

GENERAL INFORMATION

BANG-IT®+

Concrete Inserts

PRODUCT DESCRIPTION

Bang-It+ concrete inserts are designed for installation in and through composite steel deck (i.e. "pan-deck") used to support newly poured concrete floor or roof slabs. The Bang-It+ concrete inserts are specifically designed to provide hangar attachments for mechanical, electrical, plumbing (MEP) and fire protection.

After installation, the protective sleeve of the insert protrudes below the surface of the deck. The sleeves are color coded by size and allow overhead attachment of steel threaded rod in sizes ranging from 1/4" to 3/4" in diameter. The sleeve prevents sprayed fireproofing material and acoustical dampening products from clogging the internal threads of the insert. It also prevents burying, masking or losing the insert location. A hex impact plate offers resistance to rotation within the concrete as a steel threaded rod is being turned during installation.

A push-in thread version is also available which does not require turning the threaded rod or threaded bolt during installation. which can be ideal for applications such as mounting prefabricated hardware and hanger assemblies.

GENERAL APPLICATIONS AND USES

- Hanging Pipe and Sprinkler Systems
- HVAC Ductwork and Strut Channels
- Suspending Trapeze and Cable Trays
- Mechanical Utility Lines
- Conduit and Lighting Systems
- Cracked and Uncracked Concrete

FEATURES AND BENEFITS

- + Fast and simple to install, low installed cost
- + Sturdy base design resists inserts from being kicked over after placement
- + Color coded by size for simple identification, can be further marked by trade and/or utility
- + Inserts can be installed in upper and lower steel deck profiles with limited concrete topping thickness (see installation details)
- + Suitable for seismic and wind loading (see design information)
- + Multi thread inserts allow for multiple diameters using the same part
- + All sizes of multi thread inserts rated for tension and shear loading
- + Push-In thread version does not require turning threaded rod elements during installation

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-3657 for concrete
- Code compliant with the 2018 IBC/IRC, 2015 IBC/IRC, and 2012 IBC/IRC
- Tested in accordance with ASTM E488 and ICC-ES AC446 for use in cracked and uncracked concrete and with the design provisions of ACI 318 (Strength Design method)
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete as well as seismic and wind loading
- Underwriters Laboratories (UL Listed) File No. EX1289, see listing for sizes
 Also UL listed and recognized for use in air handling spaces (i.e. plenum rated locations)
- FM Approvals (Factory Mutual) File No. J.I. 3015153, see approval for sizes

GUIDE SPECIFICATIONS

CSI Divisions: 03 15 19 - Cast-In Concrete Anchors and 03 16 00 - Concrete Anchors. Concrete inserts shall be Bang-It+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	1
Material Specifications	2
Installation Specifications	3
Reference Data (ASD)	6
Strength Design (SD)	9
Ordering Information	16

BANG-IT+ STEEL DECK INSERTS

BANG-IT+ PUSH-IN THREAD STEEL DECK INSERT

ANCHOR MATERIALS

• Carbon Steel and Engineered Plastic

ROD/ANCHOR SIZE RANGE (TYP.)

• 1/4" through 3/4" threaded rod (UNC)

INSERT VERSIONS

- Single Thread
- Multi Thread
- Push-In Thread

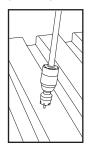
SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Lightweight Concrete

MATERIAL SPECIFICATIONS

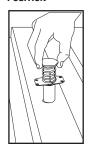
Bang-It+

Anchor Component	Component Material
Insert Body	AISI 1008 Carbon Steel or equivalent
Base Plate	AISI 1008 Carbon Steel or equivalent or Engineered Plastic (polypropylene)
Spring	Steel Music Wire
Protective Sleeve	Engineered Plastic (polypropylene)
Zinc Plating (metal components)	ASTM B633 (Fe/Zn5) Min. Plating requirements for Mild Service Condition

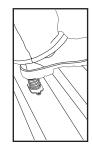

Material Properties for Common Threaded Rods

Description	Steel Specification (ASTM)	Threaded Rod Diameter (inch)	Minimum Yield Strength, fy (ksi)	Minimum Ultimate Strength, f (ksi)
Standard Carbon Steel	A36	1/4 to 3/4	36.0	58.0
High Strength Carbon Steel	A193, Grade B7	1/4 to 3/4	105.0	125.0

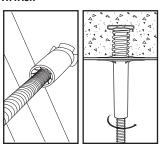
Inserts may be considered for use in conjunction with all grades of continuously threaded carbon steels (all-thread) that comply with code reference standards and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series.


Installation Instructions for Bang-It+

CREATE HOLE

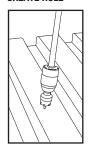

Step 1 Drill or punch a hole in the steel deck to hole size required (e.g. deck driller with hole saw or step bit).

POSITION

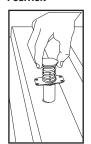

Step 2 Insert plastic sleeve through hole in steel deck.

MOUNT

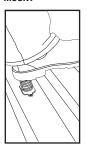
Step 3 Step on or impact insert head to engage through deck.
Option: base flange of insert can be attached.


ATTACH

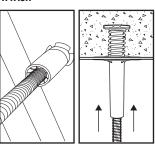
Step 4 Guide threaded rod or bolt through end of plastic sleeve into the insert. Turn until steel element fully threaded. Attach fixtures as applicable.


Installation Instructions for Bang-It+ Push-In

CREATE HOLE


Step 1 Drill or punch a hole in the steel deck to hole size required (e.g. deck driller with hole saw or step bit).

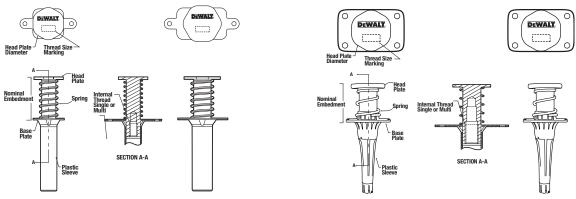
POSITION


Step 2 Insert plastic sleeve through hole in steel deck.

MOUNT

Step 3 Step on or impact insert head to engage through deck.
Option: base flange of insert can be attached to steel deck.

ATTACH



Step 4 Push threaded rod or bolt through end of plastic sleeve into the insert until steel element is fully seated. Attach fixtures as applicable.

INSTALLATION SPECIFICATIONS

Bang-It+ Cast-In-Place Inserts for Concrete Filled Steel Deck Floor and Roof Assemblies

Installation Specifications for Single Thread Bang-It+ Inserts^{1,2}

land Pinner in / Panel				No	ominal Rod/Anchor Si	ize			
Insert Dimension / Property	Symbol	Units	1/4"	3/8"	1/2"	5/8"	3/4"		
Outside diameter of steel insert body	da	in. (mm)		0.7 (18)			1.0 25)		
Insert head plate diameter	d _{hp}	in. (mm)		1.50 (38)			.75 45)		
Plastic sleeve diameter	ds	in. (mm)		27/32 (21)			7/32 31)		
Suggested hole size in deck	Chole	in. (mm)		7/8 (22)	1-1/4 (32)				
Base plate width	Wbp	in. (mm)		1-1/2 (38)			-1/2 38)		
Nominal embedment depth	h _{nom}	in. (mm)		2 (51)			2 51)		
Effective embedment depth	h _{ef}	in. (mm)		1.75 (45)		1.75 (45)			
Minimum member thickness	h _{min}	in. (mm)		See ste	eel deck figures, as ap	plicable			
Minimum spacing distance	Smin	in. (mm)			f for lower flute location for upper flute location				
Minimum edge distance	Cmin	in. (mm)			figures for lower flute wise use 0.5d _{hp} + 3/4				
Insert head plate thickness	thp	in. (mm)		1/8 (3)			/8 (3)		
Length of plastic sleeve	ls	in. (mm)		3-3/8 (86)			3/8 36)		
UNC internal thread size	-	TPI	1/4-20	3/8-16	1/2-13	5/8-11	3/4-10		
Approx. internal thread length	-	in.	3/8	1/2	5/8	3/4	7/8		
Approx. space between base plate opening and start of internal thread, after setting*	-	in		-3/4		-3/4			

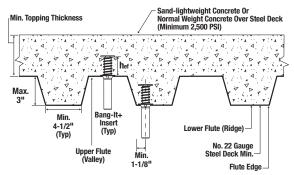
^{*}A negative value indicates the internal threads of the insert start below (project through) the base plate.

^{1.} Inserts have internal thread size designations for coarse threads matching the nominal rod / anchor size.

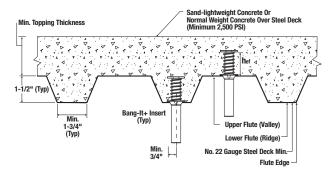
^{2.} For installation specifications of Push-In inserts see the next page.

Installation Specifications for Multi Thread Bang-It+ Inserts¹

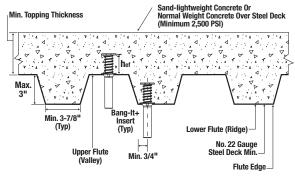
_					Nominal Rod/Anchor Size										
Insert Dimension / Property	Symbol	Units		& 3/8" ulti	1/4"	& 3/8" & Multi	1/2"	3/8" 8 Mu	k 1/2" ılti	3/8"	& 1/2" & Multi	5/8"	5/8" 8 Mu		
Outside diameter of the steel insert body	da	in. (mm)				0.7 (18)						1.0 (25)			
Insert head plate diameter	d _{hp}	in. (mm)				1.50 (38)						1.75 (45)			
Plastic sleeve diameter	ds	in. (mm)				27/32 (21)						1-7/32 (32)			
Suggested hole size in deck	d _{hole}	in. (mm)				7/8 (22)					1-1/4 (32)				
Base plate width	Wbp	in. (mm)				1-1/2 (38)						1-1/2 (38)			
Nominal embedment depth	h _{nom}	in. (mm)				2 (51)						2-3/8 (60)			
Effective embedment depth	h _{ef}	in. (mm)				1.75 (45)						2.25 (57)			
Minimum member thickness	h _{min}	in. (mm)				(See steel	deck figi	ures, as a	applicable	е				
Minimum spacing distance	S _{min}	in. (mm)					3h _{ef} f 4d _a f	or lower or upper	flute loca flute loca	tions; tions					
Minimum edge distance	Cmin	in. (mm)				See stee	l deck fig otherw	ures for se use 0	lower flut .5d _{hp} + 3	e edge d 8/4 (19)	listances;				
Insert head plate thickness	t _{hp}	in. (mm)				1/8 (3)						1/8 (3)			
Length of plastic sleeve	ls	in. (mm)		3/8 (6)		3-1/2 (89)		3-3 (8	3/8 6)		3-1/2 (89)		3-3 (8		
UNC internal thread size	-	TPI	1						5/8- 11	3/4- 10					
Approx. internal thread length	-	in.	3/8	1/2	5/16	3/8	1/2	7/16	9/16	3/8	1/2	5/8	5/8	3/4	
Approx. space between base plate opening and start of internal thread, after setting*						0	-3/4	1/8	-3/4	1	1/4	-3/4	1/2	-3/4	


^{*}A negative value indicates the internal threads of the insert start below (project through) the base plate.

Installation Specifications for Bang-It+ Push-In Inserts¹


Insert Dimension / Property	Symbol	Units	Nominal Rod	/Anchor Size
insert dimension / Property	Syllibol	Units	3/8"	1/2"
Outside diameter of the steel insert body	da	in. (mm)	1.0 (25)	1.125 (29)
Insert head plate diameter	Дhр	in. (mm)	1.9 (48)	2.2 (56)
Plastic sleeve diameter	ds	in. (mm)	1-3/32 (28)	1-7/32 (31)
Suggested hole size in deck	Chole	in. (mm)	1-1/4 (32)	1-1/4 (32)
Base plate width	Wbp	in. (mm)	1-1/2 (38)	1-1/2 (38)
Nominal embedment depth	h _{nom}	in. (mm)	1-11/16 (42)	1-7/8 (48)
Effective embedment depth	hef	in. (mm)	1.5 (38)	1.7 (43)
Minimum member thickness	h _{min}	in. (mm)	See steel deck figu	ures, as applicable
Minimum spacing distance	Smin	in. (mm)	3h _{ef} for lower 4d _a for upper	flute locations; flute locations
Minimum edge distance	Cmin	in. (mm)	See steel deck figures for otherwise use 0	lower flute edge distances; .5d _{hp} + 3/4 (19)
Insert head plate thickness	thp	in. (mm)	3/16 (5)	3/16 (5)
Length of plastic sleeve	ls	in. (mm)	3-1/2 (89)	3-1/2 (89)
UNC internal thread size	-	TPI	3/8-16	1/2-13
Approx. internal thread length	-	in.	5/8	11/16
Approx. space between base plate opening and start of internal thread, after setting	-	in	7/16	5/8
Inserts have internal thread size designations f	or coarse thr	eads matchir	ng the nominal rod / anchor size.	

^{1.} Inserts have internal thread size designations for coarse threads matching the nominal rod / anchor size.


[A] Bang-It+ Inserts Installed in Soffit of Concrete Filled Steel Deck Floor and Roof Assemblies, 4-1/2 -inch W-Deck 12.3.4

[B] Bang-It+ Inserts Installed in Soffit of Concrete Filled Steel Deck Floor and Roof Assemblies, B-Deck^{1,2,3,5,0,7}

[C] Bang-It+ Inserts Installed in Soffit of Concrete Filled Steel Deck Floor and Roof Assemblies, 3-7/8 -inch W-Deck 12389

- 1. [A, B & C] Inserts may be placed in the upper flute or lower flute of the steel deck assembly. Inserts in the lower flute require a minimum 1.5" of concrete topping thickness (min. thick in Figures) from the top of the upper flute, except for the 3/8 & 1/2 & 5/8-inch multi insert and 5/8 & 3/4-inch multi insert which require a minimum of 2" of concrete topping thickness. Upper flute installations require a minimum 3" concrete topping thickness from the top of the upper flute.
- 2. [A, B & C] Axial spacing for inserts along the upper flute length shall be 4da minimum; axial spacing along the lower flute length shall be 3het minimum.
- 3. [A, B & C] Upper flute Bang-It+ inserts are not subject to steel deck dimension limitations, or the minimum steel deck gauge limitations.
- 4. [A] Inserts in the lower flute of 4-1/2-inch W-Deck may be installed with a maximum 1-1/8 -inch offset in either direction from the center of the flute. The offset distance may be increased for flute widths greater than those shown provided the minimum lower flute edge distance of 1-1/8 -inch is also satisfied.
- 5. [B] Inserts in the lower flute of B-Deck may be installed with a maximum 1/8 -inch offset in either direction from the center of the flute. The offset distance may be increased for flute widths greater than those shown provided the minimum lower flute edge distance of 3/4 -inch is also satisfied.
- 6. [B] Lower flute installations of B-Deck with flutes widths greater than 1-3/4 -inch are permitted.
- 7. [B] Lower flute installations of B-Deck in flute depths greater than 1-1/2 -inch are permitted provided the minimum edge distance of 3/4 -inch is met and the minimum lower flute width is increased proportionally (e.g. applicable to a lower flute depth of 2-inch with a minimum lower flute width of 2-1/4 -inch).
- . [C] Inserts in the lower flute of 3-7/8-inch W-Deck may be installed with a maximum 1-3/16 -inch offset in either direction from the center of the flute. The offset distance may be increased for flute widths greater than those shown provided the minimum lower flute edge distance of 3/4 -inch is also satisfied.
- 9. [C] Inserts in upper flute may be installed anywhere across upper flute provided minimum edge distances are maintained; see insert design information tables, as applicable.

ANCHORS & FASTENERS

REFERENCE DATA (ASD)

Allowable Design Values for Inserts in Uncracked Concrete (lbs)1,2,3,4,5,6,7,8,9,10,11,12

Deck			Bang-It+ Single Thread Inserts											Bang-It+ Push-In Thread Inserts				
Profile	Load Type	1/4-	inch	3/8-	inch	1/2-inch		5/8-	5/8-inch		inch	3/8-inch		1/2-inch				
Туре	- 3,70	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower			
Fig. A	Tension	1,530	1,090	1,530	1,090	1,530	1,090	1,530	1,090	1,530	1,090	1,215	910	1,465	1,055			
Fig. A	Shear	805	805	925	925	925	925	925	925	925	925	1,340	930	2,795	1,235			
Eig D	Tension	1,530	435	1,530	435	1,530	435	1,530	435	1,530	435	1,215	405	1,465	430			
Fig. B	Shear	730	730	845	845	845	845	1,205	1,205	1,205	1,205	1,340	930	2,795	1,035			
Fig. C	Tension	1,530	985	1,530	985	1,530	985	1,530	985	1,530	985	1,215	810	1,465	945			
Fig. C	Shear	730	730	845	845	845	845	1,205	1,205	1,205	1,205	1,340	930	2,795	1,035			

			Bang-It+ Multi Thread Inserts												
Deck Profile	Load		1/4 & 3	/8 Multi				1/4 & 3/8 8	& 1/2 Multi		3/8 & 1/2 Multi				
Type	Туре	1/4-	inch	3/8-	inch	1/4-inch		3/8-inch		1/2-inch		3/8-inch		1/2-inch	
		Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
Fig. A	Tension	865	865	1,530	1,090	1,530	1,090	1,530	1,090	1,530	1,090	1,530	1,090	1,530	1,090
rig. A	Shear	675	470	925	925	675	515	1,435	840	1,690	840	965	845	1,690	925
Fig. B	Tension	865	435	1,530	435	1,530	435	1,530	435	1,530	435	1,530	435	1,530	435
riy. D	Shear	675	470	925	845	675	515	1,435	580	1,690	725	965	845	1,690	845
Fig. C	Tension	865	1,090	1,530	1,090	1,530	1,090	1,530	1,090	1,530	1,090	1,530	1,090	1,530	1,090
Fig. C	Shear	675	470	925	845	675	515	1.435	580	1.690	725	965	845	1.690	845

Dook		Bang-It+ Multi Thread Inserts (Continued)												
Deck Profile	Load			3/8 & 1/2 8	& 5/8 Multi			5/8 & 3/4 Multi						
Type	Туре	3/8-	inch	1/2-	inch	5/8-	inch	5/8-	inch	3/4-inch				
		Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower			
Fig. A	Tension	2,230	1,485	2,230	1,485	2,230	1,485	2,230	1,485	2,230	1,485			
rig. A	Shear	1,975	1,020	3,280	1,020	3,280	1,020	2,280	1,235	2,625	1,235			
Eig D	Tension	2,230	495	2,230	495	2,230	495	2,230	495	2,230	495			
Fig. B	Shear	1,975	880	3,280	880	3,280	880	2,280	770	2,625	770			
Fig. C	Tension	2,230	1,485	2,230	1,485	2,230	1,485	2,230	1,485	2,230	1,485			
Fia. C 📙	Shear	1,975	880	3,280	880	3,280	880	2,280	770	2,625	770			

Allowable Stress Design Values in tables for inserts are provided for illustration and applicable only when the following design assumptions are followed:

- 1. Concrete compressive strength, f'e, 3000 psi for sand-lightweight concrete. For normalweight concrete, tabulated tension design values may be increased by 17 percent for the given conditions, except for 1/4-inch-diameters where no increase is permitted.
- 2. Single anchors with static loads; installation in upper and lower flute locations in concrete-filled steel deck in accordance with Figures A, B or C, as applicable.
- 3. Concrete determined to remain uncracked for the life of the anchorage.
- 4. Load combinations from ACI 318-14 5.3 or ACI 318-11 9.2, as applicable (no seismic loading considered).
- 5. 30% dead load and 70% live load, controlling load combination 1.2D + 1.6L.
- 6. Calculation of the weighted average for $\alpha = 1.2^{\circ}0.3 + 1.6^{\circ}0.7 = 1.48$.
- 7. $h \ge h_{min}$ according to Figures A, B or C, as applicable.
- 8. Values are for Condition B where supplementary reinforcement in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, is not provided.
- 9. Assuming no edge distance influence with $\Psi_{\rm ed,N}=1.0$ in tension for upper flute anchors.
- 10. Assuming no edge distance ($c_{a1} \ge 3h_e$) or corner distance influence ($c_{a2} \ge 1.5c_{a1}$) for upper flute anchors in shear. Shear loads may be applied in any direction.
- 11. For lower flute anchors in accordance with Figure A, the near edge distance, ca.min, is 1.125-inch. For lower flute anchors in accordance with Figure B, the near edge distance, ca,min, is 0.75-inch. For lower flute anchors in accordance with Figure C, the near edge distance, ca,min, is 0.75-inch.
- 12. The allowable loads shown in the table are for the inserts only. The design professional is responsible for checking threaded rod strength in tension, shear and combined tension and shear, as applicable. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.

Allowable Design Values for Inserts in Cracked Concrete (Ibs)1,2,3,4,5,6,7,8,9,10,11,12

Deck			Bang-It+ Single Thread Inserts									Bang-It+ Push-In Thread Inserts				
Profile	Load Type	1/4-	inch	3/8-inch		1/2-inch		5/8-inch		3/4-inch		3/8-inch		1/2-inch		
Туре	71	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	
Fig. A	Tension	1,225	875	1,225	875	1,225	875	1,225	875	1,225	875	970	730	1,170	845	
riy. A	Shear	805	805	925	925	925	925	925	925	925	925	1,340	930	2,795	1,235	
Fia D	Tension	1,225	350	1,225	350	1,225	350	1,225	350	1,225	350	970	325	1,170	345	
Fig. B	Shear	730	730	845	845	845	845	1,205	1,205	1,205	1,205	1,340	930	2,795	1,035	
Fia C	Tension	1,225	785	1,225	785	1,225	785	1,225	785	1,225	785	970	645	1,170	760	
Fig. C	Shear	730	730 730 845 845 845 845 1,205 1,205 1,205 1,205 1,340 930 2,795 1,035													
			Bang-it+ Multi Thread Inserts													

			bang-it+ muiti inreau inserts												
Deck Profile	Load		1/4 & 3	/8 Multi				1/4 & 3/8	& 1/2 Mult	3/8 & 1/2 Multi					
Type	Туре	1/4-	inch	3/8-inch		1/4-inch		3/8-inch		1/2-inch		3/8-inch		1/2-inch	
		Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
Fi∝ Λ	Tension	865	865	1,225	875	1,225	875	1,225	875	1,225	875	1,225	875	1,225	875
Fig. A	Shear	675	470	925	925	675	515	1,435	840	1,690	840	965	845	1,690	925
Fig. D	Tension	865	350	1,225	350	1,225	350	1,225	350	1,225	350	1,225	350	1,225	350
Fig. B	Shear	675	470	925	845	675	515	1,435	580	1,690	725	965	845	1,690	845
Fig. C	Tension	865	865	1,225	875	1,225	875	1,225	875	1,225	875	1,225	875	1,225	875
I Fig. C. —	Shear	675	470	925	845	675	515	1,435	580	1,690	725	965	845	1,690	845

			Bang-it+ Multi Thread Inserts (Continued)												
Deck Profile	Load			3/8 & 1/2	& 5/8 Multi			5/8 & 3/4 Multi							
Type	Туре	3/8-	inch	1/2-	inch	5/8-	inch	5/8-	inch	3/4-inch					
		Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower				
Fig. A	Tension	1,785	1,190	1,785	1,190	1,785	1,190	1,785	1,190	1,785	1,190				
rig. A	Shear	1,975	1,020	3,280	1,020	3,280	1,020	2,280	1,235	2,625	1,235				
Fig. D	Tension	1,785	395	1,785	395	1,785	395	1,785	395	1,785	395				
Fig. B	Shear	1,975	880	3,280	880	3,280	880	2,280	770	2,625	770				
Eig C	Tension	1,785	1,190	1,785	1,190	1,785	1,190	1,785	1,190	1,785	1,190				
Fig. C	Shear	1,975	880	3,280	880	3,280	880	2,280	770	2,625	770				

- 1. Concrete compressive strength, f'c, = 3000 psi for sand-lightweight concrete. For normalweight concrete, tabulated tension design values may be increased by 17 percent for the given conditions, except for 1/4-inch-diameters where no increase is permitted.
- 2. Single anchors with static loads; installation in upper and lower flute locations in concrete-filled steel deck in accordance with Figures A, B or C, as applicable.
- 3. Concrete determined to be cracked for the life of the anchorage.
- 4. Load combinations from ACI 318-14 5.3 or ACI 318-11 9.2, as applicable (no seismic loading considered).
- 5. 30% dead load and 70% live load, controlling load combination 1.2D \pm 1.6L.
- 6. Calculation of the weighted average for $\alpha = 1.2 \cdot 0.3 + 1.6 \cdot 0.7 = 1.48$.
- 7. $h \geq h_{\text{min}}$ according to Figures A, B or C, as applicable.
- 8. Values are for Condition B where supplementary reinforcement in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, is not provided.
- 9. Assuming no edge distance influence with $\Psi_{\text{ed,N}}=$ 1.0 in tension for upper flute anchors.
- $10. Assuming \ no \ edge \ distance \ (c_{a1} \geq 3h_{el}) \ or \ corner \ distance \ influence \ (c_{a2} \geq 1.5c_{a1}) \ for \ upper \ flute \ anchors \ in \ shear. \ Shear \ loads \ may \ be \ applied \ in \ any \ direction.$
- 11. For lower flute anchors in accordance with Figure A, the near edge distance, ca,min, is 1.125-inch. For lower flute anchors in accordance with Figure B, the near edge distance, ca,min, is 0.75-inch. For lower flute anchors in accordance with Figure C, the near edge distance, ca,min, is 0.75-inch.
- 12. The allowable loads shown in the table are for the inserts only. The design professional is responsible for checking threaded rod strength in tension, shear and combined tension and shear, as applicable. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.

UL Listings and FM Approvals for Supporting Fire Protection Services & Automatic Sprinkler Systems¹

		_		Bang	-It+ Single	Thread In	serts				В	ang-It+ Pu	sh-In Inse	rts
Listing/Approval	1/4	4"	3/	8"	1/:	2"	5/	8"	3/	4"	3/	8"	1/	/2"
	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
UL Max. Pipe Size	N/A	N/A	4"	4"	8"	8"	8"	8"	8"	8"	4"	4"	8"	8"
FM Max. Pipe Size	N/A	N/A	4"	4"	8"	8"	12"	-	12"	-	4"	4"	8"	8"
						Ban	ıg-lt+ Multi	Thread Ins	erts					
		1/4 & 3	/8 Multi				1/4 & 3/8	& 1/2 Multi				3/8 & 1	/2 Multi	
Listing/Approval	1/4	4"	3/	8"	1/	4"	3/	8"	1/	2"	3/8"	1/	/2"	
	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
UL Max. Pipe Size	N/A	N/A	4"	4"	N/A	N/A	4"	4"	8"	8"	4"	4"	8"	8"
FM Max. Pipe Size	N/A	N/A	4"	4"	N/A	N/A	4"	4"	8"	8"	4"	4"	8"	8"
						Bang-It+	Multi Threa	d Inserts (0	Continued)					
				3/8 & 1/2	2 & 5/8 Mu	ılti					5/8 &	3/4 Multi		
Licting/Approval														
Listing/Approval		3/8"			1/2"		5/	8"		5/8			3/4"	
Listing/Approval	Upper		ower		1/2" Low	er	5/ Upper	8" Lower	U	5/8 pper	Lower	Upp		Lower
Listing/Approval UL Max. Pipe Size	Upper 4"	Lo	ower 4"		-							Upp	er	Lower 10"

Underwriters Laboratories (UL Listed) - File No. EX1289

FM Approvals (Factory Mutual) - File No. J.I. 3059197

^{1.} Anchors with installation in upper and lower flute locations in concrete-filled steel deck in accordance with Figures A, B or C, as applicable.

STRENGTH DESIGN (SD)

Tension and Shear Design Strengths for Bang-It+ Single Thread Inserts Installed in the Soffit of **Uncracked Concrete Filled Steel Deck Floor and Roof Assemblies**^{1,2,3,4,5}

		Minimum Concrete Compressive Strength														
							f'c = 3,	,000 psi								
Nominal Anchor	Embed. Depth	4	4-1/2" W-De	ck (Figure A)		B-Deck (Figure B)		;	3-7/8" W-De	eck (Figure C	ıre C)			
Diameter	hef	Upper	Flute	Lower	Flute	Upper	Flute	Lower	Flute	Upper	Flute	Lower Flute				
(in.)	(in.)	ψNn Tension (lbs.)	ψVn Shear (lbs.)	φNn Tension (lbs.)	ψVn Shear (lbs.)	φNn Tension (lbs.)	ψVn Shear (lbs.)	ψNn Tension (lbs.)	ψVn Shear (lbs.)	ψNn Tension (lbs.)	<i>∲</i> Vn Shear (lbs.)	φNn Tension (lbs.)	ψVn Shear (lbs.)			
1/4	1-3/4	2,665	1,370	1,340	1,370	2,265	1,250	595	1,250	2,265	1,250	1,145	1,250			
3/8	1-3/4	2,665	1,370	1,340	1,370	2,265	1,250	595	1,250	2,265	1,250	1,145	1,250			
1/2	1-3/4	2,665	1,370	1,340	1,370	2,265	1,250	595	1,250	2,265	1,250	1,145	1,250			
5/8	1-3/4	2,665	1,845	1,340	1,845	2,265	1,785	595	1,785	2,265	1,785	1,145	1,785			
3/4	1-3/4	2,665	1,845	1,340	1,845	2,265	1,785	595	1,785	2,265	1,785	1,145	1,785			

Tension and Shear Design Strengths for Bang-It+ Single Thread Inserts Installed in the Soffit of Cracked Concrete Filled Steel Deck Floor and Roof Assemblies 1,2,3,4,5

					William	i concrete c	ompressive	Strength					
						f'c = 3,	000 psi						
pth	4	-1/2" W-De	ck (Figure A)	ck (Figure C))								
lef	Upper	Flute	Lower	Flute	Upper	Flute	Lower	Flute	Upper	Flute	Lower	Lower Flute	
	φNn Tension (lbs.)	ØVn Shear (lbs.)	ψNn Tension (lbs.)	<i>∲</i> Vn Shear (lbs.)	ϕ Nn Tension (lbs.)	<i>∲</i> Vn Shear (lbs.)	ψNn Tension (lbs.)	ψVn Shear (lbs.)	ØNn Tension (lbs.)	ψVn Shear (lbs.)	ψNn Tension (lbs.)	ψVn Shear (lbs.)	
3/4	1,810	1,370	1,070	1,370	1,810	1,250	475	1,250	1,810	1,250	915	1,250	
3/4	1,810	1,370	1,070	1,370	1,810	1,250	475	1,250	1,810	1,250	915	1,250	
3/4	1,810	1,370	1,070	1,370	1,810	1,250	475	1,250	1,810	1,250	915	1,250	
3/4	1,810	1,845	1,070	1,845	1,810	1,785	475	1,785	1,810	1,785	915	1,785	
3/4	1,810	1,845	1,070	1,845	1,810	1,785	475	1,785	1,810	1,785	915	1,785	
3/ 3/ 3/) – 1/4 – 1/	ψNn Tension (lbs.) '4 1,810 '4 1,810 '4 1,810 '4 1,810 '4 1,810 '4 1,810	ψNn ψVn Tension (lbs.) (lbs.) 4 1,810 1,370 44 1,810 1,370 44 1,810 1,370 44 1,810 1,845 44 1,810 1,845 44 1,810 1,845	ψNn Tension (lbs.) ψVn Tension (lbs.) ψNn Tension (lbs.) 44 1,810 1,370 1,070 44 1,810 1,370 1,070 44 1,810 1,370 1,070 44 1,810 1,370 1,070 44 1,810 1,845 1,070 44 1,810 1,845 1,070	ψNn Tension (lbs.) ψVn Tension (lbs.) ψNn Tension (lbs.) ψNn Tension (lbs.) ψNn Tension (lbs.) ψNn Tension (lbs.) γνη Te	ψNn Tension (lbs.) ψNn Te	Upper Flute Lower Flute Upper Flute	Upper Flute Lower Flute Lower Flute Upper Flute Lower Flute Lower Flute Upper Flute Lower Flute Lower Flute Upper Flute Lower Flute Upper Flute Lower Flute Upper Flute Lower Flute Lower Flute Upper Flute Upper Flute Lower Flute Upper Flute	Upper Flute Lower Flute Upper Flute Lower Lower Flute Lower Flute Lower Flute Lower Flute Lower Lower Flute Lower L	Upper Flute Lower Flute Upper Flute Lower Flute Upper Flute	Upper Flute Lower Flute Upper Flute Lower Flute Upper Flute	Upper Flute Lower Flute Upper Flute Upper Flute Lower Flute Upper Flute	

- 1- Tabular values are provided for illustration and are applicable for single anchors installed in sand-lightweight concrete with minimum slab thickness, ha = hmin, and with the following conditions:
 - No edge distance influence with $\Psi_{\rm ed,N}=1.0$ in tension for upper flute anchors.
 - No edge distance ($c_{a1} \ge 3h_{el}$) or corner distance influence ($c_{a2} \ge 1.5c_{a1}$) for upper flute anchors in shear. Shear loads may be applied in any direction.
- 2- Calculations were performed following methodology in ACI 318-14 Chapter 17 or ACI 318-11 Appendix D. The load level corresponding to the failure mode listed [steel strength of insert ($N_{sa,insert}$, $V_{sa,insert}$), concrete breakout strength, or pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod type, ($N_{sa,rod}$, $V_{sa,rod}$), the lowest load level controls.
- Strength reduction factors shall be taken from ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for cast-in headed anchors. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the insert are taken as 0.65 for tension and 0.60 for shear; values correspond to brittle steel elements. Tabular values are permitted for short-term static loads only, seismic loading is not considered with these tables.
- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.
- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-14 Chapter 17 or ACI 318-11 Appendix D and information contained in this product supplement. For other design conditions including seismic considerations please see ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

Tension and Shear Design Strengths Installed for Bang-It+ Multi Thread Inserts Installed in the Soffit of **Uncracked Concrete Filled Steel Deck Floor and Roof Assemblies** 1,2,3,4,5

						Minimum	Concrete C	ompressiv	e Strength				
							f'c = 3,	,000 psi					
Nominal	Embed. Depth	4-	1/2" W-De	ck (Figure	A)		B-Deck (Figure B)		3-	7/8" W-De	ck (Figure	C)
Anchor Diameter (in.)	hef (in.)	Upper	Flute	Lower	Flute	Uppei	Flute	Lower	Flute	Upper	Flute	Lower	Flute
	(111.)	φNn Tension (lbs.)	ψVn Shear (lbs.)	φNn Tension (lbs.)	ØVn Shear (lbs.)		ψVn Shear (lbs.)	φNn Tension (lbs.)	ψVn Shear (lbs.)	φNn Tension (lbs.)	ψVn Shear (lbs.)	$\begin{array}{c} \phi \mathrm{Nn} \\ \mathrm{Tension} \\ \mathrm{(lbs.)} \end{array}$	ØVn Shear (lbs.)
1/4" (1/4 - 3/8" Multi)	1-3/4	1,275	1,000	1,275	700	1,275	1,000	595	700	1,275	1,000	1,145	700
3/8" (1/4 - 3/8" Multi)	1-3/4	2,265	1,370	1,340	1,370	2,265	1,370	595	1,250	2,265	1,370	1,145	1,250
3/8" (3/8 - 1/2" Multi)	1-3/4	2,265	1,425	1,340	1,250	2,265	1,425	595	1,250	2,265	1,425	1,145	1,250
1/2" (3/8 - 1/2" Multi)	1-3/4	2,265	2,500	1,340	1,370	2,265	2,500	595	1,250	2,265	2,500	1,145	1,250
1/4" (1/4 - 3/8 - 1/2" Multi)	1-3/4	2,265	1,000	1,340	765	2,265	1,000	595	765	2,265	1,000	1,145	765
3/8" (1/4 - 3/8 - 1/2" Multi)	1-3/4	2,265	2,125	1,340	1,240	2,265	2,125	595	860	2,265	2,125	1,145	860
1/2" (1/4 - 3/8 - 1/2" Multi)	1-3/4	2,265	2,500	1,340	1,240	2,265	2,500	595	1,075	2,265	2,500	1,145	1,075
3/8" (3/8 - 1/2 - 5/8" Multi)	2-1/4	3,300	2,925	1,760	1,510	3,300	1,305	655	1,305	3,300	2,925	1,450	1,305
1/2" (3/8 - 1/2 - 5/8" Multi)	2-1/4	3,300	4,855	1,760	1,510	3,300	1,305	655	1,305	3,300	4,855	1,450	1,305
5/8" (3/8 - 1/2 - 5/8" Multi)	2-1/4	3,300	4,855	1,760	1,510	3,300	1,305	655	1,305	3,300	4,855	1,450	1,305
5/8" (5/8 - 3/4" Multi)	2-1/4	3,300	3,370	1,760	1,825	3,300	1,145	655	1,145	3,300	3,370	1,450	1,145
3/4" (5/8 - 3/4" Multi)	2-1/4	3,300	3,885	1,760	1,825	3,300	1,145	655	1,145	3,300	3,885	1,450	1,145
- Anchor Pullout/Pryout Strength Cor	ntrols 🔲 - C	oncrete Brea	kout Streng	th Controls	- Steel St	trength Conti	rols						

Tension and Shear Design Strengths Installed for Bang-It+ Multi Thread Inserts Installed in the Soffit of Cracked Concrete Filled Steel Deck Floor and Roof Assemblies 1,2,3,4,5

						Minimum	Concrete C	Compressiv	e Strength	1			
							f'c = 3,	,000 psi					
Nominal	Embed. Depth	4-	1/2" W-De	ck (Figure	A)		B-Deck ((Figure B)		3-	7/8" W-De	ck (Figure	C)
Anchor Diameter (in.)	hef	Upper	Flute	Lower	Flute	Upper	Flute	Lower	Flute	Upper	Flute	Lower	r Flute
	(in.)	φNn Tension (lbs.)	ψVn Shear (lbs.)	φNn Tension (lbs.)	ØVn Shear (lbs.)	φNn Tension (lbs.)	ψVn Shear (lbs.)	φNn Tension (lbs.)	ψVn Shear (lbs.)	φNn Tension (lbs.)	φVn Shear (lbs.)	φNn Tension (lbs.)	ψVn Shear (lbs.)
1/4" (1/4 - 3/8" Multi)	1-3/4	1,275	1,000	1,070	700	1,275	1,000	475	700	1,275	1,000	915	700
3/8" (1/4 - 3/8" Multi)	1-3/4	1,810	1,370	1,070	1,370	1,810	1,370	475	1,250	1,810	1,370	915	1,250
3/8" (3/8 - 1/2" Multi)	1-3/4	1,810	1,425	1,070	1,250	1,810	1,425	475	1,250	1,810	1,425	915	1,250
1/2" (3/8 - 1/2" Multi)	1-3/4	1,810	2,500	1,070	1,370	1,810	2,500	475	1,250	1,810	2,500	915	1,250
1/4" (1/4 - 3/8 - 1/2" Multi)	1-3/4	1,810	1,000	1,070	765	1,810	1,000	475	765	1,810	1,000	915	765
3/8" (1/4 - 3/8 - 1/2" Multi)	1-3/4	1,810	2,125	1,070	1,240	1,810	2,125	475	860	1,810	2,125	915	860
1/2" (1/4 - 3/8 - 1/2" Multi)	1-3/4	1,810	2,500	1,070	1,240	1,810	2,500	475	1,075	1,810	2,500	915	1,075
3/8" (3/8 - 1/2 - 5/8" Multi)	2-1/4	2,640	2,925	1,410	1,510	2,640	1,305	525	1,305	2,640	2,925	1,160	1,305
1/2" (3/8 - 1/2 - 5/8" Multi)	2-1/4	2,640	4,855	1,410	1,510	2,640	1,305	525	1,305	2,640	4,855	1,160	1,305
5/8" (3/8 - 1/2 - 5/8" Multi)	2-1/4	2,640	4,855	1,410	1,510	2,640	1,305	525	1,305	2,640	4,855	1,160	1,305
5/8" (5/8 - 3/4" Multi)	2-1/4	2,640	3,370	1,410	1,825	2,640	1,145	525	1,145	2,640	3,370	1,160	1,145
3/4" (5/8 - 3/4" Multi)	2-1/4	2,640	3,885	1,410	1,825	2,640	1,145	525	1,145	2,640	3,885	1,160	1,145
- Anchor Pullout/Pryout Strength Cor	ntrols 🔲 - C	oncrete Brea	kout Streng	th Controls	- Steel St	trength Contr	rols						

Tension and Shear Design Strengths Installed for Bang-It+ Push-In Thread Inserts Installed in the Soffit of Uncracked Concrete Filled Steel Deck Floor and Roof Assemblies 1,2,3,4,5

						Minimum	Concrete C	ompressive	Strength				
							f'c = 3,	000 psi					
Nominal Anchor	Embed. Depth	4	-1/2" W-De	ck (Figure <i>l</i>	A)		B-Deck (Figure B)		3	-7/8" W-De	ck (Figure C	;)
Diameter (in.)	hef	Upper	Flute	Lower	Flute	Upper	Flute	Lower	Flute	Upper Flute Lower Flute			
	(in.)	ØNn Tension (lbs.)	ψVn Shear (lbs.)	$\begin{array}{c} \phi \mathrm{Nn} \\ \mathrm{Tension} \\ \mathrm{(lbs.)} \end{array}$	ψVn Shear (lbs.)	ØNn Tension (lbs.)	ψVn Shear (lbs.)	$\begin{array}{c} \phi \mathrm{Nn} \\ \mathrm{Tension} \\ \mathrm{(lbs.)} \end{array}$	ϕ Vn Shear (lbs.)	$\begin{array}{c} \phi \mathrm{Nn} \\ \mathrm{Tension} \\ \mathrm{(lbs.)} \end{array}$	ψVn Shear (lbs.)	$\begin{array}{c} \phi \mathrm{Nn} \\ \mathrm{Tension} \\ \mathrm{(lbs.)} \end{array}$	ΦVn Shear (lbs.)
Push-In 3/8"	1.50	1,795	1,985	1,145	1,375	1,795	1,375	560	1,375	1,795	1,985	960	1,375
Push-In 1/2"	1.70	2,165	4,140	1,300	1,825	2,165	1,520	585	1,520	2,165	4,140	1,105	1,520
- Anchor Pullout/Pry	□ - Anchor Pullout/Pryout Strength Controls □ - Concrete Breakout Strength Controls ■ - Steel Strength Controls												

Tension and Shear Design Strengths Installed for Bang-It+ Push-In Thread Inserts Installed in the Soffit of Cracked Concrete Filled Steel Deck Floor and Roof Assemblies^{1,2,3,4,5}

Ordokod Oone	1000 1 1111												
						Minimum	Concrete C	ompressive	Strength				
							f'c = 3,	000 psi					
Nominal Anchor	Embed. Depth	4	-1/2" W-De	ck (Figure <i>l</i>	A)		B-Deck (Figure B)		3	-7/8" W-De	ck (Figure C	;)
Diameter	hef	Upper	pper Flute Lower Flute Lower Flute Upper Flute Lower Flute										Flute
(in.)	(in.)	φNn Tension (lbs.)	<i>∲</i> Vn Shear (lbs.)	ψNn Tension (lbs.)	<i>∲</i> Vn Shear (lbs.)	ØNn Tension (lbs.)	<i>∲</i> Vn Shear (lbs.)	φNn Tension (lbs.)	<i>∲</i> Vn Shear (lbs.)	ϕ Nn Tension (lbs.)	ψVn Shear (lbs.)	$\begin{array}{c} \phi \mathrm{Nn} \\ \mathrm{Tension} \\ \mathrm{(lbs.)} \end{array}$	<i>φ</i> Vn Shear (lbs.)
Push-In 3/8"	1.50	1,435	1,985	915	1,375	1,435	1,375	445	1,375	1,435	1,985	765	1,375
Push-In 1/2"	Push-ln 1/2" 1.70 1,735 4,140 1,040 1,825 1,735 1,520 470 1,520 1,735 4,140 885 1,520												
- Anchor Pullout/Pr	- Anchor Pullout/Pryout Strength Controls □ - Concrete Breakout Strength Controls ■ - Steel Strength Controls												

Tension and Shear Design Strength of Steel Elements (Steel Strength)^{1,2,3,4}

		Steel Elements	- Threaded Rod	
Nominal Rod Diameter	ASTI	Л АЗ6	ASTM A193	Grade B7
(in.)	ØNsa,rod Tension (lbs.)	ΦVsa,rod Shear (lbs.)	ØNsa,rod Tension (lbs.)	∜V sa,rod Shear (lbs.)
1/4	1,390	720	3,000	1,550
3/8	3,395	1,750	7,315	3,780
1/2	6,175	3,210	13,315	6,915
5/8	9,835	5,115	21,190	11,020
3/4	14,550	7,565	31,405	16,305

Steel Strength Controls

- 1. Steel tensile design strength according to ACI 318 Appendix D and ACI 318 Chapter 17, ϕ Nsa = ϕ Ase,N futa
- 2. The tabulated steel design strength in tension for the threaded rod must be checked against the design strength of the steel insert, concrete breakout and pullout design strength to determine the controlling failure mode, the lowest load level controls.
- 3. Steel shear design strength according to ACI 318 Appendix D and ACI 318 Chapter 17, $\phi V_{sa} = \phi \bullet 0.60 \bullet A_{se,N} \bullet f_{uta}$
- 4. The tabulated steel design strength in shear for the threaded rod must be checked against the design strength of the steel insert, concrete breakout and pryout design strength to determine the controlling failure mode, the lowest load level controls.

Design Information for Bang-It+ Single Thread Inserts^{1,2,3,4,5,6}

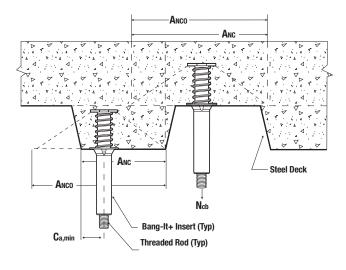
Design I	nformation / Insert Property	Symbol	Units	1/4"	3/8"	1/2"	5/8"	3/4"	
Outside dian	neter of the steel insert body	da	in. (mm)		0.7 (18)		1. (2)		
Insert head i	net bearing area	A _{brg}	in² (mm²)		1.20 (762)		1.4 (90		
Effective em	bedment depth	hef	in. (mm)		1.75 (45)		1.7 (4)		
		STEEL STE	RENGTH IN	TENSION (ACI 318-14	17.4.1 or ACI 318-1	1 Section D.5.1)			
According	Steel strength in tension of single insert	Nsa,insert	lb (kN)	3,955 (17.6)	9,480 (42.2)	9,850 (43.5)	11,9 (53		
to Figures A, B & C	Steel strength in tension of single insert, seismic	Nsa,insert,eq	lb (kN)	3,955 (17.6)	9,480 (42.2)	9,850 (43.5)	11,9 (53		
Reduction fa	ctor, steel strength in tension	φ	-		0.65				
CONCRETE BREAKOUT STRENGTH IN TENSION (ACI 318-14 17.4.2 or						r ACI 318-11 D.5.2)			
Effectiveness	s factor for cracked concrete	Kc	-		24	(for SI use a value of	10)		
Modification	factor for uncracked concrete	$\Psi_{ extsf{C}, extsf{N}}$	-			1.25			
Reduction fa	ctor, concrete strength in tension	φ	-			0.70			
		STEEL ST	RENGTH IN	SHEAR (ACI 318-14	17.5.1 or ACI 318-11	Section D.6.1)			
According	Steel strength in shear of single insert, in lower or upper flute	Vsa,insert,deck	lb (kN)	1,980 (8.8)	2,2 (10	280).1)	3,0 (13		
to Figure A	Steel strength in shear of single insert, seismic	Vsa,insert,eq,deck	lb (kN)	1,980 (8.8)		280).1)	2,6 (12		
According	Steel strength in shear of single insert, in lower or upper flute	Vsa,insert,deck	lb (kN)	1,805 (8.0)		2,980 2,975 (9.3) (13.2)			
to Figures B & C	Steel strength in shear of single insert, seismic	Vsa,insert,eq,deck	lb (kN)	1,805 2,080 (8.0) (9.3)			2,695 (12.0)		
Reduction fa	ctor, concrete strength in tension	φ	-			0.60			

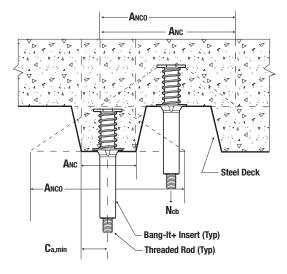
- 1. Concrete must have a compressive strength f 'c of 2,500 psi minimum. Installation must comply with published instructions.
- 2. Design of headed cast-in specialty inserts shall be in accordance with the provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, for cast-in headed anchors. Concrete breakout strength must also be in accordance with steel deck figures, as applicable.
- Strength reduction factors for the inserts shall be taken from ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for cast-in headed anchors. Strength reduction factors for load combinations in accordance with ACI 318-14 5.3 or ACI 318-19.2, as applicable, governed by steel strength of the insert are tabulated. Strength reduction values correspond to brittle steel elements. The value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4.
- Minimum spacing distance between anchors and minimum edge distances for cast-in headed anchors shall be in accordance with steel deck figures, as applicable and the installation tables for the inserts.
- The strengths shown in the table are for inserts only. Design professional is responsible for checking threaded rod strength in tension, shear, and combined tension and shear, as applicable. See steel design information for common threaded rod elements.
- 6. The tabulated seismic values for steel strength of the inserts are applicable to installations in the lower flute or upper flute of the indicated steel deck figures, as applicable.

Design Information for Bang-It+ Multi Thread Inserts^{1,2,3,4,5,6}

	Design Information	Symbol	Units		3/8 ulti	1/4	& 3/8 & Multi	1/2		& 1/2 ulti	3/8	& 1/2 & Multi	5/8		& 3/4 ulti
		,		1/4"	3/8"	1/4"	3/8"	1/2"	3/8"	1/2"	3/8"	1/2"	5/8"	5/8"	3/4"
Outside diam	neter of the steel insert body	da	in. (mm)				0.7 (18)						1.0 (25)		
Insert head r	net bearing area	Abrg	in² (mm²)				1.20 (762)						1.40 (903)		
Effective emb	bedment depth	hef	in. (mm)				1.75 (45)						1.75 (45)		
		STEEL STI	RENGTH IN	TENSION	(ACI 318	-14 17.4	.1 or ACI	318-11	Section I).5.1)					
According	Steel strength in tension of single insert	N _{sa,insert}	lb (kN)	1,965 (8.7)	9,480 (42.2)	3,545 (15.8)	8,565 (38.1)	9,850 (43.8)	9,480 (42.2)	9,850 (43.8)	11,485 (51.1)		365 7.2)		805 2.5)
to Figures A, B & C	Steel strength in tension of single insert, seismic	N _{sa,insert,eq}	lb (kN)	1,965 (8.7)	9,480 (42.2)	3,545 (15.8)	8,565 (38.1)	9,850 (43.8)	9,480 (42.2)	9,850 (43.8)	3.8) (51.1) (77.2) (92.5				
Reduction fa	ctor, steel strength in tension	φ	-				0.65			0.65					
	(REAKOUT ST	FRENGTH	IN TENSI	ON (ACI	318-14 1	7.4.2 or	ACI 318-	11 D.5.2)						
	s factor for cracked concrete	k₀	-					24 (a value o	f 10)				
	factor for uncracked concrete	$\Psi_{\mathtt{C},\mathtt{N}}$	-							25					
Reduction fac	ctor, concrete strength in tension	φ	-							70					
		STEEL ST	RENGTH IN												
	Steel strength in shear of single insert, in upper flute	Vsa,insert,deck	lb (kN)	1,670 (7.4)	2,280 (10.2)	1,670 (7.4)	3,545 (15.8)	4,165 (18.5)	2,375 (10.6)	4,165 (18.6)	4,875 (21.7)	8,090 (36.0)	8,090 (36.0)	5,620 (25.0)	6,475 (28.8)
According to Figure A	Steel strength in shear of single insert, in lower flute	Vsa,insert,deck	lb (kN)	1,165 (5.2)	2,280 (10.2)	1,275 (5.7)	2,070 (9.2)	2,070 (9.2)	2,080 (9.3)	2,280 (10.2)	2,515 (11.2)		515 .2))45 3.5)
	Steel strength in shear of single insert, seismic	Vsa,insert,eq,deck	lb (kN)	395 (1.8)	2,280 (10.2)	395 (1.8)	1,435 (6.4)	1,790 (8.0)	2,080 (9.3)	2,280 (10.2)	2,175 (9.7)	2,1 (9	75 .7)	1,9 (8	905 .5)
	Steel strength in shear of single insert, in upper flute	Vsa,insert,deck	lb (kN)	1,670 (7.4)	2,280 (10.2)	1,670 (7.4)	3,545 (15.8)	4,165 (18.5)	2,375 (10.6)	4,165 (18.5)	4,875 (21.7)	8,090 (36.0)	8,090 (36.0)	5,620 (25.0)	6,475 (28.8)
According to Figures B & C	Steel strength in shear of single insert, in lower flute	Vsa,insert,deck	lb (kN)	1,165 (5.2)	2,080 (9.3)	1,275 (5.7)	1,435 (6.4)	1,790 (8.0)	2,080 (9.3)	2,080 (9.3)	2,175 (9.7)		75 .7)		905 .5)
	Steel strength in shear of single insert, seismic	Vsa,insert,eq,deck	lb (kN)	395 (1.8)	2,080 (9.3)	395 (1.8)	1,435 (6.4)	1,790 (8.0)	2,080 (9.3)	2,080 (9.3)	2,175 (9.7)		75 7)0		905 .5)
Reduction fac	ctor, concrete strength in tension	φ	-				0.60						0.60		

- 1. Concrete must have a compressive strength f 'c of 2,500 psi minimum. Installation must comply with published instructions.
- 2. Design of headed cast-in specialty inserts shall be in accordance with the provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, for cast-in headed anchors. Concrete breakout strength must also be in accordance with steel deck figures, as applicable.
- 3. Strength reduction factors for the inserts shall be taken from ACl 318-14 17.3.3 or ACl 318-11 D.4.3, as applicable, for cast-in headed anchors. Strength reduction factors for load combinations in accordance with ACl 318-14 5.3 or ACl 318-11 9.2, as applicable, governed by steel strength of the insert are tabulated. Strength reduction values correspond to brittle steel elements. The value of *φ* applies when the load combinations of Section 1605.2 of the IBC, ACl 318-14 5.3 or ACl 318-11 9.2, as applicable, are used in accordance with ACl 318-14 17.3.3 or ACl 318-11 D.4.3, as applicable. If the load combinations of ACl 318-11 Appendix C are used, the appropriate value of *φ* must be determined in accordance with ACl 318-11 D.4.4.
- 4. Minimum spacing distance between anchors and minimum edge distances for cast-in headed anchors shall be in accordance with steel deck figures, as applicable and the installation tables for the inserts.
- 5. The strengths shown in the table are for inserts only. Design professional is responsible for checking threaded rod strength in tension, shear, and combined tension and shear, as applicable. See steel design information for common threaded rod elements.
- 6. The tabulated seismic values for steel strength of the inserts are applicable to installations in the lower flute or upper flute of the indicated steel deck figures, as applicable.


Design Information for Bang-It+ Push-In Thread Inserts^{1,2,3,4,5,6}


Design Info	ormation	Symbol	Units	1/4"	3/8"
Outside diameter of the	steel insert body	da	in. (mm)	1.0 (25)	1.125 (29)
Insert head net bearing a	area	A _{brg}	in² (mm²)	2.0 (1290)	2.7 (1742)
Effective embedment de	pth	h _{ef}	in. (mm)	1.5 (38)	1.7 (43)
		STEEL STE	RENGTH IN	TENSION (ACI 318-14 17.4.1 or ACI 318-11 Section D	0.5.1)
According single inse		Nsa,insert	lb (kN)	11,265 (50.1)	17,595 (78.3)
A, B & C Steel stren	gth in tension of rt, seismic	Nsa,insert,eq	lb (kN)	11,265 (50.1)	17,595 (78.3)
Reduction factor, steel s	trength in tension	φ	-	0.0	65
	(CONCRETE BR	EAKOUT ST	RENGTH IN TENSION (ACI 318-14 17.4.2 or ACI 318-	11 D.5.2)
Effectiveness factor for o		k _c	-	24 (for SI use	,
Modification factor for ur		$\Psi_{\text{C,N}}$	-	1.3	-
Reduction factor, concret	e strength in tension	φ	-	0.	70
		STEEL ST	RENGTH IN	SHEAR (ACI 318-14 17.5.1 or ACI 318-11 Section D.	6.1)
Steel stren insert, in u	gth in shear of single pper flute	Vsa,insert,deck	lb (kN)	3,305 (14.7)	6,900 (30.7)
According Steel stren to Figure A insert, in lo	gth in shear of single ower flute	Vsa,insert,deck	lb (kN)	2,295 (10.2)	3,045 (13.5)
Steel stren insert, seis	gth in shear of single smic	Vsa,insert,eq,deck	lb (kN)	2,295 (10.2)	3,045 (13.5)
insert, in u		Vsa,insert,deck	lb (kN)	3,305 (14.7)	6,900 (30.7)
According to Figures B & C Steel stren	gth in shear of single ower flute	Vsa,insert,deck	lb (kN)	2,295 (10.2)	2,535 (11.3)
Steel stren insert, seis	gth in shear of single smic	Vsa,insert,eq,deck	lb (kN)	2,295 (10.2)	2,535 (11.3)
Reduction factor, concret	uction factor, concrete strength in tension			0.0	60

- 1. Concrete must have a compressive strength f 'c of 2,500 psi minimum. Installation must comply with published instructions.
- 2. Design of headed cast-in specialty inserts shall be in accordance with the provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, for cast-in headed anchors. Concrete breakout strength must also be in accordance with steel deck figures, as applicable.
- 3. Strength reduction factors for the inserts shall be taken from ACl 318-14 17.3.3 or ACl 318-11 D.4.3, as applicable, for cast-in headed anchors. Strength reduction factors for load combinations in accordance with ACl 318-14 5.3 or ACl 318-11 9.2, as applicable, governed by steel strength of the insert are tabulated. Strength reduction values correspond to brittle steel elements. The value of φ applies when the load combinations of Section 1605.2 of the IBC, ACl 318-14 5.3 or ACl 318-11 9.2, as applicable, are used in accordance with ACl 318-14 17.3.3 or ACl 318-11 D.4.3, as applicable. If the load combinations of ACl 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACl 318-11 D.4.4.
- 4. Minimum spacing distance between anchors and minimum edge distances for cast-in headed anchors shall be in accordance with steel deck figures, as applicable and the installation tables for the inserts.
- i. The strengths shown in the table are for inserts only. Design professional is responsible for checking threaded rod strength in tension, shear, and combined tension and shear, as applicable. See steel design information for common threaded rod elements.
- 5. The tabulated seismic values for steel strength of the inserts are applicable to installations in the lower flute or upper flute of the indicated steel deck figures, as applicable.

Idealization of Concrete Filled Steel Decks for Determination of Concrete Breakout Strength in Accordance with ACI 318

Idealization of 'B' Steel Deck Profiles

Specifications And Physical Properties Of Common Carbon Steel Threaded Rod Elements

Threa	ded Rod Specification	Units	Min. Specified Ultimate Strength, Futa	Min. Specified Yield Strength 0.2 Percent Offset, Fya	Futa — Fya	Elongation Minimum Percent ⁴	Reduction Of Area Min. Percent	Related Nut Specification ⁵
Carbon	ASTM A36/A36M or ASTM F1554 Grade 36	psi (MPa)	58,000 (400)	36,000 (248)	1.61	23	40 (50 for A36)	ASTM A194 / A563 Grade A
Steel	ASTM A193/A193M ³ Grade B7	psi (MPa)	125,000 (860)	105,000 (720)	1.19	16	50	ASTM A194 / A563 Grade DH

For SI: 1 inch = 25.4 mm, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

- 1. Inserts may be used in conjunction with all grades of continuously threaded carbon steels (all-thread) that comply with code reference standards and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series.
- 2. Standard Specification for Carbon Structural Steel.
- 3. Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High Temperature or High Pressure Service and Other Special Purpose Applications.
- 4. Based on 2-inch (50 mm) gauge length except for ASTM A36/A36M and ASTM A193, which are based on a gauge length of 4d (drod).
- 5. Where nuts are applicable, nuts of other grades and style having specified proof load stress greater than the specified grade and style are also suitable.

Steel Design Information For Common Threaded Rod Elements Used With Concrete Inserts^{1,2,3,4}

Design Information		Symbol	Units	1/4-inch	3/8-inch	1/2-inch	5/8-inch	3/4-inch
Threaded rod nominal outside diameter		d _{rod}	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)
Threaded rod effective cross-sectional area		Ase	in² (mm²)	0.032 (21)	0.078 (50)	0.142 (92)	0.226 (146)	0.335 (216)
Steel strength in tension of threaded rod	ASTM A36	N _{sa,rod,A36}	lb (kN)	1,855 (8.2)	4,525 (20.0)	8,235 (36.6)	13,110 (58.3)	19,430 (86.3)
Steel strength in tension of threaded rod, seismic	ASTIVI ASO	N _{sa,rod,eq,A36}	lb (kN)	1,855 (8.2)	4,525 (20.0)	8,235 (36.6)	13,110 (58.3)	19,430 (86.4)
Steel strength in tension of threaded rod	ASTM A193,	N _{sa,rod,B7}	lb (kN)	4,000 (17.7)	9,750 (43.1)	17,750 (78.9)	28,250 (125.7)	41,875 (186.0)
Steel strength in tension of threaded rod, seismic	Gr. B7	N _{sa,rod,eq,B7}	lb (kN)	4,000 (17.7)	9,750 (43.1)	17,750 (78.9)	28,250 (125.7)	41,875 (186.0)
Reduction factor, steel strength in tension		φ	-			0.75		
Steel strength in shear of threaded	ASTM A36	V _{sa,rod,A36}	lb (kN)	1,115 (4.9)	2,715 (12.1)	4,940 (22.0)	7,865 (35.0)	11,660 (51.9)
Steel strength in shear of threaded rod, seismic	ASTIVIASO	V _{sa,rod,eq,A36}	lb (kN)	780 (3.5)	1,900 (8.4)	3,460 (15.4)	5,505 (24.5)	8,160 (36.3)
Steel strength in shear of threaded rod	ASTM A193, Gr. B7	V _{sa,rod,B7}	lb (kN)	2,385 (10.6)	5,815 (25.9)	10,640 (7.3)	16,950 (75.4)	25,085 (111.6)
Steel strength in shear of threaded rod, seismic		V _{sa,rod,eq,B7}	lb (kN)	1,680 (7.5)	4,095 (18.2)	7,455 (34.2)	11,865 (52.8)	17,590 (78.2)
Reduction factor, steel strength in tension		φ	-	0.65				

For SI: 1 inch = 25.4 mm, 1 pound = 0.00445 kN, 1 in² = 645.2 mm². For pound-inch unit: 1 mm = 0.03937 inches.

- 1. Values provided for steel element material types based on minimum specified strengths and calculated in accordance with ACI 318-11 Eq. (D-2) and Eq. (D-29).
- 2. ϕ Nsa shall be the lower of the ϕ Nsa,red or ϕ Nsa,reset for static steel strength in tension; for seismic loading ϕ Nsa,eq shall be the lower of the ϕ Nsa,red,eq or ϕ Nsa,reset,eq.
- 3. ϕ Vsa shall be the lower of the $\dot{\phi}$ Vsa,reg or $\dot{\phi}$ Vsa,reset for static steel strength in tension; for seismic loading $\dot{\phi}$ Vsa,eq shall be the lower of the $\dot{\phi}$ Vsa,reget,eq.
- 4. Strength reduction factors shall be taken from ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for steel elements. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the threaded rod are taken as 0.75 for tension and 0.65 for shear; values correspond to ductile steel elements. The value of ø applies when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of ø must be determined in accordance with ACI 318-11 D.4.3.

ORDERING INFORMATION

Bang-It®+ Steel Deck Insert (UNC internal thread)

Cat. No.	Description	Color Code	Suggested Hole Size in Steel Deck	Pack Qty.
07540-PWR	1/4" Bang-It+	Brown	7/8"	100
07542-PWR	3/8" Bang-It+	Green	7/8"	100
07544-PWR	1/2" Bang-It+	Yellow	7/8"	100
07546-PWR	5/8" Bang-It+	Red	1-1/4"	50
07548-PWR	3/4" Bang-It+	Purple	1-1/4"	50
PFM3521438	1/4-3/8" Bang-It+ Multi	White	7/8"	100
07543-PWR	3/8-1/2" Bang-It+ Multi	Gray	7/8"	100
PFM353143812	1/4-3/8-1/2" Bang-It+ Multi	Aqua	7/8"	50
PFM353381258	3/8-1/2-5/8" Bang-It+ Multi	Orange	1-1/4"	50
PFM3525834	5/8-3/4" Bang-It+ Multi	Black	1-1/4"	50
PFM3610038	3/8" Bang-It+ Push-In	Green	1-1/4"	50
PFM3610012	1/2" Bang-It+ Push-In	Yellow	1-1/4"	50
Inserts are color code	ed to easily identify location, type and s	izes of the internal diam	eters.	

Bang-It®+ Installation Accessories and Tools

Cat.No.	Cat.No. Description	
DCD996P2	20V Max XR Lithium Ion Cordless Drill Driver Kit (5.0Ah)	1
PFM3611000	Bang-It+ Deck Driller Extension 28" (Use with 1/2" Drill Driver)	1
1779804	5L Arbor, 3/8" Solid Hex Shank	1
1779801	2L Arbor, 1/2" Solid Hex Shank	1
2009314CHC	Carbide Hole Cutter Bit 7/8" (use 5L Arbor, not included)	1
2009820CHC	Carbide Hole Cutter Bit 1-1/4" (use 2L Arbor, not included)	1
30912VB12	Vari-Bit Step Drill Bit 7/8", 1-1/8", 1-7/32", 1-1/4", 1-3/8"	1
PFM3613000	Bang-It+ Bridge Bar	20
PFM3613001	Bang-It+ Bridge Bar (packaged with screws)	20
Bang-It+ Bridge Bar r	nominal size is 2" wide x 12" long, 14 gauge thickness.	

Push-In Thread Couplers

Cat. No.	Description	Pack Qty.	
PFM3613038	3/8"-16 Coupler Push-In	20	
PFM3613012	1/2"-13 Coupler Push-In	20	

Push-In thread couplers have one end that does not require turning threaded rod elements during installation which can be ideal for applications such as mounting prefabricated hardware and hanger assemblies.

