sub> +3% (test according to BS7350). 300 WOG (Maximum 300psi up to 160°F. Maximum 150psi at 260°F.)

Available on following versions:

MBV-T-9517, threaded ends, with test points

MBV-S-9519, solder joint ends, with test points

### **Working Conditions:**

 Water (15°F to 260°F) below 32°F only for water with added anti-freezing fluids over 212°F only for water with added anti-boiling fluids

### **Material Specifications**

1. Venturi Insert: DZR Brass

2. Body: DZR Brass

3. Balancing Cone: DZR Brass 4. Gasket Disc: PTFE

5. Disc1: DZR Brass

6. Disc O-Ring<sup>1</sup>: EPDM Perox

7. Disc Stem: DZR Brass

8. Stem O-Ring: EPDM Perox

For additional information on Gruvlok bag and tag coil kit service, contact an ASC Engineered Solutions Representative.

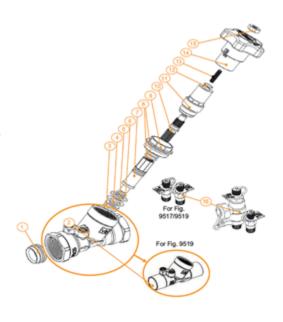


9. Union1: DZR Brass

10. Stem: Brass ASTM B124 C37700

11. Bonnet: DZR Brass

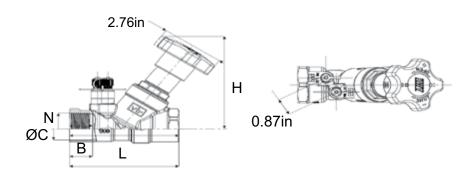
12. Stop Spring Ring: Spring Steel


13. Screw: Steel

14. Handwheel: ABS (Blue) 15. Nut: Zinc Plated Steel

16. Test Point: DZR Brass<sup>2</sup> ASTM C35330

 $^{1}$  Only on  $1\frac{1}{4}$ ",  $1\frac{1}{2}$ " and 2"


<sup>2</sup> Test points with EPDM gaskets and polypropylene ties



GRUVLOK

| PROJECT INFORMATION | APPROVAL STAMP    |
|---------------------|-------------------|
| Project:            | Approved          |
| Address:            | Approved as noted |
| Contractor:         | Not approved      |
| Engineer:           | Remarks:          |
| Submittal Date:     |                   |
| Notes 1:            |                   |
| Notes 2:            |                   |





### Fixed Orifice Double Regulating Valve

| Valve<br>Size                  | N           | øC¹         | Н      | L <sup>2</sup> | B <sup>2</sup> | Approx. Wt. <sup>2</sup> Each | Flow<br>Range          |
|--------------------------------|-------------|-------------|--------|----------------|----------------|-------------------------------|------------------------|
| In./mm                         | In./mm      | In./mm      | In./mm | In./mm         | In./mm         | Lbs./Kg                       | GPM                    |
| U- <sup>1</sup> / <sub>2</sub> | 1/2 - 14    | 0.627-0.631 | 4.06   | 3.46/3.74      | 0.71/0.55      | 1.23/1.16                     | 0.27-0.71              |
| 15                             | _           | 15.93-16.03 | 103.1  | 87.9/95.0      | 18.0/140       | 0.56/0.53                     | _                      |
| L- 1/2                         | 1/2 - 14    | 0.627-0.631 | 4.06   | 3.46/3.74      | 0.71/0.55      | 1.23/1.16                     | 0.49-1.17              |
| 15                             | _           | 15.93-16.03 | 103.1  | 87.9/95.0      | 18.0/140       | 0.56/0.53                     | _                      |
| 1/2                            | 1/2 - 14    | 0.627-0.631 | 4.06   | 3.46/3.74      | 0.71/0.55      | 1.23/1.16                     | 0.98-2.35 <sup>3</sup> |
| 15                             | _           | 15.93-16.03 | 103.1  | 87.9/95.0      | 18.0/140       | 0.56/0.53                     | _                      |
| 3/4                            | 3/4 - 14    | 0.877-0.881 | 4.06   | 3.78/4.18      | 0.75/0.76      | 1.43/1.34                     | 2.19-5.15 <sup>3</sup> |
| 20                             | -           | 22.28-22.38 | 103.1  | 96.0/106.2     | 19.1/19.3      | 0.65/0.61                     | _                      |
| 1                              | 1 - 11.5    | 1.128-1.131 | 4.06   | 3.94/4.57      | 0.89/0.92      | 1.73/1.55                     | 4.09-9.56 <sup>3</sup> |
| 25                             | -           | 28.65-28.73 | 103.1  | 100.1/116.1    | 22.6/23.4      | 0.78/0.70                     | -                      |
| 11/4                           | 11/4 - 11.5 | 1.378-1.381 | 4.06   | 4.63/5.28      | 0.98/0.98      | 2.78/2.53                     | 8.56-19.81             |
| 32                             | _           | 35.00-35.08 | 103.1  | 117.6/134.1    | 24.9/27.9      | 1.26/1.15                     | _                      |
| 11/2                           | 1½- 11.5    | 1.628-1.632 | 4.06   | 5.00/5.90      | 0.98/1.10      | 3.50/3.16                     | 12.84-29.80            |
| 40                             | _           | 41.35-41.45 | 103.1  | 127.0/149.9    | 24.9/27.9      | 1.59/1.43                     | _                      |
| 2                              | 2 - 11.5    | 2.128-2.132 | 4.06   | 5.72/6.73      | 1.15/1.35      | 4.80/4.46                     | 24.09-55.63            |
| 50                             | -           | 54.05-54.15 | 103.1  | 145.3/170.9    | 29.2/34.3      | 2.18/2.02                     | _                      |

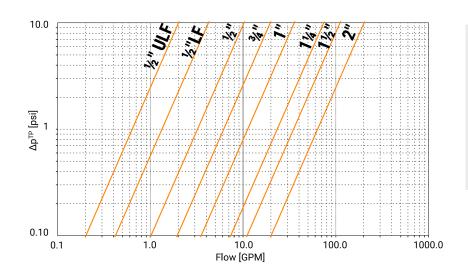
<sup>&</sup>lt;sup>1</sup>Tolerance field

If used with measuring manometers different from those proposed by Anvil-RWV, please verify that sensibility of the measuring device is compatible with indicated minimum.

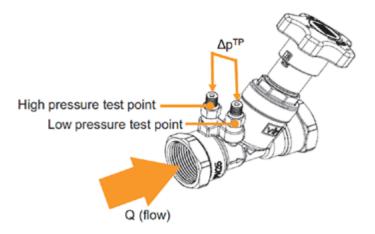


asc-es.com

Building connections that last™


<sup>&</sup>lt;sup>2</sup> Threaded ends/soldering ends

<sup>&</sup>lt;sup>3</sup> Dimension with VIR actuators, for more details please consult specific technical sheet


<sup>&</sup>lt;sup>4</sup> Suggested flow range applicability (BS7350)



### Flow Diagram



| $\frac{1}{2}$ " ULF $C_{vs}$ venturi 0.64          |
|----------------------------------------------------|
| $^{1\!\!/_{\!2}}$ " $_{LF}$ C $_{vs}$ venturi 1.33 |
| $^{1\!\!/_{\!\!2}"}$                               |
| $^{3}\!4$ " C $_{ m vs}$ venturi 6.16              |
| 1"C <sub>vs</sub> venturi 11.24                    |
| 1%"C <sub>vs</sub> venturi 23.41                   |
| $1\frac{1}{2}$ "C <sub>vs</sub> venturi 34.95      |
| 2"C <sub>vs</sub> venturi 63.67                    |
|                                                    |



$$Q = C_{vs}^{venturi} \cdot \sqrt{\Delta p^{TP}}$$

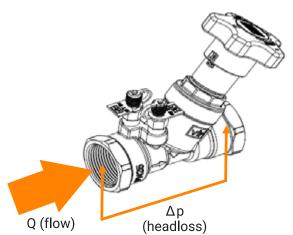
Q = flow rate in GPM

 $\Delta p$  = differential pressure signal in psi generated through the pressure test points

 $C_{VS}$  = flow coefficient



asc-es.com


Building connections that last™

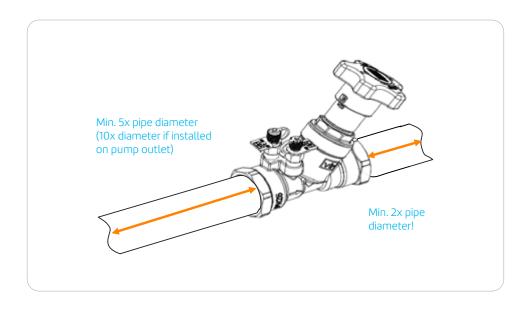


#### **Headloss**

$$\Delta p = \left(\frac{Q}{C_V}\right)^2$$

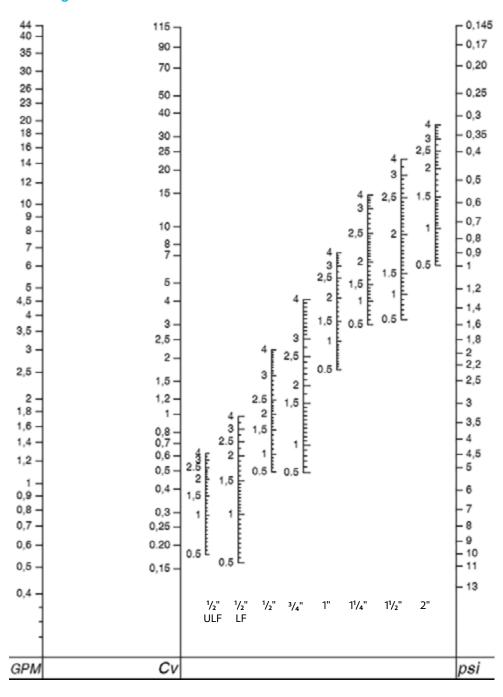
Formula linking flow Q (in GPM) and theoretical valve headloss (pressure drop)  $\Delta p$  (in psi).  $C_V$  depends on handwheel position as indicated in table.




### **Headloss Calculation**

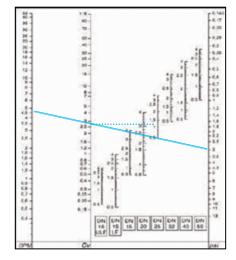
| Handwheel<br>Position | C <sub>V</sub> (GPM/psi <sup>0.5</sup> ) |         |         |         |         |         |         |         |
|-----------------------|------------------------------------------|---------|---------|---------|---------|---------|---------|---------|
|                       | U- <sup>1</sup> / <sub>2</sub> "         | L-1/2"  | 1/2"    | 3/4"    | 1"      | 11/4"   | 11/2"   | 2"      |
| -                     | GPM/psi                                  | GPM/psi | GPM/psi | GPM/psi | GPM/psi | GPM/psi | GPM/psi | GPM/psi |
| 0.5                   | 0.177                                    | 0.160   | 0.474   | 0.474   | 1.70    | 2.96    | 3.14    | 6.20    |
| 0.7                   | 0.206                                    | 0.186   | 0.474   | 0.543   | 2.00    | 3.38    | 3.61    | 7.56    |
| 1.0                   | 0.283                                    | 0.287   | 0.613   | 0.671   | 2.42    | 3.95    | 4.27    | 9.65    |
| 1.3                   | 0.331                                    | 0.394   | 0.717   | 0.809   | 2.82    | 4.49    | 4.96    | 12.19   |
| 1.5                   | 0.355                                    | 0.440   | 0.809   | 0.902   | 3.12    | 4.83    | 5.57    | 14.30   |
| 1.7                   | 0.387                                    | 0.501   | 0.902   | 0.994   | 3.48    | 5.25    | 6.60    | 16.64   |
| 2.0                   | 0.445                                    | 0.586   | 0.994   | 1.12    | 4.13    | 6.27    | 8.99    | 20.17   |
| 2.3                   | 0.511                                    | 0.669   | 1.10    | 1.25    | 4.83    | 7.82    | 12.08   | 23.35   |
| 2.5                   | 0.517                                    | 0.696   | 1.18    | 1.39    | 5.28    | 9.16    | 14.21   | 25.12   |
| 2.7                   | 0.527                                    | 0.743   | 1.32    | 1.62    | 5.63    | 10.46   | 16.34   | 26.66   |
| 3.0                   | 0.563                                    | 0.828   | 1.60    | 2.24    | 6.09    | 12.21   | 18.89   | 28.72   |
| 3.3                   | 0.578                                    | 0.864   | 1.88    | 2.94    | 6.49    | 13.39   | 20.67   | 30.57   |
| 3.5                   | 0.594                                    | 0.891   | 2.03    | 3.39    | 6.64    | 13.94   | 21.54   | 31.72   |
| 3.7                   | 0.595                                    | 0.925   | 2.12    | 3.75    | 6.80    | 14.34   | 22.16   | 32.86   |
| 4.0                   | 0.603                                    | 0.953   | 2.19    | 4.06    | 7.10    | 14.50   | 22.65   | 34.36   |
| 4.4                   | 0.605                                    | 0.985   | 2.22    | 4.24    | 7.21    | -       | -       | _       |




#### Installation

To obtain the best performances valve must be installed on a pipe with its same nominal size preceded and followed by straight pipe lengths as per figure indications.






#### **Presetting**



Using diagram, determine the presetting position of the valve with the given design flowrate and headloss:

- Draw a straight line joining design flowrate and design headloss;
- Determine design C<sub>V</sub> value as intersection of drawn line and C<sub>V</sub> axis;
- Draw a straight horizontal line from intersection previously identified and the specific valve size axis;
- 4. Intersection determines handwheel position to use for presetting.



In the example for a design flowrate of 5GPM and design  $\Delta p$  3psi handwheel position of 1.35 is determined for a 1" valve.